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The review considers modern data on the mechanisms of activation and redox regulation of the NLRP3
inflammasome and gasdermins, as well as the role of selenium in these processes. Activation of the inflammasome and
pyroptosis represent an evolutionarily conserved mechanism of the defense against pathogens, described for various
types of cells and tissues (macrophages and monocytes, microglial cells and astrocytes, podocytes and parenchymal
cells of the kidneys, periodontal tissues, osteoclasts and osteoblasts, as well as cells of the digestive and urogenital
systems, etc.). Depending on the characteristics of redox regulation, the participants of NLRP3 inflammation and
pyroptosis can be subdivided into 2 groups. Members of the first group block the mitochondrial electron transport chain,
promote the formation of reactive oxygen species and the development of oxidative stress. This group includes
granzymes, the mitochondrial antiviral signaling protein MAVS, and others. The second group includes thioredoxin
interacting protein (TXNIP), erythroid-derived nuclear factor-2 (NRF2), Kelch-like ECH-associated protein 1 (Keapl),
ninjurin (Ninjl), scramblase (TMEMI16), inflammasome regulatory protein kinase NLRP3 (NEK?7), caspase-1,
gasdermins GSDM B, D and others. They have redox-sensitive domains and/or cysteine residues subjected to redox
regulation, glutathionylation/deglutathionylation or other types of regulation. Suppression of oxidative stress and
redox regulation of participants in NLRP3 inflammation and pyroptosis depends on the activity of the antioxidant
enzymes glutathione peroxidase (GPX) and thioredoxin reductase (TRXR), containing a selenocysteine residue Sec
in the active site. The expression of GPX and TRXR is regulated by NRF2 and depends on the concentration of selenium
in the blood. Selenium deficiency causes ineffective translation of the Sec UGA codon, translation termination, and,
consequently, synthesis of inactive selenoproteins, which can cause various types of programmed cell death: apoptosis
of nerve cells and sperm, necroptosis of erythrocyte precursors, pyroptosis of infected myeloid cells, ferroptosis
of T- and B-lymphocytes, kidney and pancreatic cells. In addition, suboptimal selenium concentrations in the blood
(0.86 uM or 68 pg/l or less) have a significant impact on expression of more than two hundred and fifty genes as compared
to the optimal selenium concentration (1.43 uM or 113 pg/l). Based on the above, we propose to consider blood selenium
concentrations as an important parameter of redox homeostasis in the cell. Suboptimal blood selenium concentrations
(or selenium deficiency states) should be used for assessment of the risk of developing inflammatory processes.
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Abbreviations used: AIM2 — absent in melanoma 2 (protein), AP-1 — activator protein-1; ARE — antioxidant
responsive element; ASC — apoptosis-associated speck-like protein containing a caspase recruitment domain;
ASK1 — apoptosis-regulating signal kinase 1; CARD — caspase activation and recruitment domain; c-FLIP — cellular
FLICE (FADD-like IL-1B-converting enzyme)-inhibitory protein; CIITA — Class II, major histocompatibility
complex, transactivator; CTL — CD8T, cytotoxic lymphocytes; Cul3 — Cullin-3-contaning ubiquitin ligase complex E3;
DAMP — damage-associated molecular pattern; DC — dendritic cells; DD — death domain; dsDNA — double stranded DNA;
dsRNA — double stranded RNA; EPR — endoplasmic reticulum; ESCRT — endosomal sorting complex required
for transport; FADD — fas-associated death domain protein; GCL — glutamate-cysteine ligase; GPX — glutathione
peroxidase; GSDM — gasdermin; GSDMD - gasdermin D; HMGB-1 — high-mobility group protein BI;
HMOX1 — heme oxygenase 1; HSP — heat shock protein; IFN-I — the type-I interferons; IKK — inibitor of kB kinase;
IL — interleukin; IP3 — inositol 1,4,5-trisphosphate; IP3R — IP3 receptor; IRF1 — interferon regulatory factor 1;
JNK1 — c-Jun N-terminal kinases; Keapl — Kelch-like ECH-associated protein 1; LAMP — lifestyle-associated
molecular patterns; LDH — lactate dehydrogenase; LDL — low density lipoproteins; LPS — lipopolysaccharides;
MAM - mitochondria-associated membrane; MAPK — mitogen activated protein kinase; MAVS — mitochondrial
antiviral signaling protein; MCU - mitochondrial calcium uniporter; mtDNA — mitochondrial DNA;
mtETC — mitochondrial electron transport chain; mtRNA — mitochondrial RNA; mtROS — mitochondrial reactive
oxygen species; MYD88 — myeloid differentiation factor; NAIP — NLR family apoptosis inhibitory protein;
NEK?7 — never in mitosis A-related kinase; NF-kB — nuclear factor-ikB; NINJ1 — ninjurin 1; NK — natural killer (cell);
NLRP - nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing;
NOD?2 — nucleotide-binding oligomerization domain containing 2; NOX — NADPH-oxidase; NQO1 — NAD(P)H quinone
oxidoreductase 1; NRF2 — nuclear factor (erythroid-derived 2)-like 2; PAMP — pathogen-associated molecular pattern;
PGAMS — phosphoglycerate mutase 5; PIP2 — phosphatidylinositol-4,5-bisphosphate; PKC — protein kinase C;
PLCy1 — phosphoinositide-specific phospholipase C; PM — plasma membrane; RIG-I — retinoic acid-inducible gene 1;
ROS - reactive oxygen species; SMAF protein — small musculoaponeurotic fibrosarcoma protein; SOD — superoxide
dismutase; STAT3 — signal transducer and activator of transcription 3; TLR — toll like receptor; TNFR — tumor necrosis
factor receptor; TNF-oo — tumor necrosis factor-a; TRIF — TIR-domain-containing adapter-inducing interferon-f3;
TRX — thioredoxin; TRXR — thioredoxin reductase; TXNIP — thioredoxin interacting protein; VRNA — viral RNA.
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INTRODUCTION

Inflammation is the initiator of many pathologies,
for example, diseases of the central nervous system
(multiple sclerosis, Alzheimer's disease and Parkinson's
disease), metabolic diseases (non-alcoholic fatty liver
disease, gout, type 2 diabetes mellitus and insulin
resistance), cardiovascular diseases, rheumatoid
arthritis [1-7]. In addition, an excessive inflammatory
response, defined as a cytokine storm, accompanies
infection caused by the SARS-CoV-2 coronavirus [8].

The assembly of the inflammasome is key event
in the development of inflammation. According
to modern data, inflammasomes are expressed
not only in monocytes, macrophages, and lymphocytes,
but also in many other cells [9-11]. Inflammasomes
in monocytes and macrophages function as a part
of the innate immune system and they are responsible
for the inflammatory responses, while lymphocyte
inflammasomes (T and B cells) are involved
in regulation of the adaptive immune response.
In this regard, inflammasomes can be considered
as a “switch” between the innate and adaptive immune
response, needed for precise control of the body
immune defense [11]. The innate immune system
is the first line of the immune defense necessary
to recognize and eliminate pathogens. However, almost
all tissues, organs and hematopoietic cells are involved
in the adaptive immune system. These include
macrophages, mast cells, neutrophils, eosinophils,
dendritic cells (DCs) and natural killer (NK) cells,

as well as non-hematopoietic cells, including
skin cells and epithelial cells mucous membranes
of the gastrointestinal tract, genitourinary system and
respiratory tract [10, 11].

Through a long process of evolution, the innate
immune system has created numerous receptors
capable of recognizing and binding certain molecular
patterns known as pathogen-associated molecular
patterns (PAMPs) and damage-associated molecular
patterns (DAMPs). PAMPs include components
of bacterial cells, such as lipoteichoic acid, lipoproteins,
peptidoglycans, lipopolysaccharide (LPS), flagellin,
and nucleic acids [11, 12]. In addition, PAMPs include
components of viruses, in particular, the S (spike)
protein of coronavirus [13].

The DAMP group includes adenosine
triphosphate (ATP), mitochondrial DNA (mtDNA),
heat shock proteins, interleukins IL-1 and IL-18,
heme, vimentin and the cytokine mediator HMGB-1
(high mobility group protein B1), or amphoterin.
The authors [14] identified new groups of molecular
triggers of inflammation: lifestyle-associated
molecular patterns (LAMPs), as well as inducible and
constitutive DAMPs (Table 1) [14-16].

Recognition of PAMPs and DAMPs by inflammatory
sensors, including NLRP1, NLRP3, NLRC4, NAIP,
AIM2, and pyrin, initiates a chain of events
culminating in the inflammatory cascade and
pyroptosis [17]. For example, AIM2 binds exclusively
to double-stranded DNA (dsDNA) [18]; NAIP directly

Table 1. Characteristics of PAMP, DAMP, and LAMP [14-16]*

Molecule Characteristics Examples
e Conservative microbial molecules responded | LPS
by pattern recognition receptors B-glucan
Any molecule that is released during, after, HMGB-1 or amphoterin
DAMP or as a consequence of a disruption of cellular | ATP
homeostasis, such as damage or injury Heme

Early DAMP or alarmins

Endogenous molecules released by damaged cells
during cell death

Vimentin (cytoskeletal protein responsible
for maintaining cell integrity)

Cause chemotactic and immunoactivating
reactions by interacting with PRR

Defensins, cathelicidin,
cosinophil-derived neurotoxin

Non-PAMP, non-DAMP molecules causing

LAMP an inflammatory response with the prospect Cholesterol, oxidized LDL, sodium urates
of developing chronic inflammation
Inflammatory molecules that are actively

Inducible DAMP (iDAMP) produced or modified during cell death and IL-1B, IL-18, heat shock proteins

reflect the cellular response to stress and cell
death signaling pathways

Constitutive DAMP (cDAMP)

Inflammation-induced molecules that are already
present intracellularly before cell death/stress
and are released by dying cells

HMGB-1 or amphoterin

mtDNA

ATP

Heme

* The table was created based on the open access publication [14], distributed under the terms of the Creative Commons

Attribution License (CC BY).
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binds flagellin and components of type III secretion
systems (T3SS) of Gram-negative bacteria such as
Salmonella enterica serovar Typhimurium and this
results in activation of the NLRC4 inflammasome [19];
human caspase-4 and caspase-5 are activated directly
by LPS entering the cell without the participation
of toll-like receptors (TLRs) [20, 21]. It has recently
been shown that human NLRP1 is activated
by double-stranded RNA (dsRNA) [22].

At the same time, activation of NLRP3 does not
occur due to binding to the activating ligand.
NLRP3 is activated by intracellular signals. These
include cardiolipin translocation from the inner
to the outer mitochondrial membrane, production
of reactive oxygen species (ROS), mtDNA oxidation,
calcium influx, a decrease in cellular cAMP,
destruction of lysosomes and subsequent leakage
of cathepsin B, outflow of potassium from the cell,
increase in the cell volume, formation of pores
in the plasma membrane (PM) and its rupture [23].
These events accompany cell death, called pyroptosis.
In addition, NLRP3 activators are also coronavirus RNA
and S protein, which, after penetration into the host cell,
contribute to the development of inflammation
and cell death [8].

Activation of the NLRP3 inflammasome
occurs in two stages: 1) priming, 2) activation
signaling pathways (canonical, non-canonical, and
alternative). Canonical and non-canonical activation
of the inflammasome leads to pyroptosis.

1. MECHANISMS OF NLRP3 ACTIVATION

To date, priming and three pathways for activation
of the NLRP3 inflammasome have been described:
the canonical, non-canonical and alternative pathway.
The priming step promotes the expression
of inflammasome components, and the activation step
is triggered by several types of molecules that
specifically activate NLRP3. After inflammasome
assembly, mature forms of interleukins IL-13 and IL-18
and gasdermins are formed. Gasdermins undergo
oligomerization and form pores spanning the plasma
membrane and membranes of intracellular organelles.
Mature forms of IL-1f3 and IL-18 (which are DAMPs)
act as triggers of inflammation leave the cell through
the gasdermin pores. By the time the plasma membrane
ruptures during the process of pyroptotic death,
all intracellular organelles (nucleus, mitochondria,
lysosomes, endoplasmic reticulum, Golgi complex)
are significantly damaged or destroyed [9, 24].

Similar activation of the inflammasome has been
found not only in macrophages and monocytes [25],
but also in other types of cells, in particular,
in microglia [26] and astrocytes [27], podocytes [28]
and parenchymal cells of the kidneys [29], periodontal
tissues [30] and bone tissue cells: osteoclasts and
osteoblasts [31], as well as in the cells of the digestive
system [32] and many others [9].

1.1. NLRP3 Inflammasome Priming (Signal 1)

Priming involves PAMPs, DAMPs or alarmins
(dsDNA), mtDNA, ATP, ROS, heme or urates
released by neighboring necrotic cells or damaged
tissues. This leads to transcriptional and
translational induction of various innate immune
effectors, including NLRP3 and the proforms
of interleukins IL-1pB, pro-IL-1p (Fig. 1). It should
be noted that NLRP3 priming by DAMPs
represents a basis for sterile chronic inflammatory
processes [33-37].

1.2. Characteristics of the NLRP3
Inflammasome Components

The NLRP3 inflammasome consists of the sensor
NLRP3, the adaptor ASC, and the effector enzyme
pro-caspase-1 [38]. The NLRP3 sensor is an NLR
(nucleotide-binding oligomerization domain containing
leucine-rich repeats). It contains an N-terminal
pyrin domain (PYD), a central NAIP (NLR family
apoptosis  inhibitory protein), CIITA (major
histocompatibility complex transactivator class II),

NACHT or nucleotide-binding oligomerization
domain  (NOD), which  hydrolyzes  ATP,
and a C-terminal leucine-rich repeat (LRR)

domain (Fig. 2). During inflammasome assembly,
NLRP3 interacts with the N terminus of the adapter
protein ASC via PYD-PYD interactions.
The C terminus of ASC has a caspase activation and

Priming
PAMP
TLR Cytokines
Lif,ands (Ti\IF-a, IL-1p, IFT—I)
ICECITIS
MYD-88 MYD-88
IRAK
Caspase-8 ¢
FADD

JNK-1

T =<eatr DNA
Nucleus L
pro-IL-1B, 18, — 5 Inflammasome
NLRP3 Activation
Cell death

Figure 1. PAMPs trigger priming by interacting with
the corresponding receptors (TLR, TNFR, IFNR) followed
by subsequent activation of the NF-kB/JNK-1 signaling
pathways AND expression of NLRP3 inflammasome
components and pro-interleukins (pro-IL-1p3, pro-IL-18).
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recruitment domain (CARD), which can bind [.3. The Canonical Activation

to procaspase-1 through CARD-CARD interactions of the NLRP3 Inflammasome (Signal 2)
and promote dimerization and activation of caspases
(Fig. 3). Due to its propertiecs, ASC forms large
fibrillar aggregates known as “specks” [39, 40].
The three-dimensional structure of the inflammasome

Following the priming step, the NLRP3
inflammasome can be activated by a wide range
of stimuli, including ATP, K' ionophores, heme,

is presented in the Protein Data Base (ID 8EJ4). solid paﬁicles, pathogen—a§sociated RNA, as well
as bacterial and fungal toxins and components [21].
a It should be noted that NLRP3 does not directly

interact with any of these agonists. It is suggested

NLRP3 NACHT H LRR / that they trigger a series of events in the cell that

mediate active inflammasome assembly (Fig. 4).

Such processes include:
ASC PYD e changes in the concentration of potassium,
sodium and calcium ions in the cell cytosol (outflow

b of potassium ions and chloride anions, mobilization

NLRP3 NACHT H LRR / and/or influx of calcium ions) [35, 41-48];

e destruction of lysosomes in response to large

aad L particle activators, leading to the release of cathepsins,
which activate NLRP3 [49];

@ o translocation of NLRP3 into mitochondria

through remodeling of the microtubule network,

Caspase-1 providing NLRP3 interaction with mitochondrial ASCs

ﬂe and inflammasome assembly [49-51];

e damage and dysfunction of mitochondria, including

the effect of SARS-CoV-2 viral RNA (VRNA) [52, 53].

The interaction of VRNA with MAVS impairs

the functioning of the mitochondril electron transport

Figure 2. The structure of the NLRP3 inflammasome: chain (mtETC), leading to the release of mtDNA and
a) NLRP3 domains; b) Sensory-adapter-effector mechanism mtROS, and cardiolipin movement to the outer

of NLRP3 inflammasome assembly. Adapted from [40].  mitochondrial membrane followed by subsequent
assembly of the NLRP3 inflammasome [52—55].
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Figure 3. A molecular model of NLRP3 inflammasome assembly: a change in NLRP3 conformation leads to the binding
of NLRP3 to NEK7 (/); this induces formation of the NLRP3 inflammasome (2) and promotes the formation
of NLRP3 PYD as a filament. The NLRP3 PYD filament recruits ASC (3) to form the ASC PYD filament.
CARD ASC also clusters and forms a filament (4). The ASC CARD filament recruits caspase-1 to form the caspase-1
CARD filament (5). Dimerization and autoprocessing of the caspase-1 domain (p20/p10) results in its activation.
Active caspase-1 then cleaves IL-1 family procytokines to produce mature cytokines (6). Caspase-1 also cleaves

GSDMD to produce the active N-terminal fragment of GSDMD to form membrane pores (7), which promotes cytokine
release and pyroptosis (8). Adapted from [40].
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Figure 4. Inflammasome activation and GSDM-mediated pyroptosis. Canonical activation of the NLRP3 inflammasome
is carried out by means of DAMPs, which act according to one of three scenarios, leading to an increase
in calcium ion concentrations in the cell cytosol: 1) G-protein-coupled phospholipase C (PL C) promotes the formation
of inositol triphosphate (IP3), which stimulates calcium ion release from the endoplasmic reticulum (ER);
2) phagocytosed DAMPs promote the destruction of lysosomes and the release of calcium ions and cathepsins from them;
3) change in transmembrane ion transport: outflow of potassium ions from the cell, influx of sodium and calcium ions
into the cell. Regardless of the pathways of calcium ions to the cytosol, they penetrate into mitochondria, impair
the electron transport chain functioning, stimulate mtROS production, movement of cardiolipin from the inner
to the outer mitochondrial (MCh) membrane, which leads to the release of cytochrome ¢ (Cyt. ¢) into the cytosol.
Cardiolipin on the outer surface of mitochondria serves as a platform for the assembly of the NLRP3 inflammasome.
mtROS and oxidized mtDNA promote the assembly of the NLRP3 inflammasome and the formation of free active
caspase-1, which enhances mitochondrial damage. Non-canonical activation of the NLRP3 inflammasome
occurs when LPS bypasses toll-like receptors (/). In the cytosol of cells, LPS (2) activates
caspases-4 and -5 (in humans) and -11 (in mice), promoting GSDM activation (3) and formation of a channel (4)
in the plasma membrane, through which ATP exits the cell (5) and activates the P2X7R receptor (6);
this results in the outflow of potassium from the cell and the influx of calcium ions into the cell (7). A change
in the concentration of these ions in the cytosol (8) serves as a signal for the assembly and activation
of the NLRP3 inflammasome (9), the formation of active caspase-1 (10), mature forms of interleukins and their exit
from the cell, which ultimately leads to inflammation and death cells by pyroptosis. GSDM-mediated pyroptosis.
Caspase-1-dependent cleavage of GSDMD (/17), the formation of GSDMD pores is accompanied by an increase
in the concentration of calcium ions in the cell cytosol (/2) and subsequent activation of Ca*-dependent
transmembrane protein 16F (TMEMI16F) (/3), promoting the outflow of CI™ ions (/3). The influx of Ca* ions
during the inflammatory process also activates STING (TMEM173) on the ER membrane. Activated STING then
binds to and activates the ITPR1 calcium channel, causing further Ca** release from ER (74, 15). Elevated Ca* levels
promote the activation of inflammatory caspases-1/11 or -8 (depending on the pathogen) (/6); this leads to further
damage to the mitochondria (/7). Finally, elevated Ca** levels promote nuclear swelling and rupture (/8) and trlgger
the cleavage of PM lipids by the phosphoinositide-specific phospholipase C PLCyl, promoting the progression
of pyroptosis and inflammation.

Canonical activation of the inflammasome [.4. The Non-Canonical Activation
is accompanied by activation of caspase-1, of'the Inflammasome
which promotes the formation of the active
N-terminal fragment of gasdermin (GSDM) D,
needed for the formation of gasdermin pores in PM
and the release of mature IL-1f through
the gasdermin pores [40].

Non-canonical activation of the inflammasome
is caused by LPS from the cell wall of Gram-negative
bacteria, independent of the TLR4-mediated
signaling [57]. This non-canonical inflammasome
provides an additional level of defense against
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pathogens that have evolved to bypass TLR4
on the cell surface [58]. The non-canonical
inflammasome includes caspase-4,5 in humans and
caspase-11 in mice, but not caspase-1. Caspases-4,5,11
directly bind to intracellular LPS. Non-canonical
activation of inflammasomes in human cells that
express high levels of caspase-4 does not require
priming [59]. Caspases-4,5,11 cause pyroptosis through
the processing of gasdermins, followed by their
oligomerization and formation of the gasdermin pores
in the PM, as well as the processing of pannexin-1,
a protein that forms channels in the PM through which
ATP is released from the cell. This extracellular ATP
activates the P2X7 receptor (P2X7R), an ATP-gated
cation-selective channel that opens a pore that triggers
K" efflux out of the cell; this results in the NLRP3
inflammasome assembly and IL-1p release [60] (Fig. 4).

Consequently, non-canonical activation
of the inflammasome, as well as canonical activation,
is accompanied by the oligomerization of gasdermins
that form pores in the PM. This is one of the key events
leading to pyroptosis.

1.5. The Alternative Pathway
for Inflammasome Activation

The alternative activation pathway functions
independently of the canonical or non-canonical
pathways of NLRP3 inflammasome activation [61].
Signaling in the alternative pathway occurs through
the TLR4-TRIF-RIPK1-FADD-CASPS signaling
pathway. The alternative pathway of inflammasome
activation is not accompanied by K* efflux and
PM rupture and, therefore, unlike canonical and
non-canonical inflammasome activation, does not lead
to pyroptosis [34].

2. GASDERMINS (GSDMs)

In humans, there are six major families of GSDMs:
GSDMA, GSDMB, GSDMC, GSDMD, GSDME,
and GSDMF/DFNB59. GSDMA, GSDMB, GSDMC,
GSDMD are expressed mainly in the skin and
epithelium of the gastrointestinal tract, while gasdermins
GSDME and GSDMF/DFNB59 are expressed mainly
in the heart, brain, kidneys and inner ear. Detailed
characteristics of GSDMs are given in Table 2 [62].

2.1. Characteristics of GSDMs

Among members of six GSDMs families, the best
studied is GSDMD. GSDMD is a cytoplasmic protein
with a molecular weight of 53 kDa, which consists
of 242 amino acid residues. GSDMD has two conserved
domains: an N-terminal effector domain and
a C-terminal inhibitory domain. In the inactive state,
the N-terminal and C-terminal domains are connected
by a long loop. Cleavage of the C-terminal inhibitory
domain is carried out by caspases-1,4,5,8 and a number
of other enzymes (Table 2) [62].
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Active caspase-1 cleaves the C-terminal domain
of GSDMD, by hydrolyzing the peptide bond formed
by the aspartate residue D276 [63]. After cleavage
of the C-terminal domain, the N-terminal domain
of GSDMD interacts with phosphatidylinositol
phosphates and phosphatidylserine [64]. This causes
conformational changes, oligomerization, and
the formation of GSDMD pores in the PM with
a diameter from 215 A to 20 nm [63-67].

The GSDMD pore channel is predominantly
negatively charged [68]. It has been experimentally
demonstrated that positively charged and neutral
ions and molecules are transported faster through
the GSDM pores than negatively charged ones.
The GSDMD pore mediates the efflux
of potassium ions from cells; this is a common factor
in triggering the NLRP3 inflammasome in response
to various stimuli and cellular stressors [69].
The GSDMD pore also mediates the release
of mature IL-1 by means of electrostatic filtration [70].
Immature pro-IL-1 and pro-IL-18 have an “acidic”
negatively charged domain that prevents the release
of pro-IL-1 and pro-IL-18 through the GSDMD pore.
Caspase-1 promotes the proteolytic cleavage
of the “acidic” domain of the pro-cytokines
IL-1B and IL-18 and this promotes release of mature
proinflammatory IL-1f and IL-18 from the cell
through the GSDMD pore [68].

GSDMB is activated by caspase-1 and granzyme A.
In addition, granzymes can proteolytically activate
caspase-1. Granzymes enter the cell through
perforins (pore-forming proteins of cytotoxic
T-killer and natural killer, NK) during the formation
of an immunological synapse [71]. Oltra et al. [72]
identified a set of charged amino acids encoded
by exon 6 of the GSDMB gene (Arg225, Lys227,
Lys229, and Glu233), which are located
next to a group of amino acids with complementary
charges (Glu42, Argl52, Glul53). Some of these
residues are conserved and are present in other

gasdermines. Granzyme A cleaves GSDMB
at residues Lys244 and Lys229 to form
the pore-forming fragment GSDMB  [71].

The authors of [72] suggest that charged amino
acid residues are necessary for oligomerization
and binding to lipids both in the PM and
in the membranes of intracellular organelles,
including mitochondria, lysosomes, and ER. This
suggestion is supported by the increased production
of free radicals in the mtETC, phospholipid
peroxidation, formation of the gasdermin pores, and
influx and/or mobilization of calcium ions from
damaged lysosomes and ER [73-75] (Fig. 4).
Besides activation of GSDMB and caspase-1,
granzymes A and B, hydrolyze domains of mtETC
complex I, resulting in electron leakage to oxygen
with the formation of superoxide anion radical and
other ROS [76, 77]. This is discussed in more details
in section 3.8.
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Table 2. Members of the GSDM family: structure and functions (adapted from [62])

Gasdermin Domain Activating enzyme | . L.1p id . Type of lipid Tlssue/c.ell s.p ccific Blologlcal
binding site expression in man function
Skin, tongue,
Phosphoinositides, | esophagus, stomach,
GSDM-NT and cardiolipin, mammary glands, Mitochondrial
GSDMA GSDM-CT No data GSDM-NT phosphatidic acid, |bladder, umbilical | homeostasis
phosphatidylserine | cord, and
T lymphocytes
Airway epithelium,
gastrointestinal
Phosphoinositides, | tract, brain, .
GSDM-NT and | Granzyme A and phosphatidic acid, |endocrine tissue Pyroptosis,
GSDMB GSDM-NT . ? ’ antitumor
GSDM-CT caspase-1 phosphatidyl- bone marrow, . .
. . immunity
glycerol sulfatide |lungs, liver,
kidneys, testes,
and lymphocytes
Cerebral cortex,
endocrine tissues,
GSDM-NT and skin, trachea, spleen,
GSDMC GSDM-CT Caspase-8 GSDM-NT | No data esophagus, stomach, No data
intestines, vagina,
and bladder
Caspases 1/4/5/8, Almost all human Inflammation,
GSDM-NT and cathepsm. G, Phos.ph.01.n051t1des, organs and tls.sues, pyrop.tosm,
GSDMD GSDM-CT neutrophil elastase, | GSDM-NT | cardiolipin, including various cytokine release,
Enterovirus 71 phosphatidic acid | subpopulations NETosis*,
3C protease (EV71) of leukocytes bacterial killing
Brain, endocrine
Phosphoinositides, | tissue, muscle tissue, | Pyroptosis,
GSDME GSDM-NT and | Caspases 3/7/8, GSDM-NT | cardiolipin, gastrointestinal antitumor
GSDM-CT granzyme B . . . . .
phosphatidylserine | tract, endometrium, |immunity
and placenta
Inner ear, auditory
GSDMF/ PVJK G.SDM-NT and No data GSDM-NT | No data system neurons, No data
zine finger testicles

NETosis* — programmed death of neutrophils.

In addition, the formation of GSDM pores causes
a chain of events: the outflow of potassium ions
from the cell, the influx of calcium ions and water
into the cytosol, cell swelling and rupture of the PM.
All these events lead to pyroptosis [78—82].

2.2. GSDMs and Ion Currents

The assembled GSDMD pores can have
a diameter of up to 20 nm [63-67, 82, 83]. These
pores allow the secretion of smaller intracellular
proteins such as IL-1 (17 kDa) but do not allow
the release of larger proteins such as lactate
dehydrogenase (LDH) (140 kDa) or the inflammatory
mediator HMGB1 (150 kDa) [83—-85]. These larger
proteins are released after cell lysis [86]. GSDMD pores
also act as nonselective ion channels. Soon after
the pores are assembled, extracellular Ca** ions enter
the cell through these pores. This influx of ions triggers

several processes in the cell. First, it activates ESCRT
(endosomal sorting complexes required for transport)
proteins I and III, which are assembled on the PM
to remove GSDM pores by their encapsulation
in vesicles. If successful, membrane integrity
is restored and cell lysis and IL-1B secretion
are prevented [87]. In addition, the influx of Ca* ions
through the GSDMD pores activates Ca*-dependent
transmembrane protein 16F (TMEM16F), a membrane
phospholipid scramblase that promotes transition
of phosphatidylserine (PS) from the inner to the outer
PM monolayer [88]. Activation of TMEMI16F also
causes changes in cellular ion currents, at least in part
due to the efflux of CI™ ions; this further contributes
to the loss of ion homeostasis and cell death.
The influx of Ca* ions during the inflammatory
process also activates STING (TMEMI173)
on the ER membrane [89]. Activated STING
then binds to the calcium channel ITPR1 and
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activates it, causing further release of Ca® from
ER stores. Elevated Ca* levels promote activation
of inflammatory caspases-1/11 or -8 (depending
on the pathogen). Finally, elevated Ca* levels trigger
the cleavage of PM lipids by phosphoinositide-specific
phospholipase C PLCyl, promoting the progression
of pyroptosis and inflammation [89].

2.3. Pyroptosis

Loss of cell viability is caused by ion influx,
loss of membrane potential, and PM rupture.
An increase in the concentration of calcium ions
in the cytosol contributes to mitochondrial damage,
cell swelling, loss of lysosome stability, loss of nuclear
integrity and, finally, PM rupture [90-93].

2.4. Plasma Membrane Rupture

PM rupture during GSDM pore formation
was considered a passive process. However, recent
work [94] has shown that the conserved extracellular
a-helix of ninjurin (NINJ1, cell adhesion protein)
is a mediator of cell lysis during pyroptosis [95, 96].
NINJ1 expression is stimulated by oxidative stress,
which develops during mitochondrial damage and
mtROS production [97].

Consequently, after canonical and/or non-canonical
activation, the NLRP3 inflammasome triggers
an extreme form of programmed cell death, pyroptosis,
aimed at limiting the replication of intracellular
pathogens and immunosuppression in sepsis [38, 55].
The leading role in pyroptosis is played by GSDMs,
ninjdurin, granzymes, caspases, and the regulatory
protein kinase NEK7, the functioning of which
is associated with mitochondrial dysfunction and
the development of oxidative stress. The different
types of regulation of the NLRP3 inflammasome and
gasdermins are considered in the next section.

3. REGULATION OF NLRP3 INFLAMMASOME
AND GSDMs

Activation of the NLRP3 inflammasome helps
to protect the host cell from microbial and viral
infections. However, the exposure to pathogens
and/or cytokines is accompanied by the development
of oxidative stress, mediated by mitochondrial
dysfunction, leading to activation of the NLRP3
inflammasome and the development of a number
of inflammatory diseases. Therefore, it is critical that
the NLRP3 inflammasome activation is precisely
regulated to provide adequate immune protection
without damaging human tissues. To date,
several ways of NLRP3 regulation are known.
These include phosphorylation/dephosphorylation,
ubiquitination/deubiquitination, sumoylation, alkylation,
S-nitrosylation, S-glutathionylation, as well as interaction
with NLRP3 redox patterns [34]. The last two types
of regulation are of particular interest, since these
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processes are redox-sensitive and are regulated
by ROS on the one hand and the antioxidant system
on the other (Fig. 5).

3.1. Activation of NLRP3 by S-Glutathionylation

S-Glutathionylation is a post-translational redox
modification that represents the reversible formation
of mixed disulfides between the tripeptide
glutathione and a low pKa cysteine residue [98].
This reaction is catalyzed by glutathione transferase
Omega 1 (GSTO1-1), which belongs to the cytosolic
glutathione transferase (GST) superfamily [99] and
is able to deglutathionylate the regulatory protein
kinase NEK7 at Cys253, promoting its interaction
with NLRP3 and activation of the inflammasome.
The addition of glutathione at the Cys79 and Cys253
residues of NEK7, on the contrary, limits activation
of the NLRP3 inflammasome [100]. The activity
of caspase-1 is regulated in a similar way.
Glutathionylation of caspase-1 at Cys397 and Cys362
reduces the activity of caspase-1, while an increase
in the formation of ROS, a decrease in the redox potential
of cells, glutathione oxidation, and deglutathionylation
of caspase-1 lead to the activation of caspase-1.
It should be noted that the use of antioxidants, such as
curcumin, leads to an increase in S-glutathionylation
of caspase-1, suppression of its activity, and
a decrease in the production and secretion
of mature IL-1f [101], which ultimately promotes
survival during lethal endotoxic shock [102, 103].
The expression of glutathione-S-transferases is regulated
by the transcription factor NRF2 (regulation of NRF2
is discussed in sections 3.4-3.7.) [104].

3.2. Regulation of NLRP3 Interacting Patterns

NLRP3 interacting proteins are involved
in the inflammasome regulation. These include
molecular chaperone Hsp90 and its co-chaperone SGT1,
thioredoxin-interacting protein (TXNIP), guanylate
binding protein 5 (GBP5), RNA-dependent protein
kinase (PKR), migration inhibitory factor (MIF),
microtubule affinity regulatory kinase 4 (MARK4),
and serine/threonine protein kinase NEK7 [34].
Hsp90 is required to protect NLRP3 from proteasome
degradation and autophagy. Hsp90 recruits SGTI
to NLRP3 to form a complex that maintains NLRP3
in an inactive but signal-competent state [105].
Hsp90 expression is regulated by the transcription

factor NRF2 (NRF2 regulation is discussed
in sections 3.4-3.7) [104].
TXNIP, as an oxidative sensor, interacts

with thioredoxin (Trx1) under reducing conditions
(regeneration of reduced thioredoxin is carried out
by selenium-dependent TRXR; its expression is also
regulated by NRF2). ROS induced by NLRP3 stimuli
oxidize Trx1 and cause dissociation of TXNIP
from Trx1, leading to TXNIP interaction with NLRP3
and subsequent activation of the NLRP3 inflammasome.
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Figure 5. Regulation of the NLRP3 inflammasome. The inflammasome activation is accompanied by mtROS generation;
this causes oxidative stress in the cell, oxidation of Trx1-H2 (reduced) and dissociation of oxidized Trx1 from
the complex with TXNIP. Free TXNIP interacts with NLRP3, activating the NLRP3 inflammasome and stimulating
the development of inflammation, secretion of IL-1f3 and IL-18, and cell death through pyroptosis. To restore redox
homeostasis and prevent cell death by pyroptosis, in parallel with the activation of the NLRP3 inflammasome,
the synthesis of the nuclear factor transcription factor NRF2 occurs; its activation leads to the expression
of cytoprotective proteins and enzymes (GPX(Se), TRXR(Se), HO-1, etc.), responsible for antioxidant defense (AOD)
and cell survival. Cytoprotective proteins and enzymes neutralize ROS and suppress the NLRP3 inflammasome and
pyroptosis. The most important regulators of NRF2 activity are Keap1, p62, and NF-kB. ROS generated during oxidative
stress oxidize specific cysteine residues of Keapl, promoting the release of NRF2 from the complex with Keapl.
p62 binds to the same region of Keapl as NRF2 and releases Nrf-2 from its inhibitor, resulting in the expression
of the NRF2 target genes. NRF2 also stimulates p62 expression. NF-xB stimulates the expression of Nrf-2 and p62.
The latter binds to atypical protein kinase C (aPKC) and TRAF6, resulting in activation of IKK and NF-kB,
thereby increasing the regulation of NRF2 and p62. In addition, p62 also degrades ubiquitinated (Ub) components
of the inflammasome. PGAMS interacts with both Keapl and NRF2, causing negative regulation of NRF2.
ROS activate protein kinase C (PKC), which phosphorylates and thereby activates NRF2 to maintain redox homeostasis
and cell survival. Selenium-dependent TRXR restores Trx to Trx1-H2, which binds to TXNIP and terminates

its activating effect on the NLRP3 inflammasome. —+ — activation; 4

In addition, TXNIP 1is essential for NLRP3
inflammasome activation, induced by ATP, sodium
urate, and islet amyloid polypeptide [106].

GBP5 is critical important for activation
of the NLRP3 inflammasome in response to ATP,
nigericin, and pathogenic bacteria. GBP5 binds
to the pyrin domain of NLRP3, and tetrameric GBP5
promotes NLRP3-mediated ASC oligomerization [107].
In addition, MIF and MARK4 also interact with NLRP3
and promote its activation [34, 106] (Fig. 5).

Nevertheless, the redox regulation of the
inflammasome by the oxidative sensor TXNIP
is of the greatest interest.

3.3. Redox Regulation of the Inflammasome
by the Oxidative Sensor TXNIP

The NLRP3 inflammasome is controlled by ROS
and also by the selenium-containing enzyme TRXR.
In the reduced state, Trxl interacts with and
inhibits TXNIP. In this complex, TXNIP cannot interact

— negative regulation (suppression, inhibition).

with and activate NLRP3. Under the influence of ROS,
Trx1 undergoes oxidation followed by dissociated
from TXNIP. The latter binds to NLRP3 thus
stimulating inflammasome assembly [108].

In order to restore redox homeostasis and prevent
cell death by pyroptosis, transcription factor NRF2
is synthesized in parallel with the activation
of the NLRP3 inflammasome. NRF2 activation
leads to the expression of cytoprotective proteins and
enzymes (GPX, TRXR, HO-1, etc.) responsible
for cell survival [104, 109].

It should be noted that damaged mitochondria
produce a by-product metabolite of the tricarboxylic
acid cycle, itaconate (methylene succinate), which
can activate the anti-inflammatory cellular
programming of NRF2 through alkylation of cysteine
residues in the KEAP1 protein. Activation
of inflammasomes can be inhibited through
activation of NRF2 and the downstream protein HO-1,
which is responsible for intracellular antioxidant
protection [38].
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3.4. Transcription Factor NRF2

NRF2 is a key regulator of cytoprotective gene
expression [110]. Transcription of the Nfe2l2 gene
encoding NRF2 is induced by an NRF2-mediated
positive feedback loop created using NF-«B.
NRF2 is composed of seven Neh domains, which
regulate its activity by binding to other proteins or DNA.
Nehl is required for NRF2 transcriptional activity
because it contains a bZIP DNA binding region
and mediates interaction with small MAF proteins.
NRF2s binding to MAF targets antioxidant
response elements (AREs) in the promoter region
of several hundred genes, including many genes
encoding cytoprotective proteins [111]. Among
the protein products of these genes are proteins
of the glutathione system (for example, glutamate
cysteine ligase, glutathione S-transferase, glutathione
peroxidase-2 and -3, glutathione disulfide reductase)
and thioredoxin (for example, TRXR 1 and 3).
They form the basis of the cell antioxidant system.
In addition, NRF2 regulates genes encoding
enzymes necessary for the  detoxification
of ROS and xenobiotics (for example,
NQO1 (NAD(P)H-dehydrogenase [quinone] 1)),
NADPH regeneration (for example, glucose-6-phosphate
dehydrogenase and phosphogluconate dehydrogenase
of the pentose phosphate cycle, and also malic enzyme),
heme and iron metabolism (for example, HO-1 light
and heavy chains of ferritin and others) [54].
It was previously found that NRF2 directly prevented
transcription of genes encoding the proinflammatory
cytokines IL-6, prolL-1f and prolL-1a [104, 109].

NRF2 is also indirectly involved in the regulation
of activation of the NLRP3 inflammasome:
one of the cytoprotective enzymes synthesized under
control of NRF2, TRXR, is necessary for the reduction
of thioredoxin in TXNIP (see above).

In addition, TRXR is involved in the regulation
of the following proteins and enzymes: sirtuin-1,
caspase-3, ASK1 (apoptosis signaling kinase 1),
MAPK  (mitogen-activated  protein  kinase),
NF-kB transcription factors, STAT3 (signal transducer
and activator of transcription 3), as well as Myd&88
(myeloid differentiation factor 88), disintegrin and
metalloproteinase 17 (ADAMI17). It should be noted
that one of the stimuli for ADAMI17 activation
is the coronavirus spike protein [108].

3.5. Canonical Activation of NRF2

Kelch-like ECH-associated protein 1 (Keapl)
is the most important regulator of NRF2 activity [112].
In the cytoplasm, two molecules of this adapter
bind to the N-terminal Neh2 domain of NRF2
and mediate its polyubiquitination by interacting
with the E3 ubiquitin ligase complex Cul3/Rbx1
(Cullin 3/RING-box 1). This leads to constant
degradation of NRF2 in the proteasome. Small
amounts of NRF2 escape Keapl-dependent
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degradation and cause constitutive and weak expression
of NRF2 target genes upon their entry into the nucleus.
Keapl-dependent ubiquitin ligase is redox-sensitive.
Oxidative stress or electrophiles oxidize specific
cysteine residues of Keapl, causing conformational
changes in the adapter protein and inhibition
of E3 ubiquitin ligase activity. At the same time,
Cul3 remains associated with Keapl [112]. Activation
of NRF2 by oxidation of Keapl cysteine residues
is known as canonical NRF2 activation. Interestingly,
oxidation of Keapl by many different NRF2 activators
appears to be a highly specific process. These activators
can be grouped into different classes, depending
on their specificity for Keapl cysteine residues.
For example, the NRF2 activator sulforaphane,
which is a component of broccoli sprouts, or dimethyl
fumarate, an anti-inflammatory drug approved
in the European Union and the United States
for the treatment of patients suffering from psoriasis
or multiple sclerosis, oxidize mainly the Cys151 residue
in Keapl [109] (Fig. 3).

3.6. Non-canonical Activation of NRF2

Non-canonical activation of NRF2 is caused by
binding of Keap1 to p62 (also known as sequestosome 1
(SQSTM1)) [113]. p62 is a multidomain and
multifunctional protein that protects cells from
stress through autophagic clearance and activation
of NRF2 [113]. The Kir domain of p62 binds
to the same region of Keapl as NRF2 and thus
releases NRF2 from its inhibitor, leading to expression
of NRF2 target genes. In autophagy-deficient cells,
phosphorylated p62 aggregates with Keapl
in the cytoplasm, causing persistent activation
of NRF2 [114]. This results in a positive feedback loop
as NRF2 induces the expression of p62, regulating
NF-kB, which in turn increases NRF2 expression.

In various types of cancer, NRF2 is activated
due to epigenetic silencing of the Keapl gene
through promoter methylation [115, 116]. Increased
expression of the target gene NRF2 maintains stress
resistance of cancer cells and causes changes in their
metabolic pathways [117].

NRF2 regulation also involves phosphoglycerate
mutase family member 5 (PGAMS), which
is a mitochondrial serine/threonine phosphatase.
PGAMS5 interacts with Keapl, promoting
its Keapl-dependent ubiquitination and subsequent
proteasomal degradation [118]. In addition, PGAMS5
also interacts with NRF2 and negatively regulates
its transcriptional activity [119]. It is known that PGAMS
is a central player in necroptotic cell death [109, 119].

Activation of NRF2 after dissociation
of the NRF2-Keapl complex can also be mediated
by protein kinase C (PKC), which phosphorylates NRF2
at the Serd40, causing its dissociation from Keapl,
translocation into the nucleus, and induction of target
gene expression. This occurs in response to oxidative
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stress, which activates PKC and maintains canonical
NRF?2 activation [120]. Another example is p21, a major
target of p53 and a cell cycle inhibitor, which interacts
with NRF2 and thereby releases it from Keapl [109].

3.7. Non-canonical NRF2 Activation and
Inflammation Inhibition

The multifunctional and multidomain protein p62
is proposed to be a critical regulator of the NRF2,
NF-xB, and NLRP3 inflammatory pathways [121].
p62 maintains NRF2 and NF-kB activity but inhibits
the NLRP3 inflammasome. p62 was initially identified
as an important mediator of NF-kB. p62 interacts with
atypical PKC via its N-terminal PB1 domain, which
is required for self-oligomerization. In addition, p62 binds
TRAF6 (tumor necrosis factor receptor-associated
factor 6) via its TRAF6 binding domain and it can also
activate RIP1 (receptor-interacting serine/threonine
protein kinase 1) [121] and IkB kinase (IKK), which
induces translocation of NF-kB upon phosphorylation
and inhibition of its inhibitor IxBa. Activation
of inflammation in macrophages triggers the formation
of autophagosomes. Inflammasome activation and
IL-1B production are inhibited by Lys63-dependent
polyubiquitination of inflammasomes. In addition,
p62 is required for elimination of damaged
mitochondria through autophagy. Inflammatory
agonists are thought to induce NLRP3 inflammasome
assembly upon mitochondrial damage, development
of oxidative stress, and release of inflammasome
activation signals. p62-dependent mitochondrial
destruction is accompanied by a decrease
in NLRP3 activation. It is suggested that oxidation
of p62 cysteine residues enhances autophagy [122].
Interestingly, NF-xB plays a central role
in controlling this crosstalk. Its activation is required
not only for priming of the NLRP3 inflammasome
(induction of NLRP3 and prolL-1p expression),
but also for the induction of p62 expression, which
limits inflammasome activation. Since p62 supports
the activation not only of NF-«kB but also NRF and
a positive feedback loop occurs due to induction
of p62 expression by NRF2 [109]. Analysis
of the literature data allowed us to draw up a scheme
for the regulation of the NLRP3 inflammasome,
presented in Figure 5.

Therefore, oxidative stress is a key factor
in the activation of the NLRP3 inflammasome, which
promotes caspase-1 activation, GSDM pore formation,
and the resulting pyroptosis.

3.8. Post-Translational Regulation of GSDMs

The GSDM functioning is associated with
the N-terminal GSDMD-NT domain and is regulated
both by addition of certain metabolites (fumarate,
itaconate and palmitic acid) and by oxidation of certain
cysteine residues [123]. Specifically, fumarate addition,
known as succination (i.e., acylation with succinate),

occurs at the residues Cys191 (human)/Cys192 (mouse)
in GSDMD and Cys45 (mouse) in GSDME as a result
of a switch in the metabolic profile of macrophages
and dendritic cells from oxidative phosphorylation
to aerobic glycolysis. In GSDMD, Cys191 is located
adjacent to Leul92, which is the contact point
of the C-terminal domain of GSDMD responsible
for autoinhibition. Because Leul92 mutation blocks
GSDMD-NT binding to membrane lipids, succination
of Cysl91 could have a similar effect on GSDMD.
This suggestion was confirmed by cysteine-modifying
drugs that blocked pyroptosis and death in a model
of lethal endotoxemia [124]. Another metabolic
regulator of GSDMs is itaconate, which directly binds
to GSDMD at the Cys77, blocking caspase-1-dependent
cleavage of GSDMD and protecting the cell
from pyroptosis during prolonged exposure to LPS.
At the same time, palmitoylation at Cys407 and Cys408
residues, on the contrary, promoted GSDME-NT
dissociation from GSDME-CT followed by subsequent
formation of GSDM pores [124].

3.9. Redox Regulation of GSDMs

Inflammatory stimuli are known inducers of mtROS.
mtROS production is known to trigger pyroptosis
of infected macrophages, thus acting as a defense
against intracellular infections. It was previously
reported that mtROS regulated GSDMD through
direct oxidation of human GSDMD at Cys38, Cys56,
Cys268, and Cys467 [123]. These data are presented
schematically in Figure 6.

At the same time, mtROS formation
is a consequence of mitochondrial damage,
destruction of mtETC complex I by caspase-3 and
granzyme B. mtROS oxidize cardiolipin and promote
its movement to the outer surface of mitochondria,
resulting in the release of cytochrome c¢ from
mitochondria into the cytosol and increased oxidative
stress [125—127]. All these events lead to the assembly
of the inflammasome, activation of caspase-1, GSDMs,
formation of mature proinflammatory cytokines and
pyroptosis [125, 128].

Consequently, inflammation develops in jointly
with oxidative stress. Prevention of oxidative stress,
inflammation and cell death involves an antioxidant
system, including superoxide dismutase (SOD), catalase,
glutathione peroxidase and thioredoxin systems [129].

4. THE ROLE OF ANTIOXIDANTS
IN REDOX REGULATION
OF INFLAMMATION AND CELL DEATH

The main antioxidant enzymes are glutathione
peroxidases (GPXs), which, with the participation
of glutathione (GHS), reduce H,0, and lipid
hydroperoxides [129]. Eight GPXs are known [130].
GPXsl1-4 and GPX6 are selenium-dependent and
contain a selenocysteine residue in their active
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sites [131]. Other important antioxidant enzymes
are TRX, TRXR, thioredoxin peroxidase (PRX) and
glutaredoxins [129]. Most of these antioxidant
enzymes use NADPH as the reducing equivalent.
NADPH not only maintains catalase in an active form,
but also acts as a cofactor for thioredoxin and
glutathione reductases, reducing oxidized glutathione
and thioredoxin to their reduced forms for subsequent
use as a cosubstrate of TRXR and GPX,
respectively [129]. The most abundant non-enzymatic
antioxidant in cells is GSH. It should be noted
that the expression of both antioxidant enzymes and
NADPH-producing enzymes (glucose-6-phosphate
dehydrogenase, phosphogluconate dehydrogenase
and malic enzyme) is regulated by NRF2 [104]
(see sections 3.4-3.7).

However, it was found that loss of the selenium-
dependent enzyme glutathione peroxidase 4 (GPX4)

increased lipid peroxidation (LPO)-dependent
caspase-11 activation and GSDMD cleavage
in non-canonical pyroptosis [123]. The main

function of GPX4 is to suppress membrane LPO.
Structural and biochemical studies have shown that
GPX4 interacts with the polar head of phospholipids
to inhibit lipid peroxidation, thereby protecting
membrane integrity. It should be noted that
an important inhibitor of GPX4 is the phospholipid
scramblase TMEMI16A, which promotes transition
of phosphatidylserine from the inner to the outer
monolayer of the biomembrane during programmed
cell death. It has been found that TMEM16A, interacting
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with GPX4, causes its ubiquitination and degradation.
However, disruption of the TMEMI16A-GPX4
interaction eliminates GPX4 inhibition [132].

According to recent data, GPX4 dysfunction
can cause various types of programmed cell death:
apoptosis of nerve cells and spermatozoa, necroptosis
of erythrocyte precursors, pyroptosis of infected
myeloid cells, ferroptosis of T and B cells and kidney
and pancreatic cells [133], as well as parthanatosis
(a type of cell death accompanied by oxidative
DNA damage) during hypoxia, oxidative stress,
hypoglycemia and inflammation accompanying stroke
and neurodegenerative diseases [133—135].

However, the most significant factor in the reduction
of GPX4 activity is selenium deficiency, since
a decrease in selenium levels causes inefficient
translation of the GPX4 Sec UGA codon and premature
termination of translation [136-138].

5. THE ROLE OF SELENIUM
IN CELL REDOX HOMEOSTASIS

Redox homeostasis in the cell depends
on the production of ROS and the work
of the antioxidant defense system. ROS are produced
in cells under aerobic conditions; they are involved
in cell proliferation, differentiation, apoptosis and
other physiological processes. The most important
antioxidant enzymes are selenium-dependent
GPX and TRXR. The main function of GPX consists
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in neutralization of ROS (superoxide anions,
hydrogen peroxide and hydroxyl radicals) and
regulation of redox homeostasis in the cell [139-142].
GPX1, one of the important antioxidant enzymes
in the body, is involved in the regulation
of the NRF2/ARE signaling pathway; this enzyme
can reduce accumulation of pro-inflammatory factors and
increase the antioxidant defense of the body [142—-144].

Studies have shown that selenium-containing
dietary supplements can increase the activity
of antioxidant enzymes, reduce malondialdehyde (MDA)
levels, and reduce DNA damage and cell apoptosis
caused by oxidative stress [139, 142]. However,
it was previously reported that selenium deficiency
serves as a risk factor for increased apoptosis
through a simultaneous increase in the level
of caspase-2, -3, -7, -8, and -9 mRNA and a decrease
in the activity of the main cytoprotective and
antioxidant enzymes (SOD, CAT, GPX, GST, and GR).
In addition, selenium-dependent enzymes are involved
in the regulation of redox-sensitive components
in the signaling cascades of inflammation and
cell death (MYDS88, ASKI, IKKa/p, NF-kB, AP-1,
caspase-3, -8, -9) [145], and also increase the expression
of DNA methyltransferase 1 DNMT1 and block
oxidative DNA damage [146].

During oxidative stress, NRF2 dissociates from
the Keap1 protein, enters the nucleus and binds to AREs,
activating the NRF2/ARE pathway and enhancing
expression of cytoprotective genes, including
the selenium-dependent enzymes GPX and TRXR
(see sections 3.4-3.7). Selenium-containing proteins and
enzymes help reduce the expression of inflammatory
factors, reduce the level of phosphorylation
of IkK, IkBa, and NF-kB P65, inhibit the production
of the pro-inflammatory factor NO and attenuate
the pro-inflammatory response caused by oxidative
stress. The role of selenium and selenoenzymes
in the redox regulation of inflammation and pyroptosis
is schematically shown in Figures 5 and 6.

In a large-scale study performed almost
30 years ago, the blood concentrations of selenium
ranged from 39.37 pg/l to 196.85 pg/l were considered
as normal [147]. According to recent data,
the normal range of selenium in the blood for adults
is 70-130 pg/l, and the daily selenium intake threshold
should not exceed 400 pg, since high doses of selenium
can be toxic [148].

It was reported in [149] that a suboptimal selenium
concentration in the blood of 0.86 uM (68 pg/l) or less
significantly changed the expression of more
than two hundred and fifty genes compared with
the optimal selenium concentration in the blood
of 1.43 uM or 113 pg/l.

Thus, the concentration of selenium in the blood
serum can be considered as a marker for determining
both the selenium status and the redox status
of the whole body [150, 151]. In this regard, an adequate

supply of selenium (the optimal selenium concentration
in the blood is 1.43 uM or 113 pg/l) is necessary
not only for the full functioning of the antioxidant
system, but also as an important indicator of the body's
anti-inflammatory defense. At the same time, selenium
deficiency and/or a selenium concentration in the blood
of 0.86 uM (68 pg/l) or less can be used to assess
the risk of inflammatory processes [142, 152—160].

CONCLUSIONS

Various molecular structures of endogenous and
exogenous origin (DAMPs, PAMPs, and LAMPs)
initiate inflammatory signaling cascades in the cell,
inflammasome assembly, caspase-1 activation and
the formation of GSDM pores, through which mature
interleukins IL-1f and IL-18, and also potassium ions
leave the cell. The large number of GSDM pores,
loss of membrane potential and cell swelling cause
PM ruptures. These events about 20 years ago were
called pyroptosis. It is now known that by the time
the PM ruptures, the cell is already dead, since
pyroptosis damages all intracellular structures (nucleus,
mitochondria, ER, lysosomes, and Golgi complex).
Mitochondria play the central role in triggering
pyroptosis. The NLRP3 inflammasome assembly
occurs on the outer mitochondrial membrane followed
by subsequent activation of caspase-1 and gasdermins.
In addition, mitochondrial damage is associated
with the production of mtROS, causing oxidative
stress in the cell and oxidation of redox-sensitive
molecules. These molecules include NEK7, NLRP3,
NF-kB, NRF2, Keap1, p62, TXNIP, Ninj1, TMEM16,
caspase-1, and GSDMs. Redox regulation of these
structures requires selenium-dependent enzymes
GPX and TRXR [142]. Selenocysteine is a proteinogenic
acid encoded by the UGA codon. In the case of selenium
deficiency, the synthesis of selenoproteins at this codon
is terminated and UGA acts as a stop codon [136—138].
In this regard, we propose to consider selenium
as an important indicator of redox homeostasis
in the cell, and its suboptimal concentration in the blood
(0.86 uM or 68 pg/l or less) and/or selenium deficiency
conditions to be used to assess the risk of developing
inflammatory processes [142, 152—-160].
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PEJOKC-PETVJIAIIASI NLRP3-OITOCPEJTJOBAHHOI'O BOCITAJIEHUA U ITUPOIITO3A
H.IO. Pyceyxaa*, H.IO. Jlozunosa, E.II. Ilokposckas, FO.C. Yecoeckux, JI.LE. Tumosa

CapartoBckuii TOCYIapCTBEHHBIH MEAUIIMHCKIH yHIBEepcuTeT M. B.W. Pa3zymoBckoro,
410012, Caparos, yi. b. Kazaubst, 112; *351. nodra: meduniv@sgmu.ru

[TpencraBieHbl COBpEMEHHbIE JAHHBIE O MEXaHW3Max aKTHBALMK U PeIOKC-peryssinni nHdaamMmmacomsl NLRP3
W TacZEPMUHOB, a TAK)XE O POJIM CeJIeHa B ATUX IpoleccaX. AKTHBAIM MH(IAMMACOMBI U ITHUPOIITO3 MPEACTABISIOT
c000i1 3BONIONMOHHO KOHCEPBaTHUBHBIM MEXaHU3M 3aIlUTHl OpPraHWU3Ma OT MATOTCHOB, ONMHCAHHBIA IS Pa3IMUHBIX
TUINIOB KJIETOK M TKaHe# (MakpodaroB M MOHOLIMTOB, KJIETOK MHUKDPOIJIMH M acCTPOLHUTOB, IIOAOLUTOB H
MApCHXMMATO3HBIX KJIETOK MOYEK, TKAaHEH NEpHOAOHTAa, OCTEOKJIACTOB M OCTEOOJACTOB, a TAKXKE KICTOK OPraHOB
MUIIEBAPUTENILHON W yPOTCHUTAIBHOW CHCTEM W Jp.). B 3aBUCHMOCTH OT OCOOEHHOCTEH pPemoKC-perymsiuu
yuacTHukoB NLRP3-Bocmanenus u mupomnTo3a MOXHO YCIOBHO paszienuTh Ha 2 rpynmbsl. [IpencraBurtenu
MEepBOI T'pyNnbl ONOKMPYIOT MHUTOXOHAPHANBHYIO IIETb IEPEHOCAa 3JJIEKTPOHOB, CHOCOOCTBYIOT 0OpPa30BaHHIO
aKTUBHBIX ()OpPM KHCIIOpOJa W PAa3BUTHIO OKHCIHMTEIbHOTrO crpecca. K 3Toi rpymrme OTHOCATCS TpaH3UMBI,
MUTOXOHAPHAIGHBI aHTUBUPYCHBIN CHUTHaJbHBIN Oemok MAVS wm gapyrume. Bropyro rpymmy o0pasyroT Oenok,
B3anMozeicTBytommii ¢ tropenokcmHoM (TXNIP), smepusri dakxtop-2 spurpongroro mnpoucxoxaeHus (NRF2),
Kelch-onoousiii 6emok 1, accommupoBanubii ¢ ECH, (Keapl), munmkypun (Ninjl), ckpamb6naza (TMEMI16),
perynsitopHas nporenHknHaza uH(uammacombl NLRP3 (NEK7), kacnaza-1, racnepmunsl GSDM B, D u apyrue,
MMEIOIINE PEAOKC-UyBCTBUTEIbHBIC JOMEHBI W/MIIM OCTaTKW IMCTEHHA, KOTOPBIE TOJBEPraloTCs peNOKC-PETYISINY,
[Ty TaTHOHWIINPOBAHNIO/ACTITY TATHOHWIINPOBAHUIO WJIM WHBIM BHIaM peryasnud. [lomaBieHHe OKHCIHUTENHHOTO
cTpecca W penokc-perynsnuss ydactHukoB NLRP3-pocmaneHuss M nupomnro3a 3aBUCUT OT AKTUBHOCTH
AHTHOKCHJIAHTHBIX (epMeHTOB TiryTatuoHmnepokcuaassl (GPX) m tnopemoxcuupenykrazsl (TRXR), comepskammx
B aKTUBHOM IleHTpe ocTartok ceneHomuctenHa Sec. Okcrpeccuss GPX um TRXR perymupyercs NRF2 u 3aBucut
OT KOHIIEHTpallMu CcejieHa B KpoBU. Bmecte ¢ Tem, neduuur ceneHa BbI3bIBaeT HEIPPEKTUBHYIO TPAHCIISLHUIO
kogoHa Sec UGA, TepMUHAIMIO TPaHCIALMNH, a, CIEJ0BAaTEIbHO, CHHTE3 HEAKTUBHOIO CEICHONPOTEUHA, YTO MOXKET
BBI3BAaTh PA3JIMYHBIC THUIIBI 3allpOrPaMMHPOBAHHON THMOENN KIIETOK: alolTO3 HEPBHBIX KIETOK M CIIEPMaTa3onioB,
HEKPOIITO3 MPEALIECTBCHHUKOB PUTPOLMTOB, MHPONTO3 MH(UIIMPOBAHHBIX KJIETOK MHEJIOWAHOTO PAna, (HepponTos
T- u B-muMdommToB, KIETOK MOYEK U MOHKETYIOTHOH Kenesbl. KpoMe Toro, cybonTuManbHast KOHIIEHTPAIUS CeJIeHa
B kpoBH (0,86 MKM unu 68 MKT/JT ¥ MEHBIIIC) 3HAYUTEIHHO U3MEHSET SKCIPECCHIO Oolee IBYXCOT MATHASCATH TeHOB
10 CPaBHEHHMIO C ONITUMAJIbHOM KoHIeHTpanueii cenena (1,43 MxM wim 113 Mkr/im). Ha ocHOBaHWY BBILIENU3II0KEHHOTO
MBI Ipe/iTaraeéM paccMaTpHUBaTh KOHIIEHTPALIMIO CEJICHA B KPOBH KaK BaXKHBIN [TOKa3aTeNlb PEAOKC-TOMEOCTa3a B KIIETKE,
a ero cyOONnTHMalbHYIO0 KOHIICHTPAIMIO B KPOBHU (MJIM CEJCHOAC(UIMTHBIE COCTOSHHUS) HCIIONb30BATh AJISI OLCHKH
pHCKa pa3BUTHS BOCHAIUTENBHBIX ITPOLIECCOB.

THonuwiii mexcm cmamuvu Ha PyCcKOM A3bIKe 0ocmynel Ha caume xcypuana (http://pbmc.ibmc.msk.ru).
KumoueBbie ciaoBa: uadrammacoma NLRP3; mupontos; peiokc-peryJisiiyist; THOPEIOKCHH; [IyTaTHOHIIEPOKCHIA3a; CeleH
®unaHcupoBanue. J[aHHas paboTa He UMella BHEIIHEro (HHHAHCHPOBAHUSL.

Iocrynuna B penakuuto: 04.04.2023; mocne nopadotku: 07.10.2023; npunsrta k nedarn: 23.10.2023.
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