
INTRODUCTION

Since ancient times, people have used plants 
and their derivatives for various purposes: 
for cooking, making clothes and household items, 
as well as for treating various diseases, including
infectious diseases. Perhaps the most striking example
of the “pharmaceutical history” of plants is quinine, 
an alkaloid from the bark of the cinchona tree
(Cinchona spp.), which is widely known as an effective
antimalarial agent, but it was also used to treat other
infectious diseases such as pneumonia, typhoid fever,
and even common nasopharyngeal infections [1]. 
The history of two other alkaloids is no less bright and
dramatic: morphine from the opium poppy (Papaver
somniferum) was widely used in anesthesiology, 
while atropine from belladonna (Atropa belladonna L.)
found greatest use in ophthalmology. 

In the modern world, the above-mentioned
compounds have largely lost their importance, 
giving way to more advanced drugs. However, 
other phytoderivatives are still used in folk medicine,
often as adjuncts in addition to routine therapy.
Moreover, some commercial drugs used in modern
clinical practice have their origins in traditional
medicine of the past. One classic example is aspirin, 
a derivative of salicylic acid found in significant
quantities in willow bark extracts, which were used 
in ancient times as an antipyretic and antifever 
agent [2, 3]. Well-known compounds derived from
plants that exhibit biological activity, particularly
antimicrobial properties, include, for example, allicin

(an organosulfur compound from Allium spp. 
of the onion subfamily), piperine (an alkaloid from 
the genus Piper L. of the pepper family), curcumin
(Curcuma longa of the ginger family), eugenol, 
the main component of clove oil (Syzygium aromaticum,
or Eugenia caryophillis), chlorogenic acid from 
the fruits of the coffee tree (Coffea L.), etc. [4, 5]. 

The therapeutic effect of the components of plant
raw materials is largely due to a mixture of compounds
known as secondary plant metabolites (SMPs). 
SMPs are substances of varying chemical structure and
properties that are not necessary for the growth and
functioning of plants; they play an important role 
in interspecific competition or protection from
herbivores and pathogenic microorganisms. To date,
about two hundred thousand SMPs have been
identified, and there are reasons to believe that this
number may be much higher. Many compounds still
escape the attention of researchers due to their very low
content or short lifetime in changing environmental
conditions [6–8].

The search for new SMPs that are promising 
in terms of biological activity and, in particular,
antimicrobial potential, has recently acquired extreme
relevance due to the significant spread of drug
resistance of pathogenic microorganisms to routinely
used antibacterial drugs (ABDs) [5, 9]. It is particularly
interesting to explore the possibility of using SMPs 
as both independent medicinal substances and adjuvants
that can potentiate the effect of antibiotics or improve
the condition of patients. 
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1. SMP CLASSIFICATION 

There is currently no unified approach to the SMP
classification. The principles of SMP classification
changed as these metabolites were studied and new data
accumulated. The most ancient method of classification
is based on certain properties of SMPs: for example,
essential oils are a group of volatile liquids with 
a strong odor, alkaloids are metabolites with alkaline
properties, saponins are substances that form foam
(from Saponaria — soapwort), etc. From the point 
of view of applied research, the most popular
approaches to classification are based on chemical
structure and/or methods of biosynthesis of compounds
(Fig. 1) [6–8, 10, 11]. Typically, three large groups 
are distinguished: terpenoids, phenolic derivatives, 
and alkaloids. Together, these groups account 
for about 90% of all SMPs [11]. Minor groups 
include saponins, lipids, essential oils, tannins, 
and others [9, 10]. A classification method based 
on the functions of secondary metabolites in the intact
plant is also considered. Among the functions of SMPs,
one can distinguish protective, attractive and others. 
In general, the classification of phytoderivatives 
is complex and is still in its infancy due to their
abundance and diversity

2. ANTIMICROBIAL POTENTIAL OF SMPs: 
NEW PLAYERS VERSUS OLD TARGETS?

Modern scientific literature contains many 
reports about the antimicrobial activity of SMPs. 
Some examples are given in Table 1.

SMPs employ various mechanisms for their 
action on microbial cells (Fig. 2). For different classes
of phytometabolites, disruption of the structure and
functions of the bacterial cytoplasmic membrane 

was noted. These include impaired functioning 
of efflux systems, complex formation with 
membrane proteins, interruption of synthesis and
functioning of DNA or RNA, and prevention 
of enzyme synthesis; induction of coagulation 
of cytoplasmic components and interruption of cellular
communication (“quorum sensing”) [9, 46, 47]. 
For example, alkaloids interact with nucleic acids,
disrupting transcription and replication processes, 
and also inhibit cell division [48, 49]. One example 
is berberine, a known phytochemical agent 
of the Berberis spp. alkaloid group; interacting with 
S. agalactiae streptococci, it can seriously damage 
the bacterial cell membrane structure and inhibit
protein and DNA synthesis [22]. The antimicrobial
activity of flavonoids is also associated with the effect
on the microbial cell membrane; these molecules
interact with membrane proteins on the bacterial cell
wall thus increasing membrane permeability [49, 50].
The bactericidal effect of terpenes and terpenoids, 
as well as essential oils, is also based on the interaction
with membrane proteins [49, 51]. For example,
carvacrol and thymol, two of the most studied
monoterpenes, contained in common thyme 
(Thymus vulgaris), are integrated into the membrane
due to their hydrophobic nature, impair its normal
functioning [34] and stimulate release of cellular
contents as it was demonstrated using SEM in a model
interaction with the E. coli lipid bilayer [52]. 
The main targets of plant quinones in microbial cells
are presumably cell surface adhesins, cell wall
polypeptides, and membrane-bound enzymes present
on the surface [49, 53].

SMPs can also influence key events 
of the pathogenic process. For example, treatment 
with subinhibitory concentrations of thymol 
or eugenol reduced production of α-hemolysin 
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Figure 1. An example of SMP classification based on chemical structures or ways of plant metabolite biosynthesis. 
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Table 1. The inhibitory effects of some SMPs on viability of clinically important human pathogens 

*MIC is minimal inhibitory concentration expressed in μg/ml (except other units are shown in parenthesis) 

Compound Chemical
class

The most
known

plant source 
Mechanism of action Antibacterial activity (MIC*, μg/ml)

Piperine

Alkaloids 

Piper
nigrum

Prevention of biofilm
formation; impaired efflux
pump functioning 

Staphylococcus aureus (>1000) [12], (100) [13]; 
Pseudomonas aeruginosa [14]; 
Mycobacterium tuberculosis (50–100) [15]

Berberine Berberis
vulgaris

Impaired DNA synthesis;
membrane damage;
inhibition of protein
synthesis; inhibition 
of biofilm formation;
impaired utilization 
of reactive oxygen species 

S. aureus (MRSA) (256) [16], (64–256) [17, 18]; 
Streptococcus pyogenes (80) [19]; 
Salmonella typhimurium (900) [20]; 
P. aeruginosa (4 mM) [21]; 
Streptococcus agalactiae (0.78) [22]

Eugenol 

Phenols

Syzygium
aromaticum

Inhibition of superoxide
dismutase; impaired
membrane permeability;
impaired efflux pump
functioning; inhibition 
of biofilm formation 

Shigella flexneri (500) [23]; 
Shigella sonnei (500) [24]; 
S. aureus (≥1024) [25]; 
Helicobacter pylori (2) [26]; 
Salmonella typhi [27]; 
Escherichia coli (>2000) [28]; 
P. aeruginosa (150–300) [29]

Chlorogenic acid Coffea L.
Inhibition of biofilm
formation, impaired
membrane functioning 

Yersinia enterocolitica [30]; 
Salmonella enteritidis (2 mM) [31]; 
S. aureus (40), Streptococcus pneumoniae (20),
Bacillus subtilis (40), E. coli (80), Shigella
dysenteriae (20), S. typhimurium (40) [32]

Carvacrol Origanum
vulgare

Inhibition of biofilm
formation; impaired 
efflux pump functioning,
impaired membrane
functioning; interference
with QS-processes 

E. coli (100) [28], (8) [33]; 
S. aureus, P. aeruginosa (7) [33];
Salmonella enterica [34]

Curcumin Curcuma
longa

Inhibition of biofilm 
and capsule formation;
impaired efflux pump
functioning; impaired
bacterial adhesion;
influence on gene
expression

Clostridium difficile (4-32) [35]; 
Klebsiella pneumoniae [36]; 
P. aeruginosa (25–100) [37]

Resveratrol Vitis 
vinifera

Inhibition of biofilm
formation; impaired 
efflux pump functioning;
interference 
with QS-processes

E. coli (1300) [28], (456) [38]; 
Campilobacter spp. (313) [39]; 
S. aureus [40]

Allicin Sulfoxides Allium
sativum

Inhibition of DNA gyrase;
inhibition of alpha-toxin
synthesis (S. aureus);
inhibition of biofilm
formation; interference
with QS-processes

S. aureus (32-64) [41]; 
P. aeruginosa [42]; 
Acinetobacter baumannii (16), K. pneumoniae (128),
S. pneumoniae (32, 64) [43]

Quercetin Flavonoids Quercus
robur

Cell wall and cell
membrane damage;
decreased ATPase activity;
inhibition of biofilm
formation; interference
with QS-processes

S. aureus (75), E. coli (300), H. pylori (100–200) [44];
S. typhimurium (250) [45]



and staphylococcal enterotoxins A and B 
in susceptible and methicillin-resistant (MRSA)
isolates of Staphylococcus aureus [54, 55]. Different
studies have obtained similar results demonstrating 
a decrease or even inhibition of the production 
of staphylococcal α-hemolysin after treatment with
allicin [41], the alkaloid capsaicin from hot peppers 
of the genus Capsicum L. [56], the flavonoids farrerol
(Rhododendron L.) [57] or gallate epicatechin [58].
Allicin, the main biologically active component 
of garlic, has been shown to effectively neutralize 
the toxin pneumolysin, one of the key virulence factors
produced by S. pneumoniae [59].

A separate issue is the SMP ability to inhibit 
growth of drug-resistant bacterial strains (i.e. the strains
with already formed resistance to routinely used
antibiotics). A bacterial cell has many ways to protect
itself against antibacterial agents. These include
modification of molecular targets of the antibiotic
action, active removal of antibacterial preparations
from the cell (efflux) or their enzymatic inactivation, 
as well as formation of stable microbial communities,
biofilms, which impede contacts of the antibacterial
agent with the bacterial cell. Certain evidence exists
that some phytocompounds are able to overcome
pathogen defense, for example, by “turning off” 
the efflux pumps. It has been reported that extracts 
of many medicinal plants, possessing antimicrobial
potential, contain membrane pump inhibitors, 
including piperine, the flavonoid quercetin, 

resveratrol, etc. [60, 61]. These compounds can block 
a channel, involved in the process of substrate 
removal. For example, totarol, a diterpene from
Podocarpus totara, acts as a competitive inhibitor 
of the S. aureus NorA pump [62, 63] (Fig. 3). 
In addition, polyphenol molecules can bind 
to the structure-forming proteins of the channel,
causing conformational changes and blocking 
its operation [64]. 

Many studies have been undertaken to investigate
the possible impact of SMPs on bacterial biofilms:
complex structures that promote survival 
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Figure 2. Possible ways of SMP action on the microbial cells. 

Figure 3. Inhibition of ciprofloxacin efflux via 
the S. aureus NorA pump



of microorganisms in unfavorable environmental
conditions (including the antibacterial pressure). 
A number of phytometabolites have been identified 
that can control biofilm formation. For example,
phenylpropanoids such as eugenol and cinnamaldehyde,
terpenoids (thymol and carvacrol), betulinic and ursolic
acids, alkaloids such as berberine, indole or chelerythrine
found in celandine (Chelidonium majus), and other
plant-derived compounds exhibit significant activity
against biofilms formed by P. aeruginosa [65–69], 
K. pneumoniae [70, 71] or S. aureus [72–74], 
both growing and already formed. It is suggested 
that the SMP action is realized in various ways, 
such as disruption of cell coaggregation, inhibition 
of their motility or inactivation of bacterial 
adhesins [28, 75], as well as disruption of intercellular
communications (“quorum sensing”). The latter is worth
to consider in more details. Quorum sensing (QS) 
is a complex system that regulates intercellular
communication in microbial populations, and the ability
to interfere with QS (and thus interrupting bacterial
communication) would open new therapeutic
prospects. A number of SMPs have been identified 
that reduce the expression of genes mediating QS 
in P. aeruginosa, including the organosulfur ajoene
from garlic or the isothiocyanate iberine from
horseradish [76, 77], sulforaphane found in cabbage
(Brassica oleracea), [78], flavonoids naringenin,
taxifolin [79], and quercetin [80]. It has also been
shown that caffeine exhibits anti-QS properties 
against P. aeruginosa by inhibiting production 
of N-acyl homoserine lactone (AHL) signaling
molecules [81]. Similar observations have been also
reported for other pathogens [82].

3. STAPHYLOCOCCUS AUREUS 
IN A JAR WITH GARLIC: DEVELOPMENT 
OF DRUG RESISTANCE TO SMP

Perhaps the most interesting question is whether
and how quickly bacterial resistance to plant-derived
antibacterials will develop?

As in the case of microbial antibiotics, some
microorganisms may demonstrate insensitivity 
to phytomedicines or their components, possibly being
naturally resistant to them. For example the authors [83]
demonstrated that extracts of Terminalia arjuna
and Eucalyptus globulus plants suppressed growth 
of S. aureus, E. faecalis, and S. mutans
but not E. coli, K. pneumoniae, P. aeruginosa, and 
S typhimurium. Moreover, using E. coli as an example,
it was demonstrated that the minimum inhibitory
concentration of phytoextracts of plants such as
Acacia nilotica, Syzygium aromaticum or Cinnamomum
zeylanicum against this bacterium was significantly
higher in the case of hospital-acquired multi-resistant
strains of E. coli than in community-acquired ones.
Some bacterial strains (e.g. Staphylococcus spp.,
Enterobacter cloacae, Bacillus spp. or Erwinia spp.)

have been isolated during microbiological studies 
of plant products such as garlic, onion, ginger,
rosemary or mustard powder, which are supposed 
to have strong antibacterial properties [84, 85]. 

The details of the process by which microorganisms
develop resistance to SMPs have so far been studied
sporadically. There is a viewpoint that the development
of resistance to phytomedicines occurs slowly, 
or at least the level of resistance to SMPs 
is still low [47]. However, taking into consideration 
the fact that many plant components are currently
actively used in food products, in “non-traditional” or
alternative medicine, as well as in the production 
of cosmetics, it can be assumed that the spread 
of strains resistant to “medicines of plant origin”, 
as in the case of traditional antibiotics of microbial
origin, is only a matter of time.

There is, however, another side to the coin. 
It is known that the positive therapeutic effect 
of crude plant extracts, used for centuries 
in folk medicine, is often determined by the combined
or synergistic effects of many SMPs aimed 
at various targets in the bacterial cell rather than 
by action of one biologically active compound. 
This means that one would expect that 
the development of bacterial resistance to such
synergistic compositions would occur more slowly 
than to individual compounds [49].

4. ALONE IN THE FIELD IS NOT A WARRIOR?
SYNERGISTIC INTERACTION OF METABOLITES
BETWEEN THEM OR WITH TRADITIONAL ABPs

As mentioned in the previous section, a single
phytocompound that exhibits a high level of bactericidal
activity has the potential to stimulate the development
of drug resistance in microorganisms. However, 
in a mixture (extract), SMPs can potentiate actions 
of each other thus enhancing the overall bioactivity 
of the phytomedicine [49, 86]. Indeed, it has been
repeatedly demonstrated that isolating individual
phytochemicals from a plant extract results in a loss or
reduction of the overall effect. One good example 
is the work [87], which compared the minimum
inhibitory concentration of one of the most 
popular dietary supplements — oregano essential oil
(from Origanum vulgare L.), and its two main
components — thymol and carvacrol, as well as their
mixtures for P. aeruginosa and S. aureus strains. 
The antimicrobial properties of the oil, as well 
as the additive antimicrobial effect of the mixture 
of carvacrol and thymol, were higher than for either 
of these two components used separately [87]. 
Also, a potentiation effect may occur when SMPs 
are combined with routinely used antibiotics [88, 89].
Table 2 shows examples of synergistic combinations 
of SMPs and antibiotics, illustrating a certain 
decrease in the inhibitory concentrations as compared
to antibiotics without phytometabolites.
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Mechanisms of the synergistic interaction 
between SMPs and antibiotics are diverse, and their
study continues. It is clear that knowledge of these
mechanisms would culminate in developments 
of new ways to fight against rapidly growing
populations of multidrug-resistant pathogens, thereby
reducing the overuse of antibiotics and their side effects. 

5. “PHYTOANTIBIOTICS”: A STEP INTO 
THE MEDICINE OF THE FUTURE 
OR AN ETERNAL BENCH?

For centuries, people have used the healing 
power of plants for medicinal purposes. Components
extractable from plants by using extraction, infusion,
distillation, digestion, and other methods available 
in ancient times always represented a complex 
mixture of many compounds, and it was impossible 
to control their ratios. The therapeutic effect of such
drugs was weak and often unpredictable, depending 
on the synergistic interaction of individual components
and the presence of some substances in extremely small
quantities in these mixtures [96]. 

Less than a century ago, people received serious
support in the war against infectious diseases 
in the form of highly effective antibiotics of microbial
origin. However, this powerful weapon contained 
“a built-in mechanism of self-destruction”: increased
drug resistance in bacteria led to a crisis in the treatment
of infectious diseases after just a few decades of using
antibacterial drugs. 

In the “post-antibiotic era,” it seems logical 
to return to the centuries-old experience of using 
an endless supply of plant natural resources. 
The 21st century science is offering new approaches 
to detect and identify even ultra-small amounts of SMPs
produced by plants. Modern instruments make 
it possible not only to detect a new compound and
elucidate its structure, but also to accumulate 
the substance in the amounts necessary to determine 

the clinical effect [97–99]. The search for effective
approaches to the production of drugs based on plant
raw materials includes two pathways. The first involves
the development of high-tech methods for extracting
SMPs from plant materials [100]. In contrast 
to traditional resource- and energy-consuming
techniques that require time and significant consumption
of solvents, modern innovative technologies 
are based on extraction with supercritical fluids [101]
or membrane extraction [102], the use of microwave or
ultrasonic energy [103], separation in a high-voltage
electric discharge or pulsed electric field [100, 104].
Another rapidly developing area includes
biotechnological methods that make it possible 
to modify a plant to produce a large number of SMPs 
of interest with potential biological activity. 
This creates conditions to produce high quantities 
of compounds that normally exist in plants 
in low and very low concentrations. Currently, plant
cells, tissues, and organs are grown in specially 
created bioreactors, known as “green factories”. Such
technologies for growing plants in vitro are considered
as cost-effective and environmentally friendly
alternatives to collecting wild biomass for processing
and production of phytomedicines [100, 105, 106]. 
An absolute advantage is the complete independence 
of the bioprocess from seasonal and geographical
conditions [97].

Isolation, purification and careful characterization
of potential bioactive metabolites from crude plant
extracts are important steps in this process. Modern
developments in analytical chemistry, such as 
mass spectrometry complemented by gas/liquid
chromatography or capillary electrophoresis and
nuclear magnetic resonance (NMR) spectroscopy, 
have led to the development of highly efficient tools 
for analyzing the plant metabolome [98, 107, 108]. 
The final step is to screen the bioactivity of the isolated
and characterized compounds in cell lines or animal
models to evaluate the pharmacological potential 
of the candidate compounds. 
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Table 2. Examples illustrating synergistic interactions between SMPs and ABDs 

SMP ABD MIC (ABD), μg/ml MIC decrease Pathogen

Piperine
Tetracycline 200 4-8-fold E. coli (MDR) [90]

Gentamycin 32 4-fold S. aureus (MRSA) [13]

Eugenol Tetracycline 128 4-fold S. aureus [91]

Quercetin
Amoxicillin 16 4-fold Amoxicillin-resistant strain of S. epidermidis [92]

Meropenem 128 4-fold Carbapenem-resistant strains of P. aeruginosa and
A. baumannii [93]

Rifampicin >256 4-fold S. aureus [94]

Carvacrol
Tetracycline 256 4-fold Enterococcus faecium [91]

Tetracycline 128 2-fold S. aureus [91]

Allicin Levofloxacin,
ceftriaxone 256 2-fold Shigella spp. [95]



Finally, another important area of research 
is the structural modification of natural phytocompounds
with potential biological activity to develop 
new compounds with desired properties. Chemical
modification allows not only to increase the activity 
of natural SMPs, but also to improve their selectivity,
stability or solubility [109].

CONCLUSIONS

The growing resistance of bacterial pathogens 
to routinely used antibiotics underlies importance 
of the search for new effective antibacterial agents.
Over the past two decades, it has become clear 
that overcoming antibiotic resistance through 
the development of increasingly powerful antibiotics
based on already known classes of chemical
compounds can results only in limited and temporary
success; moreover it can contribute to the further
development of even higher bacterial resistance. In this
context, the plant world appears to be an endless source
of new potential inhibitory agents that is unlikely 
to be rapidly exhausted. Plant raw materials 
are cheap and available; extracts or even individual
phytocompounds often exhibit broad spectrum activity
against pathogenic bacterial species; they rarely have
serious side effects in humans, and sometimes exhibit
immunomodulatory properties. The variety of chemical
structures that can be obtained from plants can satisfy
numerous requests for both new mechanisms 
of antimicrobial action and new targets inside 
the bacterial cell, and the rapid development of modern
biotechnologies opens the way to get bioactive
compounds in environmentally friendly and low-toxic
ways. Advances in bioscreening make it possible 
to detect pharmacologically attractive phytometabolites
even at extremely low concentrations, and modern
methods of computer modeling and organic synthesis
promote optimization of the chemical structure 
of potentially promising compounds to improve their
properties and reduce toxicity.

The medical practice of the present and future
needs new effective antibacterial drugs, and the plant
kingdom is basically ready to satisfy these needs.
Various combinations of plant-derived metabolites 
with routinely used antibiotics are being developed and
this appear to be more optimal than individual SMPs,
even with a high level of biological activity. 
Indeed, it has been repeatedly shown that 
combining antibiotics with SMPs or plant extracts 
leads to enhanced pharmacological properties with
simultaneous reduction of probability of dose-related
toxicity. It can be assumed that the number of such
studies will only increase in the near future.
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ВТОРИЧНЫЕ МЕТАБОЛИТЫ РАСТЕНИЙ И ИХ ВОЗМОЖНАЯ РОЛЬ 
В “ЭПОХУ СУПЕРБАКТЕРИЙ”
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Бактериальные инфекции являются серьёзной причиной высокой заболеваемости и смертности 
во всём мире. За последние десятилетия лекарственная устойчивость бактериальных патогенов неуклонно
возрастает, в то время как скорость разработки новых эффективных антибактериальных препаратов остаётся
стабильно невысокой. Царство растений иногда называют бездонным колодцем для поиска новых средств
противомикробной терапии. Это связано с тем, что растения легкодоступны и дёшевы в переработке, 
а экстракты и компоненты растительного происхождения часто демонстрируют высокий уровень
биологической активности при незначительных побочных эффектах. Многообразие полученных 
из растительного сырья соединений способно обеспечить весьма широкий выбор разнообразных химических
структур для взаимодействия с различными мишенями внутри бактериальной клетки, а стремительное развитие
современных биотехнологических инструментов открывает путь к направленному получению биоактивных
компонентов с желаемыми свойствами. Задачей данного обзора стал ответ на вопрос, имеют ли шанс
противомикробные препараты растительного происхождения сыграть роль панацеи в борьбе с инфекционными
заболеваниями в “эпоху пост-антибиотиков”.

Полный текст статьи на русском языке доступен на сайте журнала (http://pbmc.ibmc.msk.ru).
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бактериальные патогены; антимикробные свойства
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