УДК 615. 22. 099: 615. 384. 032 ©Коллектив авторов

СТРУКТУРНО-ФУНКЦИОНАЛЬНОЕ СОСТОЯНИЕ МЕМБРАН ЭРИТРОЦИТОВ ПРИ ОСТРОМ ОТРАВЛЕНИИ МЕТАФОСОМ И ВВЕДЕНИИ ПЕРФТОРАНА.

Э.Р. Нагиев, М.М. Газимагомедова

Дагестанская государственная медицинская академия 367010, г. Махачкала, ул. Ломоносова 17, кв. 9; факс: 67-07-94

Исследовали структурно-функциональное состояние мембран эритроцитов при остром отравлении метафосом и введении перфторана.

Метафос в дозе ЛД50 обладает выраженным мембранотоксическим эффектом. Введение перфторана отравленным метафосом животным способствует существенной коррекции изучаемых показателей.

Ключевые слова: метафос, перфторан, мембраны эритроцитов, монооксигеназы, цитохром P450.

ВВЕДЕНИЕ. Как известно, фосфороорганические соединения (ФОС) занимают одно из первых мест среди различных загрязнителей окружающей среды. Воздействию пестицидами подвергаются практически все организмы от бактерий до человека.

ФОС способны вызывать острые и хронические отравления, нарушения на

всех уровнях регуляции - от молекулярного до организменного [1].

В последние годы установлено, что кроме антихолинэстеразного действия ФОС обладают мембранотоксическим действием [2,3]. Одними из первых контактируют с ФОС после их проникновения в организм эритроциты, поэтому исследования биохимических изменений в мембранах эритроцитов являются весьма актуальными.

Наиболее широкое применение в сельском хозяйстве в качестве пестицида нашли производные монотеофосфорной кислоты, к которым и относится метафос (метилпаратион, вофатокс).

Метафос - белое кристаллическое вещество, температура плавления которого 36-36,5 °С. Практически нерастворим в воде, плохо растворим в керосине и других нефтепродуктах. Метафос термически и фотохимически не стоек, вследствие чего продолжительность действия его в полевых условиях меньше, чем других ФОС.

Метафос полностью разрушается в почве в течение 15-20 дней, превращаясь в простейшие соединения - CO₂ и H₃PO₄.

На практике наиболее часто встречаются с пероральными отравлениями ФОС, в том числе и метафосом. При пероральном поступлении всасывание начинается уже в полости рта, продолжается затем в желудке и тонкой кишке. Препараты быстро проникают в кровоток, через гематоэнцефалический барьер и гемагопаренхиматозный барьер, во все органы и ткани, где распределяются довольно равномерно. Несколько более высокие концентрации могут определяться в почках, легких, кишечнике [4].

ПЕРФТОРАН И МЕМБРАНЫ ЭРИТРОЦИТОВ ПРИ ОТРАВЛЕНИИ МЕТАФОСОМ

ФОС, в стуктуре которых имеется паранитрофенольная группа (тиафос, метафос, метилнитрофос), приводят к закономерным изменениям картины периферической крови. В организме метафос метаболизируется до метилпараоксона, который и является более мощным блокатором ацетилхолинэстеразы (АХЭ).

В исследованиях Кагана и сотрудников [5] показана роль моноокситеназной системы в биотрансформации ксенобиотиков, а также выявлена индукция цитохрома Р450 при отравлениях ФОС. В связи с этим перспективным оказалось использование индукторов монооксигеназ для профилактики отравлений ФОС.

Одним из веществ, способных влиять на индукцию монооксигеназных систем, оказались перфторорганические соединения (ПФОС) - плазмозаменители с газотранспортной функцией [6]. Фторуглероды, растворяясь в гидрофобной области мембран, образуют комплекс с ключевым ферментом монооксигеназной системы - цитохромом Р450. Такое взаимодействие может быть молекулярной основой разнообразных изменений, происходящих в организме после введения фторуглеродов, хотя фактического гидроксилирования фторуглеродной молекулы нет. Введение перфторана приводит к интенсивному синтезу цитохрома Р450, общее содержание которого увеличивается в 3-4 раза, активации ферментов II-фазы биотрансформации ксенобиотиков: УДФ-глюкуронилтрансферазы и глутатион-S-трансферазы. Вследствие индукции специфических ферментов происходит усиление детоксицирующей функции печени, регистрируемое по скорости выведения лекарств из кровотока или по увеличению устойчивости животных к действию некоторых ядов [7].

Введение животным эмульсии перфтордекалина (ПФД) - индуктора цитохрома P450 - сопровождается увеличением скорости окисления NADPH в активном центре цитохрома P450 [8].

Максимальное значение свободного окисления NADPH более чем в 2 раза превышает уровень контроля и наблюдается на вторые сутки после введения эмульсии. Высокая скорость окисления NADPH в микросомах после введения фторуглерода не приводит к снижению общего содержания восстановленных пиридиннуклеотидов в печени и не изменяет концентрации глюкозы в крови. Авторы наблюдали ускоренную потерю веса голодающими животными после введения перфторуглеродной эмульсии и связывают это с рассеиванием энергии в разобщенных фторуглеродом монооксигеназных реакциях в печени. Положительным является то, что монооксигеназная система, разобщенная фторуглеродами, генерирует преимущественно H₂O, а не H₂O₂ и O₂. В целом маловероятно, что эффект разобщения монооксигеназной системы мог бы привести к возникновению патологии у нормальных животных.

Описанные эффекты ПФОС и позволили нам использовать перфторан для

коррекции нарушений экспериментального отравления ФОС.

МЕТОДИКА. Опыты проведены на 6 собаках и 120 белых беспородных крысах обоего пола массой 170-190 г. Острое отравление метафосом вызывали путем введения пестицида через зонд в желудок предварительно наркотизированным животным. У собак применяли для наркоза тиопентал, для крыс использовали калипсол.

Метафос вводили в желудок через зонд в дозе ЛД₅ (летальная доза, вызывающая гибель 50% подопытных животных), которая для собак составляет 47 мг/кг, а для крыс - 25 мг/кг [9].

Через 30 минут после введения метафоса животным вводили эмульсию перфторана. Собакам эмульсию перфторана вводили из расчета 10-15 мл/кг в бедренную вену, крысам - хвостовую вену в количестве 1 мл/100г.

Исследования проводили в ранние сроки через 30 и 90 минут после введения метафоса и перфторана. В контрольной группе животным через 30 мин после отравления метафосом вводили эквивалентное количество физиологического раствора.

Мембраны эритроцитов получали методом гипоосмотического гемолиза по методу Казенова и др. [10]. Активность ацетилхолинэстеразы (АХЭ) мембран эритроцитов определяли по методу Масловой и Резник [11]. В качестве субстрата использовали 0,5 мМ ацетилтиохолин (АТХ). Активность АХЭ выражали в мкмоль тиохолина на 1 мг белка/ч. Концентрацию белка определяли по методу Лоури.

Компоненты тиол-дисульфидной системы белков мембран эритроцитов и плазмы крови определяли методом амперометрического титрования [3]. В белках мембран эритроцитов определяли общие, поверхностные и скрытые SH-группы, а также количество дисульфидных связей. Количество поверхностных и скрытых тиоловых групп вычисляли, определяя содержание SH-групп в мембранах до и после их солюбилизации додецильсульфатом натрия. Содержание S-S связей в белках устанавливали после их сульфитолиза [12]. В мембранах эритроцитов показатели тиол-дисульфидной системы выражали в мкмоль SH-групп на мг белка, количество которого определяли по методу Лоури.

Суммарную пероксидазную активность плазмы определяли по методу Покровского [13]. Концентрацию свободного гемоглобина в плазме крови определяли по реакции с бензидином [14]. Определение деформируемости эритроцитов проводили на специальном устройстве для измерения деформируемости эритроцитов ИДЭ-1 [6]. Статистическую обработку данных

проводили по t -критерию Стюдента.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ. В результате исследований выявлено, что метафос в дозе ЛД₅₀ обладает мембранотоксическим эффектом. Об этом свидетельствуют данные, полученные при изучении показателей структурнофункционального состояния эритроцитарных мембран: активности ацетилхолинэстеразы, содержания свободного гемоглобина и суммарной пероксидазной активности плазмы крови, деформируемости эритроцитов, а также компонентов тиоловой системы.

Через 30 минут после введения метафоса в дозе ЛД₅₀ активность ацетилхолинэстеразы мембран эритроцитов снижается на 41,4%. Через 90 мин происходит дальнейшее прогрессивное снижение активности фермента, которая

составила 45,4% от уровня контрольных крыс.

На функционирование ацетилхолинстеразы при отравлении метафосом может оказывать влияние целый комплекс факторов. В отличие от других представителей фосфорорганических соединений, метафос в исходном виде не обладает антихолинэстеразным действием, но в организме он подвергается окислительной десульфурации и превращается в Р=0-производное, становясь при этом сильным ингибитором ацетилхолинэстеразы и приобретает способность специфически фосфорилировать сериновый остаток в активном центре фермента [4].

Однако, не исключается возможность и опосредованного влияния метафоса на АХЭ, так как показано, что различные ФОС, в том числе и метафос, могут внедряться в область углеводородных цепей фосфолипидов, либо могут взаимодействовать путем распределения на поверхности гидрофобных участков мембран эритроцитов [15]. Нарушение же структуры мембраны под действием метафоса может привести и к изменению конформации мембраносвязанных

ферментов, а в том числе и АХЭ.

При отравлении метафосом обнаружена активация процессов перекисного окисления липидов (ПОЛ) в крови [16]. Нужно отметить, что свободные радикалы кислорода и продукты перекисного окисления липидов ингибируют ацетилхолинэстеразу [17].

Введение перфторана отравленным метафосом животным приводит к снижению тяжести мембранотоксического эффекта метафоса и улучшает

состояние животных.

Как видно из таблицы у отравленных метафосом животных активность АХЭ составила 69% от исходного уровня (в контрольной группе животных, которым был введен физиологический раствор, активность АХЭ составляла примерно 45%).

ПЕРФТОРАН И МЕМБРАНЫ ЭРИТРОЦИТОВ ПРИ ОТРАВЛЕНИИ МЕТАФОСОМ

Таблица. Показатели структурно-функционального состояния мембран эритроцитов при остром отравлении метафосом и введении перфторана.

Серия			1	2	3	4
Группа животных			Контроль (интактные животные)	Метафос-30 мин.	Метафос+физ. раствор-90мин.	Метафос+пер- фторан-90мин.
АХЭ мкмоль/мг/ч			56,9±3,58	33,34±4,68*	25, 86 ±2,17	39,30±4,6*
Компоненты тиоловой системы	эит до	mkmojib/mf	0,164±0,007	0,133±0,002*	0,137±0,00 8	0,155±0,005*
	Свободные		0,061±0,003	0,055±0,003*	0,052±0,002*	0,038±0,003*#
	Скрытые		0,104±0,006	0,079±0,003*	0,086±0,006*	0,113±0,005#
	S-S связи		0,017±0,001	0,038±0,003*	0,029±0,001*	0,017±0,001#
Деформируемость эритроцитов, у.е.			0,324±0,001	0,160±0,008*		0,227±0,024*
Свободный Нb в плазме крови			2,96±0,24	6,49±0,49*	7,10±0,1 8 *	4,60±0,20*#
СПА в плазме крови в у.е.			2,69±0,27	6,49±0,46*	7,93±0,55*	6,95±0,15*

Примечание: Представлены средние значения (± ошибка средний) из 6-10 опытов; *p<0,05 (по сравнению с контролем), #p<0,05 (по сравнению с группой № 3).

Следует отметить, что корригирующий эффект перфторана на активность АХЭ мембран эритроцитов, наблюдаемый у отравленных животных, может быть обусловлен с несколькими причинами.

Одна из них - способность перфторана адсорбировать на своей поверхности различные вещества, в том числе и метафос. Другая - уменьшение субстратов ПОЛ (гидроперекисей, диеновых конъюгатов и малонового диальдегида (МДА), что наблюдается у отравленных метафосом животных, которым был введен перфторан [16].

В процессе циркуляции перфторана в крови происходит перестройка адсорбционного слоя на частицах перфторуглерода, меняется качественный и количественный состав липидов [18], причем сорбируются в основном фосфатидилхолин и холестерин мембранных липидов, что не может не сказаться на жидкокристаллическом состоянии мембраны и может служить причиной изменения активности АХЭ [19].

При острой интоксикации метафосом в дозе ЛД₅ происходит снижение деформируемости эритроцитов. Так, через 30 мин у отравленных метафосом животных индекс деформируемости снижается на 51%. Одна из причин деформируемости эритроцитов при воздействии метафоса может быть связана с накоплением ацетилхолина в условиях торможения ацетилхолинэстеразы, что могло оказать влияние на эластичность мембран, привести к ее ригидности [3].

Подтверждением тому, что в мембранах происходят структурнофункциональные изменения является также анализ содержания тиоловых групп. Так, через 30 мин после отравления метафосом содержание тиоловых групп в белках мембран эритроцитов снижается на 19%. Параллельно этому происходит увеличение на 88% в белках мембран дисульфидных связей, кроме того меняется и соотношение между скрытыми и свободными сульфгидрильными группами. Причем количество свободных SH-групп уменьшается на 10%, а скрытых - на 24%, что свидетельствует о конформационных изменениях в белках мембран эритроцитов.

После введения перфторана отравленным животным в белках мембран увеличивается общее количество сульфгидрильных групп и уменьшается количество дисульфидных связей. Однако при этом меняется соотношение между свободными и скрытыми SH-группами: снижается количество свободных SHгрупп и увеличивается содержание скрытых сульфгидрильных групп. Это свидетельствует о том, что в присутствии перфторана меняется конформация белков мембраны, что может оказывать существенное влияние на активность

мембранносвязанного фермента АХЭ.

Одним из показателей стабильности эритроцитарной мембраны является содержание свободного внеэритроцитарного гемоглобина (ВЭГ) и суммарная пероксидазная активность (СПА). В совокупности оба этих параметра считаются показателями, отражающими тяжесть повреждения мембран эритроцитов. Определение ВЭГ в плазме крови имеет существенное значение для оценки повреждения эритроцитов при различных патологических состояниях: интоксикациях, сепсисе, гипоксии и др. [20].

Гемоглобин, помимо своей основной кислородотранспортной функции, обладает и неспецифической пероксидазной активностью [21], что вносит существенный вклад в СПА плазмы. В связи с этим нами было определено содержание свободного гемоглобина и СПА при остром отравлении метафосом и

введении перфторана.

Через 30 мин после введения метафоса уровень свободного гемоглобна в плазме крови вырос на 119 %, а через 90 минут - на 140%, что свидетельствует об интенсивном гемолизе эритроцитов. СПА плазмы крови в норме составила 2,69±0,27 усл. ед на 1 мл. Через 30 мин она возрасла на 130%, а через 90 мин - на 195% по сравнению с контрольными показателями.

Таким образом, полученные результаты по определению свободного гемоглобина и СПА свидетельствуют о снижении стабильности мембран

эритроцитов под действием метафоса.

Проведенные исследования показывают, что через 90 минут после отравления в плазме крови СПА увеличивается в большей степени, чем свободный гемоглобин. Возможно, это связано с гемоглобином и комплексом гемоглобина с гаптоглобином. Известно, что пероксидазная активность окси- и метгемоглобина при связывании с гаптоглобином увеличивается в 20-30 раз [21]. Усиление процессов перекисного окисления липидов (ПОЛ), имеющих место при введении метафоса, приводит к высвобождению железа из гема, которое катализирует образование гидроксильных радикалов.

Результаты полученных исследований показывают, что при остром отравлении метафосом имеют место изменения структурно-функциональных свойств мембран эритроцитов, изменения их проницаемости. Введение перфторана отравленным метафосом животным изменяет содержание гемоглобина в крови. Как видно из данных таблицы, через 90 минут после инъекции кровезаменителя количество ВЭГ снизилось до 4,6±0,2 мкмоль/л, что составляет примерно 65% от уровня группы животных, которым вводили физиологический раствор.

Напротив, инъекции перфторана отравленным животным не оказали заметного влияния на СПА, которая и составила < 58% от уровня контрольной

ПЕРФТОРАН И МЕМБРАНЫ ЭРИТРОЦИТОВ ПРИ ОТРАВЛЕНИИ МЕТАФОСОМ

группы. Существенный вклад в суммарную пероксидазную активность, возможно, вносят миелопероксидаза, увеличение активности которой наблюдалось после лечения перфтораном людей с острыми отравлениями карбофосом [18], а также каталаза. Увеличение активности ферментов, принимающих участие в снижении активных форм кислорода и являющихся компонентами антирадикальной защиты, по-видимому, является благоприятным моментом и способствует снижению степени структурно-функциональных изменений мембран эритроцитов у отравленных крыс, получавших перфторан.

Таким образом, результаты исследования показателей стойкости эритроцитарных мембран СІ₹А и свободного гемоглобина показывают, что при остром отравлении метафосом имеют место изменения структурнофункциональных свойств мембран эритроцитов, нарушения их проницаемости,

что оказывает влияние на способность эритроцитов к деформации.

Так, через 30 мин индекс деформируемости снижается на 51%. Одна из причин изменения, возможно, связана с накоплением ацетилхолина в условиях торможения АХЭ, что может оказывать влияние на эластичность мембраны, приводя к ее ригидности [3]. Нарушение способности эритроцитов изменять свою форму может быть связано и с усилением процессов перекисного окисления липидов [16]. Не исключается и прямое воздействие метафоса на эритроцитарную мембрану. Липофильность и высокая реакционная способность метафоса, возможно, оказывает непосредственное воздействие на структуру мембраны. Перфторан, как и другие перфторорганические соединения, сорбирует на своей поверхности и холестерин, входящий как в состав липидов мембран, так и липопротеинов [22]. Уменыпение холестерина в мембране эритроцитов приводит к изменению жидко-кристаллического состояния мембран [19], что служит основой структурно-функциональных изменений мембраны при введении перфторана.

У отравленных метафосом животных после коррекции перфтораном в условиях нашего эксперимента улучшается структурно-функциональное состояние мембран эритроцитов, что приводит к нормализации деформируемости эритроцитов. Об этом свидетельствует и тот факт, что деформируемость

эритроцитов существенно не отличается от контрольных показателей.

Немаловажным фактором, влияющим на деформацию эритроцитов, являются и реологические показатели крови. Исследованиями нашей лаборатории было выявлено, что перфторан улучшает реологию крови за счет уменьшения вязкости крови, что связано с усилением электрофоретической подвижности эритроцитов, увеличением гематокрита, объема циркулирующей крови. Это приводит к снижению агрегации эритроцитов, что улучшает микроциркуляцию.

Интересные данные, позволяющие объяснить способность ПФУ улучшать нарушенную деформацию эритроцитов, приведены в работе Скорика и соавт. [23]. Авторами было обнаружено появление особых клеток под воздействием перфтордекалина. Эти клетки представляют разновидность нормоцитов, несколько уплощенных по форме с не совсем ровными, иногда извилистыми краями по контуру. Увеличение соотношения площади поверхности к объему способствует улучшению деформации и эффективному газообмену.

Таким образом, введение перфторана представляется целесообразным для улучшения структурно-функционального состояния мембран эритроцитов и метаболизма в них при отравлении метафосом и другими фосфороорганическими

соединениями.

Нагиев и Газимагомедова

ЛИТЕРАТУРА

- 1. *Каган Ю. С.* (1977) Токсикология фосфорорганических пестицидов. М.: Медицина.
- 2. *Контуш А. С.* (1992) Успехи совр. биологии, N2, с. 200-215
- 3. *Прозоровский В. Б. ,Скопичев В. Г.* (1991) Бюллетень экспер. биол. мед. N4, 443-445
- 4. Лужников Е. А. (1994). Клиническая токсикология. М.: Медицина.
- 5. Каган Ю. С., Кокнарева Н. В., Овсянникова Л. М. и др. (1980) Вестник АМН СССР N8, 55-58
- 6. Образуюв В. В., Кабальнов А. С., Гросс У. И. и др. (1993) Перфторуплеродные активные среды для биологии и медицины, Пущино, с. 117-129
- 7. *Михайлова Г. М., Варыханов А. А., Омарова Л. Д. и др.* (1990) Фармакология и токсикология, **53**, N4, 60-62
- 8. Образцов В. Б., Шихтман Д. Г., Склифас А. Н. и др. (1994) Биохимия, **59**, 1175-1181
- Мельников Н. Н. (1987). Пестициды, М.: Химия.
- 10. Казеннов А. М., Маслова Н. В., Шалабодов А. Д. (1984) Биохимия 49, 1089-1095
- 11. *Маслова. М. Н., Резник Л. В.* (1976) Укр. биохим. журнал, **76**, N4, 45-51
- 12. Торчинский Ю. М. (1971) Сульфгидрильные и дисульфидные группы белков. М.: Наука.
- 13. *Покровский А.А.* (1969) Биохимические методы исследования в клинике. М.: Медицина.
- 14. *Кассирский И. А.* (1970) Справочник по функциональной диагностике. М.: Медицина. с. 398-399.
- 15. Панасенко О. М., Зорина О. М., Гендель Л. Я. (1984) Известия АН СССР. Серия биологическая N 2, 210-216
- 16. Волжина Н. Г., Волжин А. О., Магомедова З. М. и др. (1999) В сб.:Морфогенез, курортные и физические факторы, Махачкала, с.39-42.
- 17. Дубинина Е. Е., Щугалей И. В. (1993) Усп. совр. биол. 113, 71-79
- 18. Батоцыринов Б. В., Ливанов Г. А., Саноцкий В. И. и др. (1997) Тезисы Всеармейской науч.конф. Физиологические активные вещества на основе перфторуглеродов в военной медицине, Санкт-Петербург, 6-7.
- 19. *Таганович А. Б.*, Олецкий Э. И, Кухта В. К. (1985) Вопр. мед. химин, N5, 75-80
- 20. Мовшович Б.Л. (1973) Лаб. дело, N5, 279-281
- 21. Владимиров Ю. А., Азизова О. А., Деев А. И. и др. (1991) Итоги науки и техники ВИНИТИ АН СССР. Биофизика, **29**, 252
- 22. Терешина, Е. В., Устюжанинова Н. В., Доронина Н. И. и др. (1986) Гематология и трансфузиология N1, с. 45-48
- 23. Скорик В. И., Новожилов А. П., Судук А. В. и др. (1995) Бюлл. экспер. биол. мед., N1, 535-539

Поступила 10.01.01

THE EFFECT OF PERFTORAN ON STRUCTURE-FUNCITONAL STATE OF ERYTHRO-CYTE MEMBRANE IN ACUTE INTOXICATION WITH METAPHOS

E.R. Nagiev, M.M. Gazimagomedova

Dagestan State Medical Academy, 367010 Makhachkala; fax: 67-07-94

The effect of perftoran administration on structure-functional state of erythrocyte membrane was investigated under conditions of metaphos intoxication. Metaphos administration at the dose of LD50 caused pronounced membrane-toxic effect. Perphtoran administration to animals reduced manifestation of the membrane damage.

Key words: metaphos, perfloran, erythrocyte membrane, monooxygenases, cytochrome P450.