ОБЗОРЫ

УДК: 577.152.342*1'134 ©Ротанова, Мельников

АТР-ЗАВИСИМЫЕ ПРОТЕИНАЗЫ И ПРОТЕОЛИТИЧЕСКИЕ КОМПЛЕКСЫ ВНУТРИКЛЕТОЧНОЙ ДЕГРАДАЦИИ БЕЛКОВ

Т.В. Ротанова*, Э.Э. Мельников

Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН, 117997, Москва, ул. Миклухо-Маклая 16/10; тел.: (495)335-42-22; факс: (495)335-71-03; эл. почта: rotanova@enzyme.siobc.ras.ru

Охарактеризованы основные ферментные системы, осуществляющие селективный протеолиз и обеспечивающие сохранность внутриклеточного протеома в организмах бактерий, эукариот и архей. Обсуждаются особенности протеолитических составляющих АТР-зависимых протеиназ, а также сходство и различия их регуляторных компонентов, относящихся к ААА⁺-АТРазам.

Ключевые слова: ААА⁺-белки, АТР-зависимые протеиназы, внутриклеточный протеолиз, протеасомы, прокариоты, эукариоты, археи.

ВВЕДЕНИЕ. Протеолитические ферменты играют ключевую роль в жизненном цикле клеток всех организмов, представляющих три основных эволюционных клеточных домена жизни - бактерии, эукариоты и археи. Протеиназы вовлечены в процессы деградации клеточных белков, сопряженные с контролем факторов транскрипции, процессингом И активацией предшественников, развитием и дифференцировкой клеток, регуляцией клеточного цикла и апоптозом [1-5]. Таким образом, в настоящее время протеиназы рассматриваются не только в качестве деструктивных ферментов, обеспечивающих катаболизм белков и образование пептидов и аминокислот, но, прежде всего, в качестве основных участников регуляторных процессов, отвечающих за сохранность клеточного протеома.

Внутриклеточный селективный гидролиз белков, направленный на поддержание низкого базального уровня регуляторных белков и быстрое удаление мутантных, поврежденных и других опасных для клетки белков, выполняется специфическими ферментами - ATP-зависимыми протеиназами, которые часто называют "наномашинами белковой деструкции". Эти комплексные механоферменты объединяют в своей структуре ATPазные и протеолитические компоненты и относятся к выявленному в 1990-х гг. суперсемейству AAA⁺-белков (*A*TPаз с *а*льтернативными *а*ктивностями) [6]. ATPазные компоненты ATP-зависимых, или AAA⁺-протеиназ, осуществляют регуляцию протеолитической активности этих ферментов и участвуют в отборе белковых субстратов-мишеней.

ААА⁺-протеиназы отличаются от классических протеолитических ферментов следующими уникальными характеристиками: (1) высокой селективностью взаимодействия с белковыми мишенями *при отсутствии выраженной специфичности* по отношению к аминокислотным остаткам, образующим расщепляемые связи; (2) сопряжением протеолитической активности с гидролизом ATP; (3) процессивным механизмом деградации белков-субстратов (с образованием 10-15-членных пептидных продуктов без высвобождения высокомолекулярных интермедиатов); (4) мультисубъединичной (гомо- или гетероолигомерной) организацией.

^{* -} адресат для переписки

Исторически первой обнаруженной энергозависимой протеиназой явилась Lon-протеиназа *Escherichia coli* [7]. К настоящему времени в бактериальных клетках выявлено четыре группы ATP-зависимых протеиназ: Lon (подсемейство LonA), FtsH, ClpAP/XP и HslUV/CodWX (таблица). Родственные этим ферментам протеиназы обнаружены также в органеллах (митохондриях и хлоропластах) клеток эукариот. Однако основную роль в селективной деградации белков в эукариотах играют крупные мультикаталитические комплексы - 26S-протеасомы [8] (таблица).

THE OWNER AND THE	IA3A NJIN	Cydi-	A.o.,	Мол. масса СЕ, Да	AAA	-ATPasa	Тып протеолитического	IW	ROPS
	тический	сдиницы	<i>u</i> *	(число	KUIACC	JKCTDA-	активного центра	KUIAH	CCMCH-
KOMII	JICKC	(CE)		cybredunut)**		домсн ^{±‡‡}	(каталытические		CIBO
							ocmanncu)		
				B KJICTKAX GAKTED	uň (Esche	richia coli)			
on (La, no)	ICEMEĂCTBO	Lon	784	87300 (4, 6, 8, 12?)	Π	Z	Серин – лизиновая	ß	S16
_							протенназа (<i>Sep⁶⁷⁹, Lvs⁷²²</i>)		
SH (HffB)		FisH	633	70700 (6)		z	Zn-ternchman	MA	M41
смбраносв	язанная)				1	5	металлюпротенназа (His ⁴¹⁴ -Giu-Aia-Giy- Нis ⁴¹⁸ , Asy ⁴²³)		
pAP/XP	ClpAP (Ti)	ClpA	758	84200 (12)	Η	Z			
4	, , ,	ClpP	207	21000 (14)			Сериновая протенназа (Set ¹¹¹ , His ¹³⁶ , Asp ¹⁸⁵)	SK	S14
	ClpXP	ClpX	424	46200 (12)	I	Z			
	I	ClpP	207	21000 (<i>14</i>)			Сериновая протенназа (Set ¹¹¹ , His ¹³⁶ , Asp ¹⁸⁵)	SK	S14
NUV/	HsiUV	HsIU	443	49600 (12)	H	I			
XMP	(ClpYQ)	HsIV	176	19000 (12)			Треониновая Ntn- протенназа (<i>Thr¹</i>)	PB	TIB
	CodWX	CodX	467	52500 (12 unu 24)	Π	-			
	(B Bacillus subtilis)	CodW	175	19500 (12)			Сериновая Nín- протенназа (<i>Serⁱ</i>)	PB	TIB
			m	клетках архебактериі	ii (Archae	oglobus fulgi	tus)		
м (подсем	(eŭcrbo B)	Lon	621	68300 (?)	H	-	Серин – лизиновая	ß	S16
смбраносв	язанная)						протенназа (Ser ⁵⁰⁹ , Lys ⁵⁵²)		
poreacoma		Pan-Kom	ILIEKC	(12, 600 k/Ja)	Π	Z			
		208-прот	ERCOME	(28, 700 KHa)			Треониновая Ntn- протенназа (<i>Thr'</i>)	PB	ΠΛ
				B KIETKAN	онцалие з	T			
S-uporeac	OMA	19S-KOM	nnekc	(17, 890 K/Ja)	Π	Z			
		20S-npor	ERCOME	(28, 720 kJa)			Треониновые Ntn- протенназы (<i>Thr'</i>)	PB	ΠΛ

*** - N - N-концевой экстрадомен, I - вставочный или инсерционный экстрадомен

Сравнительно недавно были выявлены протеиназы, выполняющие селективную деградацию белков в клетках архебактерий [9]. Оказалось, что основными участниками внутриклеточного протеолиза в археях являются аналоги бактериальных Lon-протеиназ (подсемейство LonB) и эукариотических протеасом (таблица).

Из таблицы видно, что известные ATP-зависимые протеиназы и протеолитические комплексы различаются как по типам их протеолитических активных центров, так и по субъединичному составу и олигомерной организации. ATPазные компоненты обсуждаемых ферментов относятся, как было отмечено выше, к общему суперсемейству AAA⁺-белков. Они характеризуются сходной топологией, имеют ряд общих консенсусных мотивов, хотя в целом их первичные структуры не проявляют высокой гомологии.

1. Общая характеристика ААА+-белков.

Суперсемейство AAA^+ -белков, в состав которого входят и ATPазные компоненты энергозависимых протеиназ, представляет специфическую ветвь так называемых P-петлевых нуклеозидтрифосфатаз [10], гидролизующих β - γ -фосфатную связь в связанном нуклеотиде (ATP или GTP). Основой биохимической активности и биологических функций этих ферментов служит индуцирование конформационных изменений в других молекулах (партнерах или мишенях) за счет энергии реакции гидролиза нуклеотида (конформационное ремоделирование субстрата) [11, 12]. В частности, функционирование AAA⁺-белков опосредуется разворачиванием их белковых мишеней и проявлением, таким образом, шапероновой (или "анфолдазной") активности [13].

Представители ААА⁺-белков характеризуются наличием специфического домена (ААА⁺-модуль) размером ~200-250 аминокислотных остатков (а.о.), который содержит ряд областей высокой консервативности. Подавляющее большинство ААА⁺-белков взаимодействует с функциональными белковыми партнерами, образуя комплексные гетероолигомерные структуры, АТРазные составляющие которых представлены самостоятельными субъединицами [13, 14] (среди АТР-зависимых протеиназ - это ClpAP/XP и HslUV/CodWX, а также протеасомы, таблица). В редких случаях ААА⁺-АТР-аза и ее функциональный компонент локализованы в единой полипептидной цепи (протеиназы Lon и FtsH). ААА⁺-белки, содержащие два ААА⁺-модуля, относятся к классу I (ClpAP-протеиназы в таблице), белки, содержащие один модуль, - к классу II (остальные протеиназы и протеолитические комплексы из таблицы) [15]. Межсубъединичные взаимодействия ААА⁺-модулей приводят к образованию характерных для ААА⁺-белков кольцевых гексамерных, а иногда и гептамерных структур (при наличии в белке двух или более АТРазных модулей каждый из них образует отдельное кольцо).

Собственно ААА⁺-модули сформированы двумя структурными доменами: бо́льшим N-концевым нуклеотид-связывающим (α/β -домен или NB-домен) и меньшим C-концевым α -спирализованным (α -домен) (рис. 1) [12, 13, 16, 17]. Наличие α -доменов - важнейшая особенность ААА⁺-белков, отличающая их от других нуклеотид-связывающих белков. В структуре ААА⁺-модулей α -домены располагаются над N-концевыми областями α/β -доменов, прикрывая нуклеотид-связывающие центры [12]. Кроме контактов с собственными α/β -доменами, α -домены образуют контакты с α/β -доменами соседних субъединиц ААА⁺-белков, участвуя тем самым в образовании четвертичной структуры [13, 18].

Схема строения ААА⁺-модуля (по [12]). Показана локализация консервативных фрагментов - мотивов Уолкера А и В, SRH-, sensor-1- и sensor-2-областей, а также остатков sensor-1 (*s*-1), sensor-2 (*s*-2) и "аргининовый палец" (*af*).

В α/β -доменах содержится ряд характеристических областей (рис. 1). К ним относятся мотивы Уолкера А (GXXGXGKT/S, где X - остаток любой аминокислоты) и В (Φ_4 DE, где Φ - остаток гидрофобной аминокислоты), консервативный SRH-фрагмент (или "вгоричная область гомологии"), граничащий своей N-концевой частью с фрагментом "sensor-1" с одноименным ключевым остатком (Asn или реже - Thr), в C-концевой части SRH-фрагмента локализован специфический остаток Arg ("аргининовый палец") [11-13, 16, 17]. Другой остаток аргинина ("sensor-2") и окружающий его фрагмент последовательности являются характерными элементами α -доменов (рис. 1). Мотивы Уолкера, а также остатки "sensor-1" и "sensor-2" участвуют в связывании и гидролизе нуклеотидов, а "аргининовый палец" обеспечивает взаимодействие ААА⁺-модуля с α/β -доменом соседней субъединицы. Полагают также, что sensor-2-область может быть непосредственным образом вовлечена в процесс ремоделирования белкового субстрата [13].

Помимо α/β- и α-доменов АТРазных модулей ААА⁺-белки содержат третий структурно независимый домен (экстрадомен), соединяющийся с АТРазным кором через подвижный линкер (рис. 2). Обычно это - либо вариабельный "не-АТРазный" N-концевой домен (N-домен), который предшествует ААА⁺-модулям, либо вставочный домен (I-домен), локализованный внутри α/β-кора [18]. Считается, что экстрадомены могут служить первичной областью узнавания субстрата-мишени, а также играть вспомогательную роль в разворачивании субстрата или контролировать доступ мишеней к связывающим центрам, локализованным внутри ААА⁺-модуля. В последнее время выяснилось, что обеспечение селективности при отборе субстратов ААА⁺-белками зачастую связано с использованием адаптерных белков (рис. 2). Последние участвуют в распознавании мишеней посредством специфического связывания и с мишенью и с ААА⁺-партнерным белком [19]. Большинство адаптеров связываются с N-концевым доменом ААА⁺-белка, тем самым обеспечивая идеальное взаиморасположение ААА⁺-олигомера и "заякоренной" через этот белковый линкер мишени.

При выполнении функции контроля качества AAA⁺-белки отбирают потенциальные мишени с нарушенной структурой из общего пула клеточных белков, в основном правильно фолдированных. Предполагается, что при этом происходит взаимодействие AAA⁺-белка либо с гидрофобными областями, экспонированными на поверхности поврежденных белков [20], либо со специфическими метками (например, с 11-членным пептидом AANDENYALAA (SsrA-tag), способствующим диссоциации укороченного полипептида с рибосомы [21]). Установлено, что основными функциональными мотивами AAA⁺-белков, обеспечивающими связывание ненативных белковых мишеней, являются суперспирализованные сегменты, имеющие антипараллельное строение [22]. Взаимодействие AAA⁺-белков с неповрежденными мишенями происходит путем узнавания в последних специфических сигналов. В AAA⁺-белках обычно заключено несколько центров узнавания мишеней, что приводит к проявлению широкой специфичности в сочетании с высокой селективностью, к осуществлению шапероновой и регуляторной функций.

Этапы разворачивания и транслокации белков-мишеней сопряжены с гидролизом АТР. При этом во время АТРазного цикла кольцевые структуры, образованные ААА⁺-модулями, претерпевают значительные конформационные изменения, приводящие к поворотам колец друг относительно друга, изменению размеров их аксиальных отверстий и т.д. [23]. Таким образом ААА⁺-белки трансформируют энергию связывания и гидролиза АТР в собственные механические движения, которые могут служить источником для развития напряжений в молекулах связанных белков и тем самым приводить к разворачиванию полипептидных цепей, к диссоциации белок-белковых комплексов или механическому движению вдоль определенных путей в клетке. В целом, совокупность ААА⁺-белков можно рассматривать как уникальное суперсемейство механоферментов, сходные конформационные изменения которых приводят к реализации широкого круга различных биологических проявлений [24].

2. АТРазные компоненты ААА+-протеиназ.

АТР-зависимые протеиназы и протеолитические комплексы, представленные в таблице, обладают всеми характеристиками ААА⁺-белков. В состав протеиназ и ферментативных комплексов бактерий и архей входят одинаковые АТРазные субъединицы или домены, в то время как регуляторный 19S-комплекс 26S-протеасом эукариот содержит шесть различных ААА⁺-АТРаз, а также большое число некаталитических субъединиц. Общее количество субъединиц энергозависимых протеиназ и протеолитических комплексов варьирует от шести (FtsH) до 62 (26S-протеасома) (таблица). Индивидуальные АТРазные субъединицы ClpA, ClpX и HslU способны функционировать как молекулярные шапероныанфолдазы [25], и в то же время в комплексе с протеолитическими субъединицами они выполняют роль стимуляторов активности последних [26].

Экстрадомены ATP-зависимых протеиназ относятся к различным типам. Протеиназы семейств ClpAP/XP и FtsH, а также регуляторные нуклеотидазы (Rpt) и гомологичные им Pan-нуклеотидазы протеасом эукариот и архей, соответственно, имеют N-концевые домены размером от 61 (ClpX) до 169 (ClpA) а.о. Протеиназы семейства HslUV/CodWX содержат вставочные экстрадомены, локализованные между мотивами Уолкера и включающие 130-150 остатков. И только в протеиназах семейства Lon представлены оба типа экстрадоменов - N-концевой у ферментов подсемейства LonA и вставочный у ферментов из архей (подсемейство LonB). Следует отметить, что трансмембранные сегменты мембраносвязанных ATP-зависимых протеиназ LonB и FtsH локализованы именно в их экстрадоменах, близких по размеру. Протеиназы подсемейства LonA имеют в своем составе N-концевые домены, содержащие до 500 и более а.о., намного превышающие по размеру N-концевые экстрадомены не только протеиназ других семейств, но и других AAA⁺-белков. Можно полагать, что N-концевые домены LonA-протеиназ состоят из двух фрагментов: один из них (около 100 а.о., непосредственно примыкающих к AAA⁺-модулю) является аналогом N-концевых экстрадоменов AAA⁺-белков и, возможно, имеет сходное функциональное значение, а другой - протяженный собственно N-концевой фрагмент - служит характеристическим доменом LonA-протеиназ, не имеющим аналогов в структуре других AAA⁺-белков.

Установлено, что роль экстрадоменов АТР-зависимых протеиназ может заключаться в распознавании, связывании и разворачивании белков-мишеней, активации протеолитических составляющих, во взаимодействии с белкамиадаптерами или другими белками, важными для функционирования ААА⁺-протеиназ [18, 27-29]. Адаптерные белки влияют на взаимодействие АТРазных составляющих с субстратами и способствуют расширению специфичности ААА⁺-протеиназ [30].

К настоящему времени определены кристаллические структуры ATPазных субъединиц ClpA [31], ClpX [32] и HslU [33-35], а также AAA⁺-модуля FtsH [36, 37] и его комбинации с протеолитическим доменом [38, 39]. Все они аналогично другим исследованным AAA⁺-белкам представляют кольцевые гомогексамеры, несмотря на то, что в растворе олигомерность соответствующего белка может быть значительно понижена.

3. Протеолитические составляющие энергозависимых протеиназ.

Согласно классификации MEROPS [40], протеолитические компоненты АТР-зависимых протеиназ и протеолитических комплексов являются представителями четырех кланов: SJ, SK, MA и PB (таблица). При этом у гомоолигомерных Lon- и FtsH-протеиназ протеолитические составляющие представлены С-концевыми доменами единой полипептидной цепи, а у гетероолигомерных протеиназ семейств ClpAP/XP и HslUV/CodWX, а также у протеасом эукариот и архей - индивидуальными субъединицами (таблица).

Протеолитические домены **Lon-протеиназ** образуют семейство эндопептидаз S16. Lon-протеиназа из *E. coli*, первая обнаруженная энергозависимая протеиназа, была получена в очищенном состоянии в начале 1980 гг. [7, 41, 42], а в 1988 г. была определена ее аминокислотная последовательность [43, 44]. Исследование фермента показало, что в его активном центре функционирует каталитическая диада Ser-Lys [45-47]. Данные рентгеноструктурного анализа протеолитического домена Lon-протеиназы *E. coli* [48] обнаружили уникальность типа его пространственной структуры, что послужило основанием для выделения Lon-протеиназ в самостоятельное структурное семейство, представляющее индивидуальный клан SJ в классификации пептидгидролаз MEROPS.

Сопоставление фрагментов первичных структур Lon-протеиназ из отдаленных источников (рис. 3), позволило выявить два варианта окружения каталитических остатков Ser и Lys активного центра ферментов и, тем самым, разделить семейство Lon на два подсемейства - общирное подсемейство LonA, охватывающее ферменты бактерий и эукариот, и менее представительное подсемейство LonB, включающее ферменты архебактерий [49]. Следует особо подчеркнуть, что разделение семейства Lon на подсемейства, основанное на строении протеолитических доменов, полностью совпало с результатами эволюционно-генетического анализа Lon-протеиназ, основу которого составляло строение АТРазных компонентов ферментов [11, 13]. Таким образом, можно констатировать, что подсемейства LonA и LonB различаются окружением каталитических остатков протеолитического центра, структурной организацией АТРазного домена и общей архитектурой молекулы (наличие N-концевого экстрадомена у LonA-протеиназ и вставочного трансмембранного экстрадомена в ААА⁺-модуле LonB-протеиназ) (рис. 4). Вместе с тем, с помощью рентгеноструктурного анализа обнаружено полное совпадение общей укладки полипептидной цепи протеолитических доменов LonA- и LonB-протеиназ, хотя некоторое различие во взаимном расположении остатков отмечено каталитического центра [48, 50].

	-10	0	+10	
LonA	HOHXPXC	AX PKDGPSAC	XXXXX <i>T</i> XΦΦ S X	ΦΧΧΧΧΧ
LonB	ΧΦΧΦΧ <i>Ω</i> Χ	YXX ΦEGDSAS	SX <i>S</i> XXXXA 4S A	ΦΧΧΦ Ρ Φ
		*		
	+20	+30	+40	+50
LonA	XXXΦA MI	'GE	ΚΧΦ GG Φ <i>KE</i> K ΧΦ	AAXRXX
LonB	Χ Q ΧΦΑΦΊ	'G <i>S</i> ΦΧΧΧ G ΧΦ>	ΚΧΦ GG ΦΧΧ Κ Φ Ε	ΑΦΧΧΦG
			+	

Рисунок 3.

Фрагменты последовательностей LonA- и LonB-протеиназ, включающие остатки протеолитических центров (по [49]).

* - каталитически активные остатки серина и лизина; Φ - остатки гидрофобных аминокислот;
X - остатки любых аминокислот; жирным шрифтом выделены абсолютно консервативные остатки, курсивом - остатки, консервативность которых превышает 90%.

Рисунок 4. Схема строения LonA и LonB-протеиназ.

Ферменты семейства Lon проявляют свойства как АТР-зависимых процессивных протеиназ, так и активируемых белковыми субстратами АТРаз. Продукт гидролиза ATP - ADP - является ингибитором и АТРазной, и протеолитической активностей ферментов. Lon-протеиназы не проявляют строгой специфичности, хотя преимущественное расщепление субстратов обычно происходит по связям, P1-положение в которых занимают либо небольшие аминокислотные остатки (Ala, Ser, Thr - тип протеолиза, характерный для серин-лизиновых пептидаз), либо гидрофобные аминокислоты (химотрипсиновый тип протеолиза) [51, 52]. Гидролиз пептидных субстратов (число которых весьма ограничено) происходит и в отсутствие нуклеотидов, однако значительно активируется в присутствии ATP [53, 54]. Субстратами Lon-протеиназ кроме поврежденных белков служат ингибитор клеточного деления SulA, регулятор капсулярного синтеза RcsA, белки-антидоты CcdA, RelB и PasA, белки фага λ N, cII и Xis, σ^{32} -субъединица PHK-полимеразы, субъединицы ДНК-полимеразы V UnuD и UmuC и др.

Специфические низкомолекулярные ингибиторы протеолитического центра Lon-протеиназ не известны. Природным ингибитором Lon-протеиназы из *E. coli* служит белок PinA бактериофага T4, присутствие которого снижает эффективность гидролиза белкового субстрата, однако не влияет на деградацию ферментом пептидов [55]. Синтетические ингибиторы Z-Gly-Leu-Phe-CH₂Cl и диизопропилфторфосфат лишь частично угнетают активность фермента [53].

<u>FtsH-протеиназа</u> - единственная мембраносвязанная ААА⁺-протеиназа бактерий, относится к Zn-зависимым металлопротеиназам (клан MA, семейство М41, таблица). Первичная структура фермента из E. coli (644 a.o.) опубликована в 1993 г. [56]. В N-концевом экстрадомене фермента локализованы два богатых гидрофобными аминокислотами участка, образующие α-спиральные трансмембранные сегменты ТМ1 и ТМ2, с помощью которых FtsH-протеиназа дважды пересекает цитоплазматическую мембрану [57, 58]. В цитоплазматической части молекулы (а.о. 121-644) локализованы ААА⁺-модуль и протеолитический домен (а.о. 394-644), в котором обнаружена характерная для активных центров металлопротеиназ-цинкинов последовательность H⁴¹⁴EAGH⁴¹⁸ с двумя остатками гистидина, взаимодействующими с ионом Zn²⁺, и каталитически активным остатком Glu⁴¹⁵ [59, 60]. До недавнего времени полагали, что третьим лигандом иона Zn²⁺ служит остаток Glu⁴⁷⁶ [57, 61]. Однако, авторы работы [38] установили, что FtsH-протеиназа принадлежит к новому семейству Аsp-цинкинов, поскольку во взаимодействие с цинком вовлечен остаток аспарагиновой кислоты (Asp⁴⁹² для FtsH из E. coli). Характерной особенностью FtsH является наличие суперспирализованного фрагмента структуры в С-концевой части молекулы [38, 62].

FtsH-протеиназа расщепляет белки, локализованные как в мембране [63], так и в цитозоле [64]. При этом деградация мембранных белков сопровождается их дислокацией из мембраны [65]. Процессивная деградация белка-мишени может осуществляться FtsH-протеиназой как с N-, так и с C-конца [66]. Выявлены некоторые фрагменты, которые могут служить сигналами инициации деградации (дегронами) в белковом субстрате [57], вместе с тем показано, что для ряда природных мишеней FtsH-протеиназы дегронами являются области пониженной термодинамической стабильности [67-69]. Кроме того, получены данные в пользу участия молекулярных шаперонов (в частности, DnaK, DnaJ, GrpE) в презентации белков-мишеней для деградации ферментом [60].

Регулирующее действие на активность FtsH-протеиназы оказывает сIII-пептид бактериофага λ, который по отношению к ферменту проявляет свойства и ингибитора и субстрата [70]. Природным ингибитором FtsH-протеиназы в *B. subtilis* является белок SpoVM [71]. Синтетические ингибиторы для FtsH не описаны.

Ранее предполагалось, что FtsH функционирует как гомоолигомер. В последнее время установлено, что в клетках *E. coli* фермент существует исключительно в виде крупного комплекса с молекулярной массой около 1000 кДа, состоящего из гексамеров FtsH и белков мембранного комплекса HflK-HflC [72]. Объединенный комплекс FtsH/HflK-HflC способен связать несколько молекул белка-мишени. Установлено, что FtsH-протеиназа является единственной ATP-зависимой протеиназой, наличие которой необходимо для жизнеспособности клеток *E. coli*.

Семейство цитозольных <u>Сlp-протеиназ</u> в клетках *E. coli* представлено двумя гетероолигомерными ферментами - ClpAP и ClpXP [73, 74], имеющими различные ATP-азные субъединицы (ClpA и ClpX) и общую протеолитическую субъединицу (ClpP), относящуюся к классическим сериновым протеиназам (семейство S14 клана SK) (таблица).

Хотя в аминокислотной последовательности ClpP-субъединицы не обнаружены консенсусные фрагменты известных сериновых протеиназ, активный

центр фермента, как оказалось, представлен классической каталитической триадой - Ser111, His136 и Asp185 [75, 76]. Следует заметить, что подобное взаиморасположение каталитических остатков триады в первичной структуре уникально для сериновых пептидгидролаз. Изолированные ClpP-субъединицы не способны гидролизовать белковые субстраты, но обладают пептидазной активностью [77]. При этом субъединицы ClpP ассоциированы в семичленные кольца, а функционирование фермента осуществляется комплексом из двух колец, наложенных друг на друга [76]. Внутренняя полость комплекса способна вместить белок размером более 50 кДа, однако диаметр входных отверстий ClpP (около 10 Å) не позволяет обеспечить доступ к обращенным внутрь полости активным центрам, даже небольшим фолдированным белкам [4]. Таким образом, самоассоциация протеолитических субъединиц приводит к образованию так называемых "компартментов" - бочкообразных структур, содержащих во внутренней полости 14 изолированных от внешней среды активных центров, способных к избирательной деградации только тех белковых молекул, которые могут проникнуть внутрь полости [78].

Гексамерные кольца АТРазных субъединиц (ClpA или ClpX) образуются из смеси нестабильных мономеров и димеров в присутствии АТР (рис. 5а). Они пристыковываются к одной или к обеим сторонам тетрадекамерной структуры ClpP и регулируют доступ мишеней внутрь протеолитической полости [79]. Формирование комплекса из четырех колец типа $A_6P_7P_7A_6$ или $X_6P_7P_7X_6$ завершает процесс самокомпартментализации, общий для всех гетероолигомерных АТР-зависимых протеиназ и мультикаталитических комплексов [78]. ClpA (или ClpX) узнают и связывают субстраты через специфические мотивы, локализованные в N- или C-концевой части первичной структуры белка [80], после чего происходит разворачивание мишени и ее транслокация во внутреннюю зону комплекса для последующей деградации [81-83]. Гидролиз белковых мишеней предпочтительно происходит по пептидным связям, образованным карбоксильными группами неполярных аминокислот [84, 85], вместе с тем, известны случаи расщепления связей, образованных полярными или заряженными аминокислотами. Активность ClpP ингибируется добавлением PMSF [86].

Рисунок 5.

Сборка ATP-зависимых протеолитических комплексов Clp/Hsl (а, экстрадомены не показаны) и 26S-протеасомы эукариот (б) (по [8, 94, 121 и 123]). К, Т, Х - субъединицы, проявляющие, соответственно, каспазо-, трипсино- и химотрипсиноподобную активности.

Протеолитические субъединицы HslV и CodW комплексов <u>HslUV</u> [87] и <u>CodWX</u> [88, 89] принадлежат к недавно открытому классу Ntn (N-terminal nucleophile)-пептидгидролаз, каталитически активными остатками которых являются N-концевые треонин (для HslV) или серин (для CodW), клан PB, семейство T1B в классификации MEROPS (таблица).

Молекулярная архитектура комплекса HslÚV аналогична архитектуре комплексов Clp-протеиназ (рис. 5а) с тем отличием, что протеолитические HslV-субъединицы ассоциированы в додекамеры из двух шестичленных колец (V_6V_6), при этом двенадцать каталитически активных остатков Thr¹ также изолированы внутри центральной полости [90]. Самостоятельный додекамер HslV проявляет только пептидазную активность. Гексамерные кольца ATPазного комплекс HslUV ($U_6V_6V_6U_6$) [91, 92], зачастую рассматривающийся как "малая протеасома", или бактериальный аналог протеасом эукариот. HslUV - единственная гетероолигомерная AAA⁺-протеиназа, для которой определена пространственная структура полноразмерного комплекса [34, 35, 93].

Аналог HslUV из *B. subtilis*, CodWX (образован пептидазным компонентом CodW и ATPазным - CodX), проявляет свойства щелочной протеиназы. Протеолитический кор CodW представляет обычную для Clp- и Hsl-протеиназ структуру и состоит из двух состыкованных гексамерных колец (W_6W_6). Однако ATPазный компонент CodX в отличие от HslU и ClpA/X также формирует цилиндрическую структуру из двух своих гексамерных (или гептамерных) колец (X_6X_6 или X_7X_7). Последняя фланкируется с одной или с обеих сторон двойными кольцами CodW с образованием, соответственно, асимметричных (WWXX) или симметричных частиц (WWXXWW, в этом случае оба внешних кольца представлены протеолитическими компонентами). Следует заметить, что в отличие от других гетероолигомерных протеиназ для образования комплекса CodWX требуется не только связывание ATP, но и его гидролиз [89]. CodWX может формировать также более сложные комплексы, в которых к симметричной структуре присоединяется двойное кольцо CodX (XX) с образованием гетероолигомера состава WWXXWWXX [89].

Протеолитическим кором **протеасом** архебактерий и эукариот служат **20S-протеасомы** - бочкообразные цилиндрические частицы, состоящие из четырех состыкованных гептамерных колец, формирующих обширную внутреннюю полость [94, 95] (рис. 5б). 28 субъединиц 20S-протеасом (мол. массы от 20 до 35 кДа) относятся к двум типам - α или β . Наружные кольца протеасомы образованы α -субъединицами, а внутренние - β -субъединицами [94, 96, 97], и таким образом архитектуру кора можно представить как $\alpha_7\beta_7\beta_7\alpha_7$. Каталитическими являются β -субъединицы. Как и протеолитические субъединицы "малых протеасом" (HslUV) β -субъединицы 20S-протеасом принадлежат к классу Ntn-пептидгидролаз с каталитически активным N-концевым остатком треонина [98] и относятся к семейству T1A (клан PB) в классификации MEROPS (таблица). Кольца α -субъединиц ограничивают доступ цитоплазматическим белкам клетки во внутреннюю полость комплекса. Кроме того, они инициируют процесс сборки 20S-протеасомы, а также служат местами связывания компонентов регуляторных комплексов, включающих ААА⁺-белки [99].

В большинстве 20S-протеасом архей кольца α- и β-типа образованы одинаковыми субъединицами, вместе с тем известны протеасомы, содержащие три или четыре различающиеся субъединицы [100]. Все 14 β-субъединиц протеасом архей каталитически активны и обладают специфичностью химотрипсинового типа [101, 102].

В отличие от архей эукариоты в своих 20S-протеасомах содержат неповторяющиеся субъединицы: 7 различных α- и 7 различных β-. Кроме того, известно большое количество изоформ 20S-протеасомы. В высших эукариотах наряду с конститутивными обнаружены различные индуцибельные протеасомы [103].

Ротанова, Мельников

In vitro 20S-протеасома эукариот обладает широким спектром пептидгидролазной активности. При этом кольца β -субъединиц содержат только по три активных центра, локализованных в каталитических субъединицах β_1 , β_2 и β_5 и проявляющих различную первичную специфичность (рис. 5б): каспазо-, трипсино- и химотрипсиноподобную (в модельных пептидах атакуются связи, образованные карбоксильными группами, соответственно, дикарбоновых, положительно заряженных или гидрофобных аминокислот) [104-107]. Каталитически активными остатками всех трех центров являются N-концевые остатки треонина - Thr¹ [98, 106, 107]. Каталитические субъединицы синтезируются в форме предшественников, активация которых происходит по аутокаталитическому механизму. Протеасома осуществляет процессивную деградацию некоторых белковых субстратов с образованием пептидных продуктов размером от 3 до 22 а.о. [108]. Обнаружен феномен аллостерической взаиморегуляции активных центров, обладающих различной специфичностью [109].

Универсального синтетического субстрата 20S-протеасом не существует. Для тестирования различных типов активности применяются защищенные производные пептидов, такие как Suc-Leu-Leu-Val-Tyr-AMC (AMC - 4-метил-7-кумариниламид), Z-Leu-Leu-Glu-NA (NA - β-нафтиламид) и ряд пептидных субстратов трипсина. Природные ингибиторы 20S-протеасом не известны. Из актиномицетов выделены соединения (лактацистин, эпоксимицин и эпонемицин), способные путем взаимодействия с каталитическим остатком треонина блокировать все три типа активности. Для ингибирования химотрипсино- и трипсиноподобной активности протеасом применяются, соответственно, химостатин и лейпептин.

Реализация селективного внутриклеточного протеолиза в цитозоле архей и эукариот осуществляется комплексами 20S-протеасом с фланкирующими их регуляторными комплексами (таблица). В археях это, главным образом, -Pan-комплексы (Proteasome-activating nucleotidases), которые представляют кольцевые гексамерные ATPaзы AAA⁺-типа [110-112]. Другой регуляторный комплекс, VCP, содержит AAA⁺-ATPaзы, подобные белку Cdc48 (или p97) [100].

В цитозоле эукариот функционирует так называемая 26S-протеасома комплекс 20S-протеасомы с активатором РА700 (Proteasome Activator (РА700), иначе - регулятор протеасомы (**RP**) или регуляторный 19S-комплекс) [9, 96, 113] (таблица, рис. 5б). 19S-Комплекс (более 800 кДа) включает 17 различных субъединиц и состоит из двух структурно и функционально различных компонентов, называемых "основанием" (base) и "крышкой" (lid) (рис. 5б) [114]. Надо отметить, что с помощью электронной микроскопии показано структурное подобие Рап-комплекса архей и base-субкомплекса 19S-регулятора [112].

В целом, 26S-протеасома (иначе PA700-20S-PA700 или RP-20S-RP) представляет собой зеркально симметричную структуру типа гантели (рис. 5б), в которой lid-субкомплекс отвечает за распознавание и подготовку субстратов к деградации, а стадии связывания, разворачивания и транслокации субстратов-мишеней внутрь 20S-протеасомы, где и происходит протеолиз, обеспечиваются ATPазными субъединицами base-субкомплекса. Последний играет важнейшую роль в работе 26S-протеасомы; он расположен на границе с 20S-ядром и состоит из двух регуляторных и шести различных ATPазных субъединиц, относящихся к суперсемейству AAA⁺-белков [112, 115]. Кроме взаимодействия с белками-мишенями эти ATPазы участвуют в процессе сборки 26S-протеасомы из 19S- и 20S-компонентов, в активации протеолиза и высвобождении продуктов [9, 96]. Интересно отметить, что AAA⁺-ATPаза Pan-комплекса архей проявляет 41-45% гомологии с каждой из шести ATPaз 19S-комплекса [112].

Другим регулятором 26S-протеасомы может служить комплекс РА28 (или 11S), представляющий гексамерную структуру, образованную двумя родственными белками. Комплекс РА28-20S-РА28 эффективно гидролизует пептиды, но неспособен к гидролизу белковых субстратов. Популяция протеасом

в тканях обычно представлена смесью комплексов RP-20S-RP, RP-20S-PA28 и PA28-20S-PA28 [116]. Впервые 26S-протеасомы были выделены в конце 1980-х годов [117-119].

26S-Протеасома эукариот - единственная из известных АТР-зависимых протеолитических систем, функционирование которой включает этап предварительной селективной модификации белков-мишеней, подлежащих деградации, путем ковалентного присоединения убиквитина (Ub) - белка, состоящего из 76 а.о. [120].

Следует отметить, что открытие опосредованной убиквитином деградации белков было удостоено Нобелевской премии по химии 2004 г. Тем самым были отмечены достижения в исследовании селективного внутриклеточного протеолиза, которые привели к пониманию молекулярных основ контроля клеткой таких важнейших биохимических процессов как клеточный цикл, регуляция транскрипции генов, репарация ДНК, иммунная защита, модуляция рецепторов, механизм контроля качества клеточных белков и др.

4. Функционирование АТР-зависимых протеиназ и протеолитических комплексов.

Общий принцип функционирования гетероолигомерных бактериальных протеиназ семейств Clp/Hsl предложен в работе [121] (рис. 6а). Распознавание и связывание белка-мишени осуществляется регуляторным ATPазным компонентом активного мультисубъединичного комплекса фермента. То, что именно ATPазный компонент определяет селективность действия фермента подтверждается тем фактом, что ClpAP и ClpXP, имеющие общий протеолитический компонент, гидролизуют разные внутриклеточные субстраты. На следующем этапе происходит разворачивание молекулы субстрата и транслокация ее в область протеолитических центров, где и происходит процессивное расщепление субстрата с последующим высвобождением продуктов. Образовавшиеся олигопептидные фрагменты могут в дальнейшем гидролизоваться ATP-независимыми протеиназами до ди-, три- и тетрапептидов и, наконец, клеточными аминопептидазами до свободных аминокислот.

Общность механизмов деградации белков в прокариотах (**a**) и в эукариотах (**б**) (по [113 и 121]).

Аналогичный механизм функционирования протеолитического комплекса постулируют для гомоолигомерных Lon- и FtsH-протеиназ [4, 57]. Для FtsH-протеиназы предполагают, что начальная стадия узнавания растворимого субстрата заключается в связывании его на наружной поверхности α-домена ААА⁺-модуля фермента. Ряд последующих стадий приводит к проникновению субстрата в гексамерную полость через входное отверстие, локализованное в N-концевой части АТРазного домена [122], и деградации внутри полости с последующим высвобождением продуктов гидролиза. Существует мнение, что в связывании субстрата может принимать участие также консервативная суперспирализованная область С-концевого сегмента FtsH [57]. Подобный способ взаимодействия с ферментом постулируют и для мембранных белков-мишеней при условии, что они имеют обращённый в цитозоль фрагмент последовательности размером около 20 а.о. Вместе с тем, предполагают, что в начальном узнавании мембранных мишеней участвуют также белки комплекса HflKC.

Следует отметить, что при всей неоднозначности представлений о начальных этапах взаимодействия белков-мишеней с АТР-зависимыми протеиназами, механизм проникновения субстратов во внутреннюю полость комплекса через консервативный вход-пору в настоящее время считается общим для "наномашин", осуществляющих дезагрегацию и деградацию белков в клетках [57].

Схема функционирования системы внутриклеточной деградации белков у эукариот представлена на рисунке 7 [123-125]. Здесь следует особо подчеркнуть, что только у эукариот узнавание белков-мишеней, подлежащих деградации, осуществляется компонентом, не принадлежащим протеолитическому комплексу. Первые четыре стадии процесса, которые служат для обеспечения специфического мечения мишеней путем ковалентного присоединения убиквитина, не имеют аналогии в клетках бактерий или архей. Инициирующим этапом (1) является АТР-зависимая активация убиквитина, которая сопровождается высвобождением неорганического пирофосфата, происходит по механизму переноса аденилата с участием в качестве промежуточного соединения аденилата убиквитина и завершается образованием тиоэфирной связи между активным остатком цистеина фермента E₁ (убиквитин-активирующий фермент, Ubiquitin Activating Enzyme, Uba) и С-концевым остатком глицина-76 молекулы убиквитина [126, 127]. На второй стадии (2) происходит перенос активированного убиквитина на тиоловую группу убиквитин-переносящего (или -конъюгирующего, Ubiquitin Conjugating Enzyme, Ubc) фермента Е₂. Последний служит донором метки как для третьей стадии (3), на которой под действием убиквитин-протеин-лигаз Е3 (Ubiquitin-Protein Ligase или Ubiquitin Recognition Factor, Ubr) образуется изопептидная связь между остатком глицина-76 убиквитина и є-аминогруппой внутреннего остатка лизина белка-мишени, так и для последующего наращивания (стадия 4) полиубиквитиновой цепи (не менее четырех звеньев) путем связывания каждой последующей молекулы убиквитина с є-аминогруппой остатка Lys48 предыдущей [123, 128].

Схема функционирования системы внутриклеточной деградации белков у эукариот (по данным работы [123]).

Высокая специфичность и селективность системы деградации внутриклеточных белков у эукариот достигается за счет ее иерархичности. Обычно клетки содержат только один убиквитин-активирующий фермент (Е₁) и ряд убиквитин-переносящих ферментов (Е₂), каждый из которых участвует в определенном клеточном процессе [123, 129]. Количество же Е₃-лигаз, принадлежащих к нескольким различным типам, исчисляется сотнями, что является следствием огромного разнообразия мишеней, подлежащих протеолизу. Е3-лигазы распознают белковые субстраты, несущие деградационные сигналы (дегроны), связывают их либо напрямую, либо через вспомогательный белок-адаптер и осуществляют убиквитилирование по одному из двух механизмов, представленных на стадии 3 (рис. 7) [123]. Таким образом, именно Е₃-лигазы готовят белки-мишени к встрече с "деградирующей машиной" -26S-протеасомой, регуляторный 19S-комплекс которой распознает универсальную метку на мишени и осуществляет связывание белка-субстрата, то есть 26Sпротеасома деградирует меченые убиквитином белки независимо от природы последних, а высокая селективность внутриклеточного протеолиза обеспечивается именно функционированием Е₃-лигаз.

Гидролиз убиквитинилированных субстратов 26S-протеасомой (рис. 7, стадия 5) происходит аналогично гидролизу белков-мишеней бактериальными АТР-зависимыми протеиназами (рис. 6б). Он включает стадию разворачивания мишени, протекает по процессивному механизму и завершается образованием свободных пептидов, пептидов, конъюгированных с убиквитином, а также полиубиквитиновых цепей. Продукты последних двух типов подвергаются деградации изопептидазами (стадии 6 и 7) с образованием свободного убиквитина, пригодного для повторного использования [120, 130, 131]. Интересно отметить, что обнаружены также корректирующие изопептидазы, которые отщепляют метку от "неправильно" убиквитилированных белков и тем самым ограждают их от деградации 26S-протеасомой [123].

В археях, как было упомянуто выше, убиквитиновый путь мечения белков-мишеней селективного протеолиза протеасомами отсутствует. По аналогии с Clp-протеиназами считается, что регуляторные Pan-комплексы протеасом архей распознают и связывают белки-мишени посредством суперспирализованных фрагментов N-концевых экстрадоменов, после чего происходит активация гидролиза ATP, промотирование разворачивания субстрата и раскрывание аксиального отверстия в протеолитическом комплексе. Однако, механизмы этих процессов еще не установлены. Считают, что в них могут принимать участие некоторые адаптерные белки [100]. Последующая деградация белков-субстратов происходит, по-видимому, согласно общим для ATP-зависимых протеиназ прокариот и 26S-протеасом эукариот закономерностям (рис. 6). Исследования в этом направлении интенсивно развиваются. В частности, недавно с высоким разрешением определена кристаллическая структура комплекса 20S-протеасома-Pan [132].

ЗАКЛЮЧЕНИЕ. Суммируя представленные материалы, можно констатировать, что несмотря на отсутствие подобия первичных последовательностей, сходства третичных структур и механизмов функционирования протеолитических центров, гетероолигомерные протеиназы и протеолитические комплексы, осуществляющие селективный внутриклеточный протеолиз, объединены общей архитектурой: (1) их протеолитические субъединицы ассоциированы в состыкованные олигомерные кольца, представляющие бочкообразные комплексы; (2) доступ к протеолитическим центрам, локализованным внутри центральной полости, возможен только через узкие аксиальные отверстия; (3) регуляторные компоненты, содержащие ААА⁺-АТРазы, контактируют с дистальными поверхностями протеолитического кора. Обнаруженное структурное сходство позволяет предполагать сходство в основных биохимических механизмах, посредством которых эти гетероолигомерные комплексы связывают, разворачивают и переносят белковые субстраты к протеолитическим активным центрам. Что касается гомоолигомерных энергозависимых протеиназ, то вопросы архитектуры их функциональных комплексов и механизмов функционирования требуют дополнительного исследования.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 05-04-48383).

ЛИТЕРАТУРА

- 1. Goldberg A.L. (1992) Eur. J. Biochem., 203, 9-23.
- Pahl H.L., Baeuerle P.A. (1996) Curr. Opin. Cell Biol., 8, 340-347. 2.
- 3. Martoglio B. (1999) Protoplasma, 207, 141-146.
- Gottesman S. (2003) Annu. Rev. Cell Dev. Biol., 19, 565-587. 4.
- King R.W., Deshaies R.J., Peters J.M., Kirschner M.W. (1996) Science, 274, 5. 1652-1659.
- Neuwald A.F., Aravind L., Spouge J.L., Koonin E.V. (1999) Genome Res., 9, 27-43. 6.
- Swamy K.S., Goldberg A.L. (1981) Nature, 292, 652-654. 7.
- 8. Coux O., Tanaka K., Goldberg A.L. (1996) Ann. Rev. Biochem., 65, 801-847.
- 9. Maupin-Furlow J.A., Wilson H.L., Kaczowka S.J., Ou M.S. (2000) Front. Biosci., 5, D837-D865.
- Erdmann R., Wiebel F.F., Flessau A., Rytka J., Beyer A., Frohlich K.U., Kunau W.H. 10. (1991) Cell, **64**, 499-510.
- *Iver L.M., Leipe D.D., Koonin E.V., Aravind L.* (2004) J. Struct. Biol., **146**, 11-31. 11.
- 12. Hanson Ph.I., Whiteheart S.W. (2005) Mol. Cell Biol., 6, 519-529.
- 13. Lupas A.N., Martin J. (2002) Curr. Opin. Struct. Biol., 12, 746-753.
- Frickey T., Lupas A.N. (2004) J. Struct. Biol., 146, 2-10. 14.
- 15. Schirmer E.C., Glover J.R., Singer M.A., Lindquist S. (1996) Trends Biochem. Sci., 21, 289-296.
- 16. Erzberger J.P., Berger J.M. (2006) Ann. Rev. Biophys. Biomol. Struct., 35, 93-114.
- Tucker P.A., Sallai L. (2007) Curr. Opin. Struct. Biol., 17, 641-652. 17.
- Singh S.K., Rozycki J., Ortega J., Ishikawa T., Lo J., Steven A.C., Maurizi M.R. 18. (2001) J. Biol. Chem., 276, 29420-29429.
- Dougan D.A., Mogk A., Zeth K., Turgay K., Bukau B. (2002) FEBS Lett., 529, 6-10. 19. 20. Tomoyasu T., Mogk A., Langen H., Goloubinoff P., Bukau B. (2001) Mol.
- Microbiol., 40, 397-413. Keiler K.C., Waller P.R., Sauer R.T. (1996) Science, **271**, 990-993.
- 21.
- Martin J., Gruber M., Lupas A.N. (2004) Trends Biochem. Sci., 29, 455-458. 22.
- 23. Rouiller I., DeLaBarre B., May A.P., Weis W.I., Brunger A.T., Milligan R.A., Wilson-Kubalek E.M. (2002) Nat. Struct. Biol., 9, 950-957.
- 24. Vale R.D. (2000) J. Cell Biol., 150, F13-F19.
- Singh S.K., Grimaud R., Hoskins J.R., Wickner S., Maurizi M.R. (2000) Proc. 25. Natl. Acad. Sci. USA, 97, 8898-8903.
- Seol J.H., Yoo S.J., Shin D.H., Shim Y.K., Kang M.S., Goldberg A.L., Chung C.H. 26. (1997) Eur. J. Biochem., 247, 1143-1150.
- 27. Mogk A., Dougan D., Weibezahn J., Schlieker C., Turgay K., Bukau B. (2004) J. Struct. Biol., 146, 90-98.
- 28. Hinnerwisch J., Reid B.G., Fenton W.A., Horwich A.L. (2005) J. Biol. Chem., 280, 40838-40844.
- 29. Wojtyra U.A., Thibault G., Tuite A., Houry W.A. (2003) J. Biol. Chem., 278, 48981-48990.
- Flynn J.M., Neher S.B., Kim Y.I., Sauer R.T., Baker T.A. (2003) Mol. Cell, 11, 30. 671-683.
- *Guo F., Maurizi M.R., Esser L., Xia D.* (2002) J. Biol. Chem., **277**, 46743-46752. 31.
- 32. *Kim D.Y., Kim K.K.* (2003) J. Biol. Chem., **278**, 50664-50670.

33.	Sousa M.C., Trame C.B., Tsuruta H., Wilbanks S.M., Reddy V.S., McKay D.B.
2.4	(2000) Cell, 103 , 633-643.
34.	Bochiler M., Hartmann C., Song H.K., Bourenkov G.P., Bartunik H.D., Huber K. (2000) Nature 402 , 200, 205
35.	(2000) Nature, 405, 800-805. Wang J., Song J.J., Franklin M.C., Kamtekar S., Im Y.J., Rho S.H., Seong I.S., Lee C.S., Chung C.H., Fom S.H. (2001) Structure (Camb) 9, 177-184
36.	Krzywda S., Brzozowski A.M., Verma C., Karata K., Ogura T., Wilkinson A.J. (2002) Structure (Camb) 10 1073-1083
37.	Niwa H., Tsuchiya D., Makyio H., Yoshida M., Morikawa K. (2002) Structure
38.	Bieniossek C., Schalch T., Bumann M., Meister M., Meier R., Baumann U. (2006) Proc. Natl Acad. Sci. USA 103 3066-3071
39.	Suno R., Niwa H., Tsuchiya D., Zhang X., Yoshida M., Morikawa K. (2006) Mol.
40	Rarrott A I Rawlings ND O'Rrign F A (2001) I Struct Biol $134.95-102$
40. 41	Chung CH. Goldbarg A.L. (1981) Proc. Natl. Acad. Sci. USA 78, 4031,4035
42.	<i>Charette M.F., Henderson G.W., Markovitz A.</i> (1981) Proc. Natl. Acad. Sci. USA, 78 4728-4732
43.	Америк А.Ю., Чистякова Л.Г., Остроумова Н.И., Гуревич А.И., Антонов В.К. (1988) Биоорган, химия, 14 , 408-411.
44.	Америк А.Ю., Антонов В.К., Остроумова Н.И., Ротанова Т.В., Чистякова Л.Г. (1990) Биоорган, химия, 16 , 869-880.
45.	Amerik A.Yu., Antonov V.K., Gorbalenya A.E., Kotova S.A., Rotanova T.V., Shimbarevich E.V. (1991) FEBS Lett., 287, 211-214.
46.	Ротанова Т.В. (2002) Вопр. мед. химии, 48, 541-552.
47.	<i>Ротанова Т.В., Мельников</i> Э.Э., <i>Цирульников К.Б.</i> (2003) Биоорган. химия, 29 , 97-99.
48.	Botos I., Melnikov E.E., Cherry S., Tropea J., Khalatova A.G., Rasulova F.S., Dauter Z., Maurizi M.R., Rotanova T.V., Wlodawer A., Gustchina A. (2004)
	J. Biol. Chem., 279 , 8140-8148.
49.	Rotanova T.V., Melnikov E.E., Khalatova A.G., Makhovskaya O.V., Botos I., Wlodawer A., Gustchina A. (2004) Eur. J. Biochem., 271 , 4865-4871.
50.	Botos I., Melnikov E.E., Cherry S., Kozlov S., Makhovskaya O.V., Tropea J., Gustchina A., Rotanova T.V., Wlodawer A. (2005) J. Mol. Biol., 351 , 144-157.
51.	<i>Chung C.H., Goldberg A.L.</i> (2004) Handbook of Proteolytic Enzymes (Barrett A.J., Rawlings N.D., Woessner J.F., eds.), p. 1998-2002.
52.	Nishii W., Maruyama T., Matsuoka R., Muramatsu T., Takahashi K. (2002) Eur. J. Biochem., 269 , 451-457.
53.	Waxman L., Goldberg A.L. (1985) J. Biol. Chem., 260, 12022-12028.
54.	Thomas-Wohlever J., Lee I. (2002) Biochemistry, 41, 9418-9425.
55.	Hilliard J.J., Simon L.D., Van Melderen L., Maurizi M.R. (1998) J. Biol. Chem., 273 , 524-527.
56.	Tomoyasu T., Yuki T., Morimura S., Mori H., Yamanaka K., Niki H., Hiraga S., Ogura T. (1993) J. Bacteriol., 175 , 1344-1351.
57.	Ito K., Akiyama Y. (2005) Ann. Rev. Microbiol., 59, 211-231.
58.	Akiyama Y., Yoshihisa T., Ito K. (1995) J. Biol. Chem., 270, 23485-23490.
59.	Herman C., Lecat S., D'Ari R., Bouloc P. (1995) Mol. Microbiol., 18, 247-255.
60.	Tomoyasu T., Gamer J., Bukau B., Kanemori M., Mori H., Rutman A.J., Oppenheim A.B., Yura T., Yamanaka K., Niki H., Hiraga S., Ogura T. (1995) EMBO J. 14 2551-2560
61	Saikawa N., Ito K., Akiyama Y (2002) Biochemistry 41 1861-1868
62.	Shotland Y., Teff D., Koby S., Kobiler O., Oppenheim A.B. (2000) J. Mol. Biol., 299 , 953-964.
63. 64.	<i>Akiyama Y., Kihara A., Tokuda H., Ito K.</i> (1996) J. Biol. Chem., 271 , 31196-31201. <i>Tomoyasu T., Yamanaka K., Murata K., Suzaki T., Bouloc P., Kato A., Niki H.,</i> <i>Hiraga S., Ogura T.</i> (1993) J. Bacteriol., 175 , 1352-1357.
	527

Ротанова, Мельников

65.	Kihara A., Akiyama Y., Ito K. (1999) EMBO J., 18 , 2970-2981.
00. 67	Childa S., Akiyama I., 110 K. (2002) J. Dacieliol., 104 , 4775-4762.
67. 68.	<i>Rist W., Jorgensen T.J., Roepstorff P., Bukau B., Mayer M.P.</i> (2003) J. Biol. Chem., 278 , 51415-51421.
69.	Okuno T., Yamada-Inagawa T., Karata K., Yamanaka K., Ogura T. (2004) J. Struct. Biol., 146, 148-154.
70.	Herman C., Thevenet D., D'Ari R., Bouloc P. (1997) J. Bacteriol., 179, 358-363.
71.	Prajapati R.S., Ogura T., Cutting S.M. (2000) Biochim. Biophys. Acta, 1475, 353-359.
72.	Saikawa N., Akivama Y., Ito K. (2004) J. Struct. Biol., 146, 123-129.
73.	Hwang B.J., Woo K.M., Goldberg A.L., Chung C.H. (1988) J. Biol. Chem., 263, 8727-8734.
74.	<i>Gottesman S., Clark W.P., de Crecy-Lagard V., Maurizi M.R.</i> (1993) J. Biol. Chem., 268 , 22618-22626.
75.	Maurizi M.R., Clark W.P., Kim S.H., Gottesman S. (1990) J. Biol. Chem., 265, 12546-12552.
76.	Wang J., Hartling J.A., Flanagan J.M. (1998) J. Struct. Biol., 124, 151-163.
77.	<i>Maurizi M.R., Thompson M.W., Singh S.K., Kim S.H.</i> (1994) Meth. Enzymol., 244 , 314-331.
78.	Lupas A., Flanagan J.M., Tamura T., Baumeister W. (1997) Trends Biochem. Sci., 22 , 399-404.
79.	<i>Beuron F., Maurizi M.R., Belnap D.M., Kocsis E., Booy F.P., Kessel M., Steven A.C.</i> (1998) J. Struct. Biol., 123 , 248-259.
80.	<i>Levchenko I., Smith C.K., Walsh N.P., Sauer R.T., Baker T.A.</i> (1997) Cell, 91 , 939-947.
81.	<i>Ortega J., Singh S.K., Ishikawa T., Maurizi M.R., Steven A.C.</i> (2000) Mol. Cell, 6 , 1515-1521.
82.	<i>Lee C., Schwartz M.P., Prakash S., Iwakura M., Matouschek A.</i> (2001) Mol. Cell, 7, 627-637.
83.	<i>Reid B.G., Fenton W.A., Homwich A.L., Weber-Ban E.U.</i> (2001) Proc. Natl. Acad. Sci. USA, 98 , 3768-3772.
84.	<i>Thompson M.W., Maurizi M.R.</i> (1994) J. Biol. Chem., 269 , 18201-18208.
85.	Arribas J., Castano J.G. (1995) J. Biol. Chem., 208, 21105-211/1. Halassia T. Ostanast an O. Adam Z. (1000) Plants 212 (14 (10)
80. 97	Halperin I., Ostersetzer O., Adam Z. (1999) Planta, 213 , 614-619.
87. 88	Goldberg A.L. (1996) Proc. Natl. Acad. Sci. USA, 93 , 5808-5813. Kang M.S. Lim B.K. Seong I.S. Seol I.H. Tanahashi N. Tanaka K. Chung C.H.
89	(2001) EMBO J., 20, 734-742. Kang MS Kim S R Kwack P Lim RK Ahn SW Rho YM Seong LS Park SC
90	<i>Eom S.H., Cheong G.W., Chung C.H.</i> (2003) EMBO J., 22 , 2893-2902. Yoo S.J. Shim Y.K. Seong J.S. Seol J.H. Kang M.S. Chung C.H. (1997) FFBS
<i>y</i> 0.	Lett. 412 . 57-60.
91.	Rohrwild M., Pfeifer G., Santarius U., Muller S.A., Huang H.C., Engel A., Baumeister W., Goldberg A.L. (1997) Nat. Struct. Biol., 4, 133-139.
92.	<i>Yoo S.J., Seol J.H., Seong I.S., Kang M.S., Chung C.H.</i> (1997) Biochem. Biophys. Res. Commun., 238 , 581-585.
93.	<i>Sousa M.C., Kessler B.M., Overkleeft H.S., McKay D.B.</i> (2002) J. Mol. Biol., 318 , 779-785.
94.	<i>Lowe J., Stock D., Jap B., Zwickl P., Baumeister W., Huber R.</i> (1995) Science, 268 , 533-539.
95.	<i>Groll M., Brandstetter H., Bartunik H., Bourenkow G., Huber R.</i> (2003) J. Mol. Biol., 327 , 75-83.
96.	Pickart C.M. (1997) FASEB J., 11, 1055-1066.
97.	<i>Grziwa A., Baumeister W., Dahlmann B., Kopp F.</i> (1991) FEBS Lett., 290 , 186-190.
	528

98.	Seemuller E., Lupas A., Stock D., Lowe J., Huber R., Baumeister W. (1995)
00	Science, 208, $5/9-582$.
99. 100	Groul M., Huber R. (2003) Int. J. Blochem. Cell Blol., $35,606-616$.
100.	<i>Maupin-Furlow J.A., Gil M.A., Karadzic I.M., Kirkland P.A., Reuter C.J.</i> (2004) Front. Biosci., 9 , 1743-1758.
101.	<i>Kisselev A.F., Songyang Z., Goldberg A.L.</i> (2000) J. Biol. Chem., 275 , 14831-14837.
102.	<i>Zwickl P., Seemuller E., Kapelari B., Baumeister W.</i> (2001) Adv. Protein Chem., 59 , 187-222.
103.	Claverol S., Burlet-Schiltz O., Girbal-Neuhauser E., Gairin J.E., Monsarrat B. (2002) Mol. Cell. Proteomics, 1, 567-578.
104.	Groll M., Ditzel L., Lowe J., Stock D., Bochtler M., Bartunik H.D., Huber R. (1997) Nature, 386 , 463-471.
105.	Orlowski M. (1990) Biochemistry, 29, 10289-10297.
106.	<i>Heinemeyer W., Fischer M., Krimmer T., Stachon U., Wolf D.H.</i> (1997) J. Biol. Chem., 272 , 25200-25209.
107	Arendt C.S., Hochstrasser M. (1997) Proc. Natl. Acad. Sci. USA 94, 7156-7161
108.	<i>Kisselev A.F., Akopian T.N., Woo K.M., Goldberg A.L.</i> (1999) J. Biol. Chem., 274 , 3363-3371
109	Kisselev A F Akonian TN Castillo V Goldberg A L (1999) Mol Cell 4 395-402
110.	<i>Zwickl P., Ng D., Woo K.M., Klenk H.P., Goldberg A.L.</i> (1999) J. Biol. Chem., 274 26008-26014
111.	<i>Wilson H.L., Ou M.S., Aldrich H.C., Maupin-Furlow J.</i> (2000) J. Bacteriol., 182 , 1680-1692.
112	Smith D.M., Benaroudi N., Goldberg A. (2006) J. Struct. Biol. 156, 72-83
113	Mogk A., Schmidt R., Bukau B. (2007) Trends Cell Biol 17 165-172
114.	Orino E., Tanaka K., Tamura T., Sone S., Ogura T., Ichihara A. (1991) FEBS Lett 284 206-210
115.	DeMartino G.N., Moomaw C.R., Zagnitko O.P., Proske R.J., Chu-Ping M., Afendis S.J. Swaffield J.C. Slaughter C.A (1994) J Biol Chem 269 20878-20884
116	Wollenberg K Swaffield IC (2001) Mol Biol Evol 18 962-974
117	Waxman I Fagan IM Goldberg A I (1987) I Biol Chem 262 2451-2457
117.	Hough R Pratt G Rechsteiner M (1987) I Biol Chem 262 , 2431-2437.
119.	<i>Eytan E., Ganoth D., Armon T., Hershko A.</i> (1989) Proc. Natl. Acad. Sci. USA, 86 7751-7755
120	Hochstrasser M (1996) Ann Rev Genet 30 405-439
120.	Gottosman S. Maurizi M.R. Wickner S. (1997) Cell 91 A35-A38
121.	<i>Yamada-Inagawa T., Okuno T., Karata K., Yamanaka K., Ogura T.</i> (2003) J. Biol. Chem. 278 50182-50187
123	Hershko A Ciechanover A (1998) Annu Rev Biochem 67 425-479
123.	Lee D H Goldberg A I (1998) Trends Cell Biol 8 397-403
125.	Ротанова Т.В., Абрамова Е.Б., Шарова Н.П. (2005) Биол. мембраны, 22, 151-156
126.	<i>Ciechanover A., Heller H., Katz-Etzion R., Hershko A.</i> (1981) Proc. Natl. Acad. Sci USA 782 761-765
127	Hershko A., Ciechanover A., Rose I.A. (1981) J. Biol. Chem. 256, 1525-1528
128.	Chau V., Tobias J.W., Bachmair A., Marriott D., Ecker D.J., Gonda D.K., Varshavsky A (1989) Science 243 1576-1583
129	Pickart C.M. Rose I.A. (1985) J. Biol. Chem. 260, 1573-1581
130	Hadari T Warms IV Rose I A Hershko A (1992) I Riol Chem 267 719-727
130.	Vogas D. Zwickl P. Raumaistar W (1999) Ann Rev Riochem 68 1015-1068
122	Forstor A Masters E I Whith EC Pohinson H Hill C D (2005) Mol Coll
132.	18 , 589-599.
	Поступила: 07 02 2007
	11001jillind. 07. 02. 2007.
	529

ATP-DEPENDENT PROTEASES AND PROTEOLYTIC COMPLEXES INVOLVED INTO INTRACELLULAR PROTEIN DEGRADATION

T.V. Rotanova, E.E. Melnikov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997 Russia; tel.: (495)335-42-22; fax: (495)335-71-03; e-mail: rotanova@enzyme.siobc.ras.ru

The review characterized the main enzymatic systems of selective proteolysis responsible for maintenance of intracellular proteome in prokaryotes, eukaryotes and archea. The features of proteolytic components of the ATP-dependent proteases as well as similarity and diversity of their regulatory AAA⁺-ATPases are discussed.

Key words: AAA⁺ proteins, ATP-dependent proteases, selective proteolysis, proteasome, prokaryotes, eukaryotes, archaea.