1. Orechovich Institute of Biomedical Chemistry of RAMS 2. Orechovich Institute of Biomedical Chemistry of RAMS; Engelhardt Institute of Molecular Biology of RAS 3. Institute of Bioorganic Chemistry of NAS
Abstract: Molecular interactions between proteins redox partners (cytochromes Р450 3А4, 3А5 and cytochrome b ) within the monooxygenase system, which is known to be involved in drug biotransformation, were investigated. Human cytochromes Р450 3А4 and 3А5 (CYP3A4 and CYP3A5) form complexes with various cytochromes b : the microsomal ( b5mc ) and mitochondrial ( b5om ) forms of this protein, as well as with 2 “chimeric” proteins, b5(om-mc) , b5(mc-om) . Kinetic constants and equilibrium dissociation constants were determined by the SPR biosensor. Essential distinction between CYP3A4 and CYP3A5 was only observed upon their interactions with cytochrome b5om . Electroanalytical characteristics of electrodes with immobilized hemoproteins were obtained. The electrochemical analysis of CYP3A4, CYP3A5, b5mc, b5om , b5(om-mc) , and b5(mc-om) immobilized on screen printed graphite electrodes modified with membranous matrix revealed that these proteins have very close reduction potentials -0.435- -0.350 V (vs. Ag/AgCl). Cytochrome b mc was shown to be capable of stimulating the electrocatalytic activity of CYP3A4 to testosterone.
1. Lewis D.F.V. (2001) Guide to Cytochrome P450. Structure and function. Taylor and Francis Eds., London and New York. CrossRef Scholar google search
2. Archakov A.I., Bachmanova G.I. (1990) Cytochrome P450 and Active Oxygen. Taylor and Francis, London. UK. Scholar google search
3. Akiyama I., Tomiyama K., Sakaguchi M., Takaishi M., Mori M., Hosok M., Nagamori S., Shimizu N., Huh N., Miyazaki M. (2004) Int. J. Mol. Med., 14, 663-668. Scholar google search
12. Colas H., Ewen K., Hannemann F., Bistolas N., Wollenberger U., Bernhardt R., de Oliveira P. (2012) Bioelectrochemistry, 87, 71-77. CrossRef Scholar google search
13. Carrara C., Cavallini A., Erokhin V., Albani G., De Micheli G. (2011) Biosens. Bioelectron., 26, 3914-3919. CrossRef Scholar google search
14. Neehaul Y., Chen Y., Werner C., Fee J.A., Ludwig B., Hellwig P. (2012) Biochim. Biophys. Acta, 1817, 1950–1954. CrossRef Scholar google search
16. Yang Y., Xu M., Jun Guo J., Sun G. (2012) Process Biochemistry, in press. Scholar google search
17. Mokdad A., Herrick D.Z., Kahn A.K., Andrews E., Kim M., David S., Cafiso D.S. (2012) J. Mol. Biol. 423, 818–830. CrossRef Scholar google search
18. Martin L., Latypova X., Wilson C.M., Magnaudeix A., Perrin M.-L., Yardin C., Terro F. (2013) Ageing Research Reviews, 12, 289–309. CrossRef Scholar google search
20. Scheller F., Wollenberger U., Lei C., Jin W., Ge B., Lehmann C., Lisdat F., Fridman V. (2002) Reviews in Molecular Biotechnology, 82, 411-424. CrossRef Scholar google search
21. Schroper F., Baumann A., Offenhausser A., Mayer D. (2012) Biosens. Bioelectron., 34, 171–177. CrossRef Scholar google search
28. Yamazaki H., Nakajima M., Nakamura M., Asahi S., Shimada N., Gillami E., Guengerich P., Shimada T., Yokoi T. (1999) Drug Metab. Disposition, 27, 999-1004. Scholar google search
36. Lee S.J., Goldstein J.A. Drug Metabolism and Pharmacokinetics (DMPK) Advance Publication by J-STAGE, doi; 10.2133/dmpk.DMPK-12-SH-030. Scholar google search