УДК: 577.112.852; 612.014.22 ©И.Б. Збарский

БЕЛКИ ЯДЕРНОГО МАТРИКСА И ИХ ФОСФОРИЛИРОВАНИЕ В НОРМАЛЬНЫХ И ОПУХОЛЕВЫХ КЛЕТКАХ

И.Б. ЗБАРСКИЙ

Институт биологии развития им. Н.К.Кольцова РАН, Москва

Рассматривается белковый состав ядерного матрикса нормальных и опухолевых клеток. Характерной особенностью последних является преобладание высокомолекулярной группы белков, в значительной степени представленной гликопротеинами и фосфопротеинами. Лишь некоторые из них идентифицированы. Препараты из опухолей отличаются присутствием фибронектина и фосфотирозинсодержащего белка, а также высокой скоростью включения аминокислот, подавляемой хлорамфениколом.

Ключевые слова: фосфорилирование белка, ядерный матрикс, нормальные и опухолевые клетки.

При фракционировании изолированных клеточных ядер нами был получен нерастворимый остаток, состоящий преимущественно из негистоновых белков и представляющий собой внутриядерные волокна, соединенные с ламиной ядерной оболочки и остаточными ядрышками [1,2]. Впоследствии такие же фракции были охарактеризованы в ряде лабораторий как "ядерный матрикс" (ЯМ). ЯМ является не только скелетной структурой, но играет также первостепенную роль в процессах репликации, транскрипции и внутриядерного транспорта [3].

ЯМ состоит преимущеетвенно из негистоновых белков, значительная доля которых представлена гликопротеинами и фосфопротеинами. Белковый состав ЯМ различных клеток

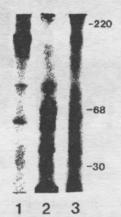


Рис 1 Авторадиограммы белков ядерного матрикса солидной крысиной гематомы 27, меченых ³²P при 30⁰C в течении 30 минут. Лектрофорез в 7,5 % SDS-поликриломидном геле. (1) Фосфорилирование ³²P в целых ядрах; ядерный матрикс изолировали в присутствии ImM PMSF и ImM DTNB. Фосфорилируются главным образом высокомолекулярные белки. (2) То же, но ядематрикс изолировали безингибиторов; Метка ³²P резко сдвинута в низкомолекулярную область, что указывает на интенсивный гпдролиз фосфопротеинов. (3) Ядерный матрикс изолировали в присутствии ингибиторов и затем фосфолировали у ³²P-АТР. Картина носит промежуточный характер; фосфорилирование по всей электрофореграмме.

выявляет общую основу, но в зависимости от характера ткани, может обладать некоторыми особенностями [4]. В опухолевых клетках ЯМ особенно богат высокомолекулярными полипентидами.

Далеко не все белки этой фракции идентифицированы. Для всех пролиферирующих тканей характерно богатство ДНК-полимеразой, ДНК-праймазой, ДНК-топоизомеразой II, ядрышковыми белками В23 и p120, белком p125 ("митотином"), гликопротеинами поровых комплексов.

В опухолевых клетках наряду с этими чертами, выявляются фибронектин, отсутствющий в ядрах нормальных клеток [6], и фосфотирозисодержащие белки [8]. В наших опытах на крысиной гепатоме 27 белки ЯМ интенсивно фосфорилировались. При инкубации изолированных ядер с 32Р и выделении ядерного матрикса в присутствии (рис.1, дорожка 1,) наболее интенсивно ингибиторов протеолиза ПМСФ и ДТНБ фосфорилируется высокомолекулярная фракция. Однако если выделение проводили без ингибиторов, метка, радиоактивного фосфора резко сдвигалась в низкомолекулярную сторону (дорожка 2). Если же матрикс выделяли в присутствии ингибиторов и затем фосфорилировали 32Р то получалась промежуточная картина (дорожка 3). В отличие от ауторадиораммы, окраска кумасси не обнаруживала заметных различий в соответствующих электрофореграммах. Этот результат несомненно указывает на то, что именно фосфопротеины подвергаются интенсивному протеолитическому распаду. При обработке фосфорилированных белков 1N NaOH при 40°C в течение 2 часов фосфорилированные остатки серина и треонина гидролизуются и остаются щелочеустойчивые остатки фосфотирозина (рис. 2).

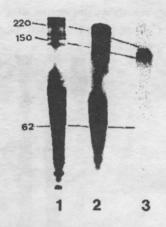


Рис. 2 Выявление щелочеустойчивых фосфопротеинов ядерного матрикса крысиной гепатомы 27.

(1) Электрофореграмма белков ядерного матрикса в 7,5% SDS-полиакриламидном геле; окраска Кумасси синим. (2) Авторадиограмма такого же геля. (3) Авторадиограмма такого же геля после обработки IM NaOH при 40°C в течении 2 часов. Щелочеустойчивые фосфопротеины, содержащие фосфотирозиновые остатки, локализованы в высокомолекулярной области (молекулярные массы около 180 и 170 килодальтон).

Поскольку фосфоамидные связи также устойчивы к щелочной обработке, присутствие фосфотирозиновых остатков было установлено и иммунохимически (рис. 3) с помощью моноклонального антитела к фосфотирозину, любезно предоставленного нам Т.В.Буларги-

ной и А.Д.Харитоненковым (кафедра биохимии МГУ). Как следует из рис. 2 и 3 фосфотизинсодержащие белки с молекулярными массами около 180 и фосфотиросодержащие белки с молекулярными массами около 180 и 170 кД выявляются в высокомолекулярной фракции ядерного матрикса гепатомы 27.

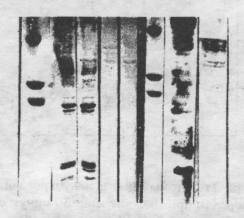


Рис. 3 Электрофорез белков ядерного матрикса в 7,5% SDS-полиакриламидном геле. (1, 6) Стандарты молекулярной массы: (миозин-200 кД; β-галактозидаза-116 кД; фосфорилаза-98 кД). (2, 3, 7) - Окраска Кумасси синим: (2) асцитная гепатома 22а; (3) нормальная печень; (7) асцитная карцинома Эрлиха. (4, 5, 8) - иммунопероксидазная окраска на фосфотирозиновый остаток: (4) гепатома 22а; (5) нормальная печень; (8) асцитная карцинома Эрлиха. Высокомолекулярные полосы, соответствующие щелочеустойчивым фосфопротеинам, выявляются только в материале из опухолей (гепатома 22а и рак Эрлиха, дорожки 4 и 8).

Иммуноэлектромикроскопическое исследование показало, что фосфотирозиновые остатки обнаруживаются в ядре повсеместно, тогда как фибронектин локализуется преимущественно по периферии ядра.

Полученные нами результаты показали, что белки ЯМ, особенно в опухолевых клетках, отличаются высокой скоростью кругооборота. Электрофореграмма белков ЯМ клеток асцитной гепатомы Зайделя после инкубации со смесью меченых аминокислот (¹⁴С гидролизат белков Хлореллы) показала, что наиболее интенсивно предшественники включаются именно в белки высокомолекулярной группы. Необычной особенностью оказалось подавление этого процесса хлорамфениколом (рис. 4). включения меткй в белки с молекулярной массой свыше 45 килодальтон.

В попытке проверить характерна ли эта особенность вообще для опухолевых клеток, аналогичные опыты были проведены Т.М. Базарновой и С.Б.Акоповым на культуре трансформированных клеток HeLa с той разницей, что в качестве предшественника использовался ³⁵S-метионин и интенсивность включения определялась денситометрией авторадиограммы (рис. 5).

Как видно и в этом случае наибольшее включение и ингибирование хлорамфениколом наблюдалось в области высокомолекулярных белков, хотя максимум был несколько сдвинут в сторону меньших молекулярных масс.

Известно, что биосинтез белков эукариот происходит в цитоплазме по рибосомному пути и не подавляется хлорамфениколом. Ингибировение этим антибиотиком характерно только для прокариот и митохондрий.

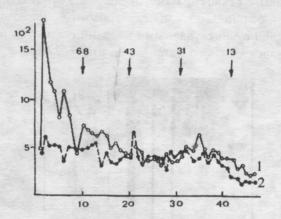


Рис 4. Клетки асцитной гепатомы Зайделя инкубировали в асцитной жидкости с ¹⁴С-гидролизатом белков Хлореллы при 30°С в течение 30 минут. о-без хлорамфеникола, о-с хлорамфениколом. 12% гель разрезали на 48 равных частей и в каждом срезе определяли радиоактивность. Наиболее интенсивное включение, как и подавление хлорамфениколом, отмечается в области высокомолекулярных полипептидов.

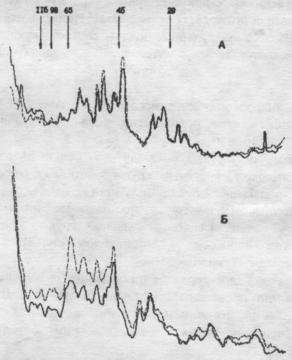


Рис. 5 Денситометрические кривые электрофореграмм белков ядерного матрикса клеток HeLa в 10% SDS-полиакриламидном геле. А-Окраска Кумасси синим; Брадиоавтограф. Клетки метили 35S-метионином в течение 60 минут. Хлорамфеникол (100 мкг/мл среды) добавляли за 15 минут до 35S-метионина. Как и в опытах с гепатомой Зайделя, наибольшее включение и подавление хлоамфениколом отмечается в области высокомолекулярных белков.

Однако подавление биосинтеза ядерных белков хлорамфениколом наблюдалось в ряде прежних исследований, проведенных на изолированных ядрах. Наши опыты отличались тем, что они проводились на целых клетках с последующим выделением ядер и ЯМ и, таким образом, в меньшей степени были подвержены артефктам. Эти результаты могут указывать на особый путь биосинтеза высокомолекулярной фракции белков ЯМ по крайней мере в опухолевых клетках.

Учитывая, что ЯМ является регулирующим центром жизнедеятельности клетки, поведение его белков может иметь решающее значение для нормального функционирования или патологических нарушений процессов роста, развития и клеточного деления. С этой точки зрения полученные нами сведения о преимущественном распаде фосфорилированных белков ЯМ, о преобладании в нем высокомолекулярных полипептидов, содержащих фосфотирозиновый остаток и фибронектин и, в особенности о преимущественном биосинтезе высокомолекулярных белков, могут иметь первостепенное значение для механизмов канцерогенеза и опухолевого роста.

Литература

- 1. Збарский И.Б.// Успехи биол. химии, 1950, т. 1, с. 91-114.
- 2. Збарский И.Б., Георгиев Г.П.// Цитология, 1962, т. 4, с. 604-616.
- 3 Збарский И.Б., Кузьмина С.Н., Скелетные структры клеточного ядра, Москва, "Наука", 1991.
- 4. Stuurman N., Meyne A.M.L., Floore de Yong L., van Driel R., vanRenswoude J.,// The "Minimal" Matrix: A Set of Common Nuclear Matrix Proteins, Cell Biol. Rep., 1990, Vol. 14, Abstract Supplement, p. 191, (p450).
- 5. Бульдяева Т.В., Кузьмина С.Н., Збарский И.Б. // Докл. АН СССР, 1972, т. 302, с. 467-470.
- 6. Zerlauth G., Wesierska-Gadek J., Sauermann G., Fibronectin Observed in the Nuclear Matrix of HeLa Tumor Cells, J. Cell Sci., 1988, Vol. 89, pp. 415-421.
- 7. Филатова Л.С., Збарский И.Б.// Бюлл. эксп. биол. мед., 1993, т. 116, No. 10, с. 418-420.
- 8. Филатова Л.С., Збарский И.Б.// Бюлл. эксп. биол. мед., 1995, т. 120, No. 9, с. 279-281.
- 9. Kuehl L //, Nuclear Protein Synthesis. In "The Cell Nucleus", (H. Busch ed.), New York, 1974, Vol. 3, pp. 345-378.

PROTEINS OF THE NUCLEAR MATRIX AND THEIR PHOSPHORYLATION IN NORMAL AND TUMOR CELLS

I.B.Zbarsky

Koltsov Institute of Developmental Biologi Russian Academy of sciences, Moskow

The protein composition of the nuclear matrix of normal and tumor cells is discussed. A characteristic feature of the latter is the predominance of high molecular weight polypeptides containing mainly glyco- and phosphoproteins. Only few of them are identified. Nuclear matrix preparations from tumors differ by the presence of fibronectin and phosphotyrosine-containing proteins with a molecular mass of nearly 180 and 170 kDa as well as of high turnover of high molecular weight protein group and inhibition of their biosynthesis by chloramphenicol.

Key words:protein phosphorylation, nuclear matrix, normal and tumor cells.