УДК 616-035.1 ©Коллектив авторов

ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ ДИНАТРИЕВОЙ СОЛИ 2,4-ДИ(1-МЕТОКСИЭТИЛ)-ДЕЙТЕРОПОРФИРИНА—IX ("ДИМЕГИНА") ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ НЕОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ

В.М. Бондаренко¹, Ю.В. Алексеев²*, О.В. Миславский², Г.В. Пономарев³

¹Федеральное Государственное Бюджетное Учреждение Научно-исследовательский Институт эпидемиологии и микробиологии имени Н.Ф. Гамалеи Российской академии медицинских наук, Москва ²Федеральное Государственное Бюджетное Учреждение "ГНЦ лазерной медицины ФМБА России", 121165 Москва, Студенческая ул., д.40, стр. 1; тел./факс: (499)149-36-52; эл.почта: ziganova@yandex.ru ³Федеральное Государственное Бюджетное Учреждение Научно-исследовательский Институт Биомедицинской химии имени В.Н. Ореховича Российской академии медицинских наук (ФГБУ "ИБМХ" РАМН), Погодинская ул., 10, Москва

Исследовано влияние динатриевой соли 2,4-ди(1-метоксиэтил)-дейтеропорфирина-IX (Димегина) и облучения в области полосы Соре ($\approx 395-405$ нм) на подавление жизнеспособности и способности к образованию биопленок микробных клеток в сравнении с традиционными антисептиками. Облучение микробных клеток S. aureus, E. coli, C. albicans и др. светодиодом с плотностью мощности $0.05~{\rm BT}\mbox{cm}^2$ приводило к бактерицидному эффекту, сравнимому с таковым у стандартных антисептиков — хлоргексидина и диоксидина. Сравнительное изучение эффективности Димегина и Фотодитазина — растворимой соли хлорина е6, как фотосенсибилизаторов на тестовой системе гемолиза эритроцитов *in vitro* при облучении в полосе Соре, показало отсутствие значимых различий.

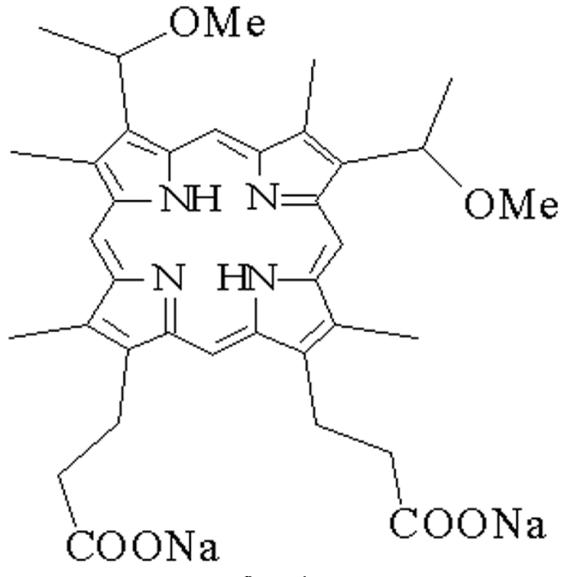
Ключевые слова: фотодинамический эффект, фотодинамическая терапия, фотосенсибилизаторы, микробные клетки.

ВВЕДЕНИЕ. Острые гнойно-воспалительные процессы различной локализации, ассоциированные с активацией условно-патогенных микроорганизмов, становятся все более распространенными в медицинской практике. В настоящее время показано, что рецидивирующее, часто торпидное (не поддающееся базисной терапии) течение и хронизация воспалительного процессов связана с формированием бактериальных биоплёнок [1, 2]. Под бактериальной биоплёнкой подразумевают микробное сообщество, в котором адсорбированные на поверхности и друг к другу клетки

^{* -} адресат для переписки

заключены в матрицу внеклеточных полимерных субстанций, продуцируемых микроорганизмами в соответствии с уровнем развития популяции [3]. Формирование бактериальной биоплёнки способствует выживанию и длительной персистенции микроорганизмов и зависит от их регуляторной системы, обозначенной как QS (Quorum Sensing – чувство кворума). Широкое применение имплантатов (катетеров, различных протезов, шовного материала и пр.) способствует формированию бактериальных биопленок, в особенности стафилококков [4-7]. Учитывая способность бактерий к сорбции некоторых фотосенсибилизаторов (ФС), фотодинамическая терапия (ФДТ) может явиться эффективным подходом к подавлению инфекции [8, 9]. В настоящее время, для проведения ФДТ неонкологических заболеваний (ЛОР, дерматология, гинекология, стоматология и т.д.) используются различные ΦC – производные гематопорфирина, хлорина еб и др. [10]. В дерматологии широко распространено аппликационное применение 5-аминолевулиновой кислоты, вызывающее накопление в клетках эндогенного протопорфирина IX в сочетании с облучением пораженного участка тела источниками света в красном диапазоне (630 нм). Однако, по нашему мнению, весьма эффективно применение ФС с возбуждением и в полосе Соре, (≈395-405 нм), которая характерна как у порфиринов, так и хлоринов. Источники излучения в этом диапазоне широко распространены, тем более, что в клинике успешно применяется терапевтическое ультрафиолетовое (УФ)-излучение (ртутно-кварцевые лампы) с ФС. Поэтому, поиск препаратов, которые могли бы производиться в промышленном количестве, и были конкурентоспособны из-за простоты и дешевизны изготовления, имеет большое значение.

ЦЕЛЬ РАБОТЫ: определение зависимости между временем облучения светодиодом длиной волны $\lambda \approx 405$ нм и жизнеспособностью клеток *Staphylococcus aureus*, *Klebsiella pneumoniae*, *Escherichia coli* и *Candida albicans*, сенсибилизированных 0,35% раствором "Димегина" и их биоплёнкообразованием. Сравнительное изучение эффективности "Димегина" и "Фотодитазина" при облучении в этом диапазоне *in vitro*.


МЕТОДИКА.

Фотосенсибилизатор (рис. 1, 2).

Используемый в качестве фотосенсибилизатора "Димегин" (рис. 1) представляет собой рыхлый легко электризующийся порошок темно-бордового цвета с металлическим блеском, хорошо растворимый в воде, этаноле и в метаноле. Его электронный спектр в водных растворах зависит от рН среды (рис. 2а,б). При понижении рН раствора до нейтрального происходит заметная ассоциация, что проявляется в изменении интенсивности полос в видимой части спектра.

Из представленных рисунков спектров видно, что электронный спектр "Димегина" в водных растворах в широком интервале рН больше 6,5 имеет своеобразный вид. Главная его особенность заключается в том, что наиболее длиноволновая полоса находится в области 610-612 нм, в то время как традиционные фотосенсибилизаторы на основе гематопорфирина (например, "Фотофрин II") имеют длинноволновый максимум поглощения в области 627-633 нм. Таким образом, использование лазерных источников облучения, применяемых для "Фотофрина II", мало эффективно, поскольку в данной области у "Димегина" нет заметного поглощения. Однако, в области полосы Соре (≈395-405 нм) у "Димегина" имеется интенсивная полоса, которую можно возбуждать, используя доступные в настоящее время и дешевые светодиодные источники облучения, так называемого "фиолетового (синего) диапазона"

(390-410 нм) и терапевтические УФ-аппараты. Спектр "Димегина" в этаноле — это классический и традиционный спектр ЭТИО-типа, характерный для всех октаалкилзамещенных порфиринов. Если считать, что спектр "Димегина" в этаноле можно в первом приближении принять за спектр в липидной мембране, то для максимально эффективного облучения в красной области спектра можно использовать источники света с максимумом испускания в области 615-625 нм, а в фиолетовой (синей) области спектра (т.е. в области полосы Cope) — максимум испускания должен быть в области 390-410 нм. Как видно из спектров (рис. 2а) — полоса Cope по своей интегральной интенсивности значительно превышает не только самую длинноволновую І-полосу, но и также сумму всех полос макроцикла в видимой области. Поэтому многие порфирины и, в особенности, "Димегин" можно использовать не только как фотосенсибилизатор, но также и как краситель для флуоресцентной диагностики при облучении синим светом.

Рисунок 1. Формула "Димегина" (2,4-ди(1-метоксиэтил)-дейтеропорфирина-IX динатриевая соль).

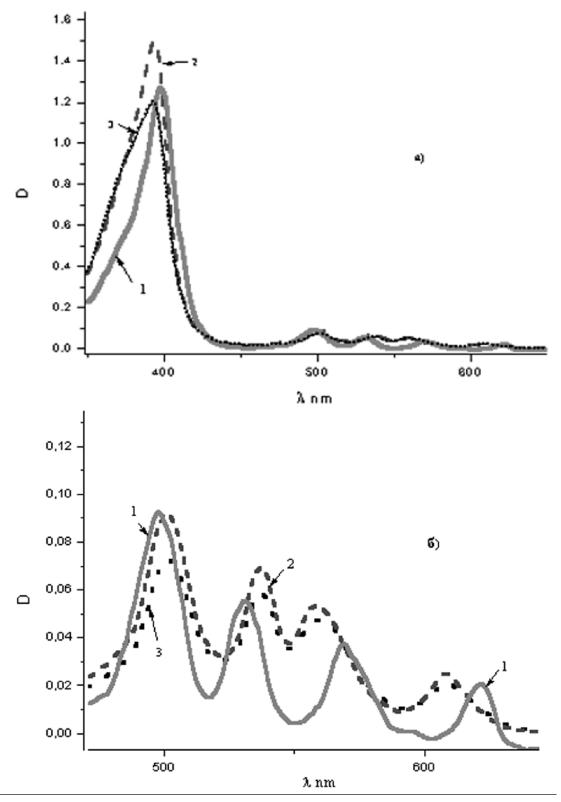


Рисунок 2.

Спектры поглощения Димегина в спирте и воде: а) общий вид; б) часть спектров в видимой области. 1 - в спирте (λ max нм: 498, 502 пл, 530, 568, 595 пл, 622); 2 - в воде при рН 9,5 (λ max нм 501, 537, 558, 608; 3 - в дист.воде при рН 6,0.

Навеску препарата растворяли в фосфатном буфере рН 7,2, содержащем хлорид натрия. Приготовленный рабочий раствор препарата с концентрацией "Димегина" 0,35% первоначально хранили при комнатной температуре, защищая от воздействия света и испарения. В дальнейшем новую порцию указанного раствора хранили при температуре +4 - +6°C, перед постановкой опыта его доводили до комнатной температуры, также защищая от воздействия света.

Штаммы бактерий. Для приготовления микробной суспензии в работе был использованы эталонные штаммы из Американской коллекции типовых культур (ATCC): *S. aureus* № 6538, *K. pneumoniae* № 5055, *E. coli* № 25922 и *C. albicans* № 10231.

Буфер и питательные среды. Для приготовления разведений использовали 0,1 М фосфатный (Na₂HPO₄/KH₂PO₄) буфер рН 7,2 с добавлением 0,9% (вес/объём) хлорида натрия, используя реактивы квалификации "хч". В качестве питательных сред для культивирования микроорганизмов применяли мясопептонный бульон (МПБ) и мясопептонный агар (МПА) производства фирмы "Difco" (США), селективные среды для клебсиелл, содержащих инозит, и среду Сабуро, производства "HiMedia" (Индия). Приготовленные питательные среды и буферный раствор автоклавировали при 121°С в течение 15 мин.

Подготовка культуры для исследования. Для приготовления исходной суспензии использовали рост бульонной 3-х часовой культуры, находящейся в фазе логарифмического роста, с концентрацией бактерий по оптической плотности не менее 1.0×10^7 колониеобразующих единиц в 1 мл (КОЕ/мл).

Опыты ставили в стерильных одноразовых чашках Петри отечественного производства (диаметром 35 мм и 40 мм) из полистирола, суммарный объём ингредиентов в чашке диаметром 35 мм составлял 2,0 мл (высота слоя жидкости в чашке 2 мм).

Учёт результатов опыта. Определение количества бактериальных клеток в изучаемой пробе проводили с помощью метода серийных разведений с последующим высевом микробной суспензии на чашки с плотными средами. Для этого из соответствующих разведений с контрольными (без воздействия изучаемого фактора) и опытными образцами отбирали пробы и высевали на чашки с соответствующей агаризованной питательной средой, чашки с посевами инкубировали при 37°С в течение одних суток, после чего подсчитывали количество колоний микроорганизмов, выросших на чашках. По данным из соответствующих разведений, как для опытных, так и для контрольных чашек проводили пересчет на пробирки, из которых отбирали пробы и определяли среднее количество КОЕ/мл, переводя в десятичные lg.

Антимикробную активность 0,35% раствора "Димегина" исследовали в сравнении с таковой для известных антисептиков: 0,05% раствор хлоргексидина и 1% раствор диоксидина. Определение антимикробного действия препаратов в отношении тест-штаммов проводили чашечным методом с нагрузкой 10^7 КОЕ/мл (12 No = 7,1-7,3) и экспозицией 60 мин.

Параметры облучения и характеристика облучателя. Использован аппарат "АСТ" производства ООО "Панков-медикл" (Россия), средней мощностью 0,5 Вт длиной волны $\lambda \approx 405$ нм. Необходимо отметить, что длина волны совпадает с полосой Соре препарата. Чашку с суспензией помещали в специальный бокс с чёрными внутренними стенками и черным основанием, на котором находились ограничители для сохранения фиксированного положения чашек диаметром 35 мм, бокс изолировал чашку от внешних

ПРИМЕНЕНИЕ ДИМЕГИНА ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ

источников освещения. На боковых стенках бокса располагались фиксаторы для светодиода, обеспечивавшие его вертикальное положение и заданную высоту, центр чашки совпадал с оптической осью светодиода.

Облучатель аппарата располагали на высоте 10 см над уровнем дна чашки, при этом световое пятно облучаемой поверхности составляло 10 см². При мощности ≈ 0.5 Вт, плотность мощности составляла ≈ 0.05 Вт\см².

Влияние времени облучения светодиодом на бактериальные клетки. Оценивали при сравнительном изучении действия облучения светодиодом на суспензию несенсибилизированных и сенсибилизированных "Димегином" суспензию бактериальных клеток.

Постановка опытов. В чашки Петри диаметром 35 мм вносили по 2 мл суспензии бактериальных клеток, затем опытную чашку облучали светодиодом с длиной волны λ≈405 нм, расположенным на высоте 100 мм над дном чашки, в течение 10 мин. В аналогичные чашки Петри диаметром 35 мм вносили 1,8 мл суспензии бактериальных клеток и 0,2 мл фотосенсибилизатора и помещали в специальный бокс, защищающий от посторонних источников освещения. Опыт проводили при комнатной температуре, опытную чашку и после облучения светодиодом в течение 10 мин. Из опытной и контрольной чашек отбирали пробы для определения количества КОЕ/мл.

Для оценки способности бактерий к формированию биоплёнок использовали модифицированный метод, описанный О'Toole и др. [9]. Для этого в полистироловые чашки диаметром 35 мм вносили по 5 мл жидкой питательной среды для роста бактериальных клеток, затем добавляли 0,1 мл облучённой лазером сенсибилизированной "Димегином" суспензии стафилококков и культивировали при 37°С в течение 24 ч. Затем питательную среду аккуратно отсасывали, и прикрепленные к стенкам и дну полистироловой чашки бактериальные биопленки, окрашивали 0,1% спиртовым раствором кристаллвиолета и регистрировали видимое различное в опыте и контроле интенсивное фиолетовое окрашивание стенок и дна чашки, свидетельствующее о степени биоплёнкообразования.

При исследовании антимикробной активности "Димегина" для сравнения были использованы производственные препараты антисептиков, широко применяемых в медицине: хлоргексидин 0,05% и 1,0% диоксидин. Снижение количества жизнеспособных клеток, подавляемых препаратами, рассчитывали в % (средняя \pm ошибка средней). При исследовании сравнительной эффективности "Димегина" и "Фотодитазина" использовался аппарат "АСТ" производства ООО "Панков-медикл", средняя мощность \approx 0,5 Вт с длиной волны $\lambda \approx$ 405 нм., аппарат "Multiscan MS" производства фирмы "Labsystems" (Финляндия). "Фотодитазин" – бис-N-метил-глюкаминовая соль хлорина е6 (ООО "Вета-Гранд", Россия).

Эксперимент проводили на эритроцитах крови, взятой из подъязычной вены у крыс самцов массой 300-350 г. Брали 1 мл крови в мерную пробирку, содержащую 3 мл физиологического раствора. Далее осаждали эритроциты на центрифуге, удаляли тромб и отмывали. Отмытые эритроциты разводили физиологическим раствором до оптической плотности (ОП) 0,6-0,7, измеряемой с помощью "Multiscan MS". В пластиковую чашку диаметром 57 мм, высотой 14 мм к 1 мл взвеси разведенных эритроцитов добавляли 1 мл "Димегина" в одном эксперименте, а в другом эксперименте 1 мл "Фотодитазина" в физиологических растворах. Контролем служила взвесь эритроцитов в физиологическом растворе без облучения. Объём экспериментальной смеси составлял 2 мл (концентрация клеток

~7×10° клеток/мл). Облучение проводили с дозой 1,2 Дж/см² в течение 1 мин с расстояния 5 см. Площадь облучённой поверхности составляла 25,5 см². Регистрацию оптической плотности вели до облучения и после облучения через 1 мин, 5 мин, 10 мин, 20 мин, 30 мин и 40 мин.

РЕЗУЛЬТАТЫ. Для исследования зависимости между временем светодиодного облучения ($\lambda \approx 405$ нм) и гибелью клеток тест-штаммов, сенсибилизированных 0,35% раствором "Димегина", опытные чашки с сенсибилизированной культурой облучали светодиодом в течение 10, 15 и 30 мин. Для работы использовали приготовленный за сутки до опыта раствор "Димегина", хранившийся после приготовления при комнатной температуре.

Результаты зависимости между временем светодиодного облучения ($\lambda \approx 405\,$ нм) и гибелью клеток тест-штаммов, сенсибилизированных "Димегином", представлены в таблице 1. Отмечено, что "Димегин" в концентрации 0,35% сам по себе проявляет слабое бактериостатическое действие уже при дневном свете

Tаблица 1. Процент подавления жизнеспособности клеток тест-штаммов, сенсибилизированных 0.35% раствором "Димегина" при различной экспозиции светодиодом 400 нм.

Экспозиция (в мин)	% подавления жизнеспособности тест-штаммов*				
	S. aureus	E. coli	K.pneumoniae	C. albicans	
	Контроль	Контроль	Контроль	Контроль	
	lg 7,1	lg 7,2	lg 7,2	lg 7,3	
	%	%	%	%	
10 мин (30 Дж/см ²)	25,4	26,5	24,6	16,8	
15 мин (45 Дж/см ²)	70,2	60,7	64,8	57,8	
30 мин (90 Дж/см ²)	96,1	94,8	92,5	65,5	

Примечание. Здесь и в таблице 2 * - определение проводили чашечным методом с исходной нагрузкой клеток тест-штамма КОЕ/мл (контроль в Ед).

Как видно из данных таблицы 1, при экспозиции светодиодами в течение 10 мин (30 Дж/см²) сочетанный фотодинамический бактерицидный эффект (подавление жизнеспособности клеток микроорганизмов) составляет для $E.\ coli-26,5\%,\ S.\ aureus-25,4\%,\ K.\ pneumoniae-24,6\%,\ дрожжевых грибов <math>C.\ albicans-16,8\%.$ Увеличение времени облучения до 15 мин (45 Дж/см²) фотодинамический бактерицидный эффект достигает в отношении $S.\ aureus-70,2\%,\ K.\ pneumoniae-64,8,\ E.\ coli-60,7\%$ и $C.\ albicans-57,8\%.$ При экспозиции с течение 30 мин (доза 90 Дж/см²) фотодинамический бактерицидный эффект достигает в отношении $S.\ aureus-96,1\%,\ E.\ coli-94,8\%,\ K.\ pneumoniae-92,5\%$ и $C.\ albicans-65,5\%.$

Исследование антимикробной активности 0,35% раствора "Димегина" в сочетании с облучением светодиодом с длиной волны $\lambda \approx 405$ нм в течение 30 мин показало, что % подавления жизнеспособности бактериальных клеток практически сходен с таковым для известных антисептиков: 0,05% раствора хлоргексидина и 1,0% раствора диоксидина (другая серия опытов в той же аранжировке эксперимента) (табл. 2).

ПРИМЕНЕНИЕ ДИМЕГИНА ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ

Tаблица~2. Процент подавления жизнеспособности клеток тест-штаммов, сенсибилизированных 0,5% раствором "Димегина" и облучённых светодиодом с длиной волны 400 нм в течение 30 мин, и при обработке в течение 30 мин без облучения 0,05% хлоргексидином и 0,1% диоксидином.

	% подавления жизнеспособности тест-штаммов*				
Экспозиция (в мин)	S. aureus	E. coli	K.pneumoniae	C. albicans	
	Контроль	Контроль	Контроль	Контроль	
	lg 7,8	lg 8,2	lg 7,6	lg 7,5	
	%	%	%	%	
Димегин 0,35 % +					
облучение 30 мин	95,4	92,6,	90,6	66,5	
(90 Дж/см ²)					
Хлоргексидин					
0,05% р-р (обработка	90,8	92,6	94,2	87,2	
в течение 30 мин)					
Диоксидин					
1,0% р-р (обработка	92,4	91,8	90,6	85,2	
в течение 30 мин)					

Как видно из данных таблицы 2, микробные клетки, сенсибилизированные 0,35% раствором "Димегина", и облученные светодиодом с длиной волны 405 нм гибнут практически на том же уровне, что и обработка 0,05% раствором хлоргексидина или 0,1% раствором диоксидина. Процесс подавления образования биопленок наблюдался при гибели более 50% микробных клеток, то есть, при поглощенной дозе 45 Дж/см² и был полным при дозе 90 Дж/см².

Определены минимальные концентрации "Димегина" и "Фотодитазина", вызывающие гемолиз эритроцитов, которые соответствовали значениям 1,95 мкг/мл (ФС). На 10 минуте, после воздействия облучения совместно с ФС, происходит уменьшение оптической плотности по сравнению с контролем, которое свидетельствует о начале гемолиза суспензии эритроцитов.

ОБСУЖДЕНИЕ. Известно, что прикрепившиеся к кератиноцитам кожи и эпителиоцитам слизистых оболочек условно патогенные микроорганизмы, вызывающие гнойно-воспалительные процессы, размножаются с образованием биопленок, состоящих из клеток возбудителя, заключенных в полимерный матрикс. Формирование биопленок имеет важное биологическое значение, т.к. они служат селективным барьером между бактериальными клетками и внешней средой, обеспечивающим защиту микроорганизмов от действия различных повреждающих факторов. Согласно современным представлениям, резистентность биопленочных бактерий в 1000 раз более высокая, чем у планктонных, связана также с тем, что в биопленках бактерии трансформируются в метаболически инертные формы, слабо подавляемые антимикробными препаратами [11].

В наших исследованиях "Димегин" в концентрации 0,35% проявлял слабое бактериостатическое фотодинамическое действие уже при дневном свете [12]. При экспозиции в течение 10 мин (30 Дж/см²) бактериостатическое действие составляет 25,4, 26,5, 24,6 и 16,8% в отношении клеток тест-штаммов *S. aureus*, *E. coli*, *K. pneumoniae* и *C. albicans* соответственно. Увеличение времени облучения до 15 мин (45 Дж/см²) приводит к значительному (табл. 1) повышению гибели клеток. При экспозиции с течение 30 мин (90 Дж/см²)

фотодинамический бактерицидный эффект достигает 96,1, 94,8, 92,5 и 65,5% в отношении S. aureus, E. coli, K. pneumoniae и C. albicans соответственно. Сенсибилизированные 0,35% "Димегином" и облучённые бактериальные клетки различных таксономических групп теряли способность к формированию биоплёнок, при учете роста через 16-18 ч термостатирования обработанных суспензий, высеваемых на чашки с питательным агаром. Таким образом, выявленная высокая антимикробная активность, ассоциированная фотодинамической активацией "Димегина", оказалась достаточной для подавления роста и размножения возбудителей гнойно-воспалительных процессов и формирования ими биопленки. Сравнение эффективности "Димегина" и "Фотодитазина" (гемолиз эритроцитов) при облучении в этом диапазоне не выявило существенных различий.

ЗАКЛЮЧЕНИЕ И ВЫВОДЫ. Установлена активация бактерицидного "Димегина" лействия 0.35% раствора на бактериальные условно-патогенных микроорганизмов различных таксономических групп при облучении светодиодом с длиной волны ≈405 нм, ассоциированная фотодинамической активацией препарата подавляющего in vitro формирование микробных биопленок. Установлено, что эффективность "Димегина" не уступает эффективности "Фотодитазина" в этом диапазоне длин волн, однако, учитывая простоту и дешевизну его изготовления, оказаться при массовом производстве конкурентноспособным. Подбор эффективных источников излучения, по нашему мнению, позволит применять ФДТ с "Димегином" при некоторых заболеваниях в различных областях медицины. В ряде случаев, учитывая избирательное накопление ФС порфиринового ряда, даже при эпикутанном способе их нанесения, в очагах воспаления и сальных железах определенных участков кожи возможно его использование при естественной инсоляции, например, при лечении acne vulgaris.

ЛИТЕРАТУРА

- 1. *Бехало В.А., Бондаренко В.М., Сысолятина Е.В., Нагурская Е.В.* (2010) Журн. микробиологии, эпидемиологии и иммунобиологии, **4**, 97-104.
- 2. *Бондаренко В.М.* (2011) Роль условно-патогенных бактерий при хронических воспалительных процессах различной локализации, Триада, М., 88.
- 3. *Donlan R.M., Costerton J.W.* (2002) Clin. Microbiol. Rev., **15**, 167-193.
- 4. *Маянский А.Н., Чеботарь И.В.* (2011) Журн. микробиол. эпидемиол. иммунобиол., **1**,101-108.
- 5. *Izano E.A., Amarante M.A., Kher W.B., Kaplan J.B.*, (2008) Appl. Envir. Microbiol., **74**(2), 470-476.
- 6. Olson M.E., Ceri H., Morck D.W., Buret A.G., Read R.R. (2002) Can. J. Vet. Res., **66**, 86-92.
- 7. Speziale P., Visai L., Rindi S., Pietrocola G., Provenza G., Provenzani M. (2008) Curr. Med. Chem., 15, 3185-3195.
- 8. *Бондаренко В.М., Коновалова Г.Н., Николаева Е.В., Кузиков А.Н., Лихачева Е.В.* (2008) Лазерная медицина, **12**(2), 26-30.
- 9. Алексеев Ю.В., Николаева Е.В., Макарова Ю.Б., Румбаль Я.В., Красновский А.А., Решетников А.В., Армичев А.В. (2005) Лазерная медицина, **9**(4), 4-8.

ПРИМЕНЕНИЕ ДИМЕГИНА ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ

- 10. Алексеев Ю.В., Лихачева Е.В., Терёшкин Д.В., Пономарев Г.В., Мазур Е.М. (2012) Биомед. химия, **58**, 112-120.
- 11. *Mack D., Rodhe H., Harris L.G., Davies A.P., Horstkotte M.A., Knobioch J.K.* (2006) Int. J. Artif. Organs., **29**(4), 343-359.
- 12. Fickweiler S., Szeimies R.-M., Abels C., Ponomarev G.V., Hofstadter F., Wolfbeis O.S., Landhalter M. (1998) Photodermatol. Photoimmunol. Photomed., 14, 125-131.

Поступила: 15. 04. 2013.

PERSPECTIVES OF DISODIUM SALT 2.4-DI(1-METOXYETHYL)-DEUTEROPORPHYRIN – IX ("DIMEGIN") APPLICATION FOR PHOTODYNAMIC THERAPY IN NON-ONCOLOGIC CASES

V.M. Bondarenko¹, Yu.V. Alexeev², O.V. Mislavsky², G.V. Ponomarev³

¹Gamaleya Reserch Institute of Epidemiology and Microbiology RAMS, Gamaleya ul., 18, Moscow, 123098 Russia

²State Reserch and Clinical Center for Laser Medicine, Studentcheskaya ul., 40, str. 1, Moscow, 121165 Russia; tel/fax: (499)249-36-52; e-mail: ziganova@yandex.ru

³Russian Academy of Medical Science, Institute of Biomedical Chemistry, RAMS, Pogodinskaya ul. 10, Moscow, 119121, Russia

Effects of disodium salt 2,4-di(1-metoxyethyl)-deuteroporphyrine-IX (Dimegin) and the light from Soret band (≈395-405 nm) at the viability of microbial cells and at their potential to form microbial biofilms have been compared with traditional antiseptics. Irradiation of microbial cells of *S. aureus*, *E. coli*, *C. albicans* and others with diode light (power density 0.05 Wt/cm²) caused a bactericidial effect similar to that obtained with standard anticeptics (chlorhexidine and dioxidine). A comparative study of the effectiveness of Dimegin and Photoditazine (a soluble salt of chlorine e6) as photosensitizers have been performed using the test system of erythrocyte hemolysis *in vitro* under irradiation with light from the Sore band. Results have shown insignificant difference in the photodynamic effect with similar doses of absorbed light and preparation concentration.

Key words: photodynamic effect, photodynamic therapy, photosensitizers, microbial cells.