
INTRODUCTION

Isatin (indoldione-2,3) is an endogenous regulator
found in the body of mammals and humans and
possessing a wide spectrum of biological activity [1–4].
A number of isatin-binding proteins play an important
role in the development of neurodegenerative pathology
(Alzheimer’s and Parkinson’s diseases) [3, 5]. Studies
performed using toxin based models of Parkinsonism
induced by administration of the neurotoxins 
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)
to mice and rotenone to rats showed that isatin 
had a neuroprotective effect and a significant impact 
on the profile of isatin-binding proteins [5–8]. 
The Parkinsonian syndrome (PS), caused by both
neurotoxins, is characterized by significant weight loss
in animals, their death, oligokinesia, rigidity, and postural
instability. However, in contrast to MPTP-induced PS,
in the case of rotenone-induced PS, the pool 
of isatin-binding proteins common to control and PS rats
significantly exceeded the pool of proteins common 
for both control mice and mice with MPTP-induced PS.
In other words, rotenone administration insignificantly
changed the pattern of isatin-binding proteins [9].
Comparison of the profiles of isatin-binding proteins
specific to rats with PS induced by each of these
neurotoxins revealed a complete absence of proteins
common to these two models, thus indicating

differences in the molecular mechanisms of the action
of rotenone and MPTP. A study of the quantitative
parameters of isatin-binding proteins in the case 
of the rotenone model of Parkinsonism showed that,
despite the absence of changes in the spectrum 
of these proteins compared to the control, the rotenone
administration affected their relative content [10]. 
An increase in the relative content of 65 proteins 
and a decrease in the relative content of 21 proteins
were detected.

The aim of this study was to compare 
the physiological reactions and quantitative changes 
in the proteomic profile of isatin-binding proteins 
in the brain of rats immediately after a course 
of rotenone administration and 5 days after the last
administration of this neurotoxin.

MATERIALS AND METHODS

Reagents

The following reagents were used in the study: 
Tris (hydroxymethyl)aminomethane, ammonium
bicarbonate, dithiothreitol, guanidine hydrochloride,
urea, sodium chloride, Triton X-100, 4-vinylpyridine,
Coomassie brilliant blue G-250 (Merck, USA); 
formic acid, sodium hydroxide (Acros 
Organics, USA), acetonitrile (Fisher Chemical, UK); 
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isopropanol, trifluoroacetic acid (Fluka, USA); 
Tris-(2-carboxyethyl)phosphine (Pierce, USA);
modified trypsin (mass spectrometry grade, 
Promega, USA). Other reagents of the highest purity
available were from local suppliers.

Experimental Animals

The study was performed on outbred albino rats
obtained from the Stolbovaya nursery of (the branch 
of the Scientific Center for Biomedical Technologies,
Russia). The animals were kept under standard
vivarium conditions with free access to food and water
under a twelve-hour light regime.

Modeling of Experimental Parkinsonism in Rats

Modeling of PS by means of systemic administration
of rotenone was carried out as described in [11].
Rotenone solution in Miglyol 840 was administered
intraperitoneally to rats at a daily dose of 2.75 mg/kg
for 7 days. Rotenone preparation for injections to rats
was described earlier [9]. Control animals received
intraperitoneal injections of saline daily (during 7 days)
in an equivalent volume of 0.2 ml per 100 g of animal
body weight.

Behavioral Tests

Behavioral tests in animals with experimental PS
were evaluated on day 12 of the experiment 
(5 days after the last administration of rotenone). 
These included “Open Field” and “Rotating Rod” tests,
performed in details as described previously [9].

Statistical data processing was carried out 
using the Statistica v. 10.0 program. The normality 
of distribution was checked using the Shapiro-Wilk test,
followed by assessment of equality of variances 
using Levene's test. Since there was no normal
distribution in the experimental group, further
processing was carried out using the nonparametric
Mann-Whitney statistics method. Fisher's exact test
was used to evaluate categorical data in small groups.
The results in the tables are presented as mean ± error
of the mean (Mean ± SEM). Differences between groups
were considered as significant at p<0.05. Differences 
at 0.05<p<0.1 were considered a statistical trend.

Preparation of Lysates of Brain Homogenates

The animals were decapitated under light ether
anesthesia using a guillotine 5 days after the last
administration of rotenone and behavioral testings.
Brain tissue samples (cerebral hemispheres) were
homogenized using a Heidolph SilentCrusher
homogenizer (50,000 rpm) in 0.05 M potassium
phosphate buffer (pH 7.4) to obtain a final protein
concentration of 30 mg/ml. To assess relative
quantitative changes in the content of brain proteins 
in animals of different experimental groups, 
the same amount of total protein was used 

during sample preparation; it was controlled 
using the Bradford method [12]. After incubation 
in the presence of 3% Triton X-100 (4°C, 1 h), 
the lysates were diluted 3 times with the same buffer
and centrifuged for 30 min at 16,000 g to obtain 
a cleared supernatant.

Samples for mass spectrometric analysis (protein
extraction, alkylation and trypsinolysis) were prepared
as described previously [10].

The Mass Spectrometric Analysis

The mass spectrometric analysis was carried out
using the equipment of the Center of Collective Use
“Human Proteome” (IBMC) — the Ultimate 3000
RSLCnano highly efficient liquid-liquid separation
system for peptides (Thermo Scientific, USA) 
operated in the nanoflow mode of the Q-Exactive HFX
mass spectrometric detector (Thermo Scientific) 
as described previously [9].

Bioinformatics data processing was carried out
according to [9].

Each protein presented in the tables was identified
in at least three independent experiments.

RESULTS AND DISCUSSION

Delayed Effects of Rotenone on Behavioral 
Responses in Rats

Assessment of the level of oligokinesia in rats 
5 days after the last administration of rotenone 
in the “Open Field” test showed the persistence 
of motor disorders. For example, horizontal and 
vertical activity and the number of peeks into holes
remained reduced by 53%, 41%, and 61.4% (p<0.05),
respectively, as compared to the control group. 
The delayed effect of rotenone also manifested itself 
in motor deficits: the duration of retention of animals
on a rotating rod was reduced by 51% as compared 
to the control group (Table 1).

Delayed Effects of Rotenone on the Relative
Abundance of Rat Brain Proteins

Results of proteomic analysis have shown that 
5 days after the course of rotenone administration,
differences remained in the relative content 
of proteins belonging to different functional groups 
in the brain of PS rats as compared to the control group.
Comparing the proteomic data on the effect 
of rotenone immediately after the last administration
and 5 days later, one can note that after 5 days 
the changes in the relative content (versus control) 
of only six proteins persisted (Fig. 1). These 
included alpha-synuclein, glyceraldehyde-3-phosphate
dehydrogenase, amino acid transporter, subunits B and D1
of the V-type proton ATPase, 4 subunit 1 beta
subcomplex of NADH dehydrogenase of the electron
transport chain respiratory chain (Table S1,
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Supplementary Materials, and Supplementary Materials
to the article [10]). However, the quantitative values 
of this change at different stages of the experiment
differed significantly. For example, immediately after
the last administration of rotenone, the relative content
of alpha-synuclein demonstrated a 5.6-fold increase 
over the control values, while 5 days later 

the alpha-synuclein level was only 1.4 times higher
than in the control. For glyceraldehyde-3-phosphate
dehydrogenase, the increase in the relative content 
at these time intervals was 1.6 and 0.7 times,
respectively, for the NADH dehydrogenase subunit 
it was 2 and 1.3 times, and for the amino acid
transporter and for B and D1 subunits of V-type 
proton ATPase the increase was 9.2 and 0.5 times 
and 21.1 and 1.3 times, respectively (cf. Table S1 
of the Supplementary Materials [10] and this article). 
In other words, the number of proteins initially 
affected by the rotenone administration gradually
returned to control. At the same time, there differences
in the relative content of other proteins occurred. 
Table 2 shows data on changes in the relative content 
of proteins of different functional groups immediately
after the last injection of rotenone and after 5 days.
Interestingly, although these are different proteins, 
the number of proteins from certain functional groups
was basically the same. In both cases, the most
pronounced changes induced by rotenone were found 
in the functional groups of enzymes responsible 
for energy generation and carbohydrate metabolism,
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Figure 1. A Venn diagram comparing relative content 
of brain proteins (versus control) immediately after 
the course of rotenone administration and 5 days later. 

Table 2. Functional distribution of brain proteins quantitatively changed during the development of rotenone-induced PS

The “↑” sign indicates an increase in the amount of protein, and the “↓” sign indicates a decrease.

Table 1. The delayed effects of the course of rotenone administration on motor activity and motor coordination of rats 

Rotenone was administered for 7 days [9], and motor activity and motor coordination were analyzed 5 days after 
the last rotenone administration. Data represent mean ± SEM. 

Groups of animals and
the number of animals

in each group 

Motor activity, units 
Peeks into holes,

units

Duration of retention
of animals 

on a rotating rod, s
Horizontal activity

(number of movements) 
Vertical activity

(number of stands) 

Control, n=10 14.67±2.42 9.67±2.22 7.56±1.76 177.75±2.25

Rotenone, n=12 6.92±0.95 5.67±0.54 2.92±0.56 87.17±12.43

p <0.01 <0.075 <0.05 <0.001

Function
Total number 

of proteins 
Total number of proteins after treatment with rotenone 

↑ ↓

7 days 12 days 7 days 12 days 7 days 12 days

Proteins/enzymes involved in energy generation
and carbohydrate metabolism 19 19 17 7 2 12

Proteins involved in cytoskeleton formation
and exocytosis 23 33 17 26 6 7

Proteins involved in signal transduction and
regulation of enzyme activity 24 34 17 27 7 7

Antioxidant and protective proteins/enzymes 7 15 4 10 3 5

Protein regulators of gene expression, 
cell division and differentiation 7 3 4 3 3 0

Enzymes involved in metabolism of proteins,
amino acids and other nitrogenous compounds 2 14 2 9 0 5

Enzymes involved in lipid metabolism 4 2 4 1 0 1

Total number 86 120 65 83 21 37



cytoskeletal and exocytosis proteins, and proteins
involved in signal transduction and regulation 
of enzyme activity. Less pronounced changes have
been found in the relative content of antioxidant and
protective proteins, regulators of gene expression, 
cell division and differentiation, enzymes of metabolism
of proteins and other nitrogenous compounds, and
enzymes of lipid metabolism (Table 2). In most cases,
the relative content of the proteins increased both 
after the last rotenone injection and 5 days later. 
The only exception was the group of enzymes 
of energy generation and carbohydrate metabolism.
Among 19 proteins in this group with altered 
relative content after the last rotenone injection, 
17 proteins demonstrated an increase and 2 proteins
demonstrated a decrease versus control. Five days later,
among 19 proteins the relative content of 7 proteins
increased and 12 proteins decreased versus control. 

A comparative analysis of isatin-binding proteins
characterized by altered relative content right 
after the last injection of rotenone (n=16) and 5 days
later (n=11), revealed only two common proteins:
glyceraldehyde-3-phosphate dehydrogenase and 
V-type proton ATPase subunit B (Fig. 2, Tables 3, 4).
Immediately after the last rotenone administration, 
the relative content of isatin-binding proteins changed
more significantly and mainly towards an increase. 
5 days after the changes were less pronounced; 
in 7 out of 16 proteins, the relative content increased 
no more than 2 times, while the relative content 
of others slightly decreased. 

It should be noted that most of detected 
isatin-binding proteins with altered relative content
found at both stages of the experiment, are associated
with neurodegeneration, including Parkinson’s and
Alzheimer’s diseases [13–53].
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Table 3. Isatin-binding proteins with significantly altered relative content in the brain of rats immediately 5 days after
the end of a course of rotenone administration to animals as compared to control: delayed effect

Here and in Table 4 proteins names are the same as in the Uniprot database. Number in the column “Function” 
designate the following functional groups of proteins: 1. Proteins/enzymes involved in energy generation and
carbohydrate metabolism. 2. Proteins involved in cytoskeleton formation and exocytosis. 3. Proteins involved in signal
transduction and regulation of enzyme activity. 4. Antioxidant and protective proteins/enzymes. 5. Protein regulators 
of gene expression, cell division and differentiation. 6. Enzymes involved in metabolism of proteins, amino acids, 
and other nitrogenous compounds. 7. Enzymes involved in lipid metabolism. Localization: C – cytoplasm, N – nucleus, 
M – membranes, PM – plasma membrane, ER – endoplasmic reticulum, G – Golgi complex, Mch – mitochondria, 
L – lysosomes, Mic – microsomes, E – endosomes, Ve – vesicles, S – synapse.

##
Uniprot

accession
number

Uniprot
gene name Uniprot protein name Function Localization

Difference 
from control

References
Fold

change
-Log(P-
value)

1 A0A8I5Y1E2 Add1 Alpha-adducin 2 PM, M, C 2.2 1.1 [13, 14]

2 A0A8I6GDI3 Actn1 Alpha-actinin-1 2 PM, M, C 1.7 1.2 [15, 16]

3 P31000 Vim Vimentin 2 C, PM, M, N 1.6 1.8 [17]

4 Q6AY84 Scrn1 Secernin-1 2 C 1.4 1.8 [18, 19]

5 Q00981 Uchl1 Ubiquitin carboxyl-terminal
hydrolase isozyme L1 6 C, ER, N,

Mch, PM 1.4 1.7 [20, 21]

6 P05065 Aldoa Fructose-bisphosphate aldolase A 1 C 1.3 1.8 [22, 23]

7 P62815 Atp6v1b2 V-type proton ATPase subunit B,
brain isoform 2 M, PM, Ve, S 1.3 2.2 [24]

8 P60203 Plp1 Myelin proteolipid protein 3 PM, M 0.7 3.0 [25]

9 Q5XIF6 Tuba4a Tubulin alpha-4A chain 2 C 0.5 1.9 [26–28]

10 B4F7C2 Tubb4a Tubulin beta chain 2 C 0.7 1.7 [29, 30]

11 P07323 Eno2 Gamma-enolase 1 C, PM 0.7 3.3 [31]

12 P04797 Gapdh Glyceraldehyde-3-phosphate
dehydrogenase 1 C, N 0.7 2.7 [32, 33]

13 P48500 Tpi1 Triosephosphate isomerase 1 C 0.6 3.4 [34]

14 P07335 Ckb Creatine kinase B-type 1 C, PM, Mch 0.6 4.6 [35, 36]

15 P00507 Got2 Aspartate aminotransferase,
mitochondrial 6 Mch, PM 0.4 3.9 [37]

16 Q5M7A7 Cnrip1 CB1 cannabinoid receptor-
interacting protein 1 3 C, PM 0.7 2.3 [38–41]



Among all the isatin-binding proteins with 
altered relative content induced by rotenone and
neuroprotectors, the most pronounced changes 
have been found in the case of plakoglobin and 
the BASP1 protein, which belongs to the group 
of acid-soluble brain proteins. Treatment of rats with
rotenone increased their relative content in the brain 
by 10 and 20 times, respectively.

Plakoglobin, also known as gamma-catenin, 
is a cytoplasmic component of desmosomes homologous
to beta-catenin. In addition to the formation 
of desmosomes, plakoglobin is also involved 

in the formation of adhesive intercellular contacts
associated with actin microfilaments. Mutations 
in the Jup gene, which encodes plakoglobin, 
cause cardiomyopathies. In addition, it is known 
that proteins of the catenin family are involved 
in the regulation of the microenvironment of neuronal
progenitor cells, proliferation and differentiation 
of cerebral cortex cells [48].

BASP1 (brain acid-soluble protein 1), which belongs
to the group of acid-soluble proteins in the brain, along
with the protein GAP-43 (growth-associated protein-43),
regulates the maintenance of the presynaptic 
vesicle cycle and the release of neurotransmitters. 
Post-translational modifications and functions of this
protein, its involvement in the processes of axon growth,
regeneration and plasticity are now being actively
studied in the context of neurodegenerative diseases [53].

ACKNOWLEDGMENTS

Mass spectrometry analysis was carried out using 
the equipment of the “Human Proteome” Core Facility
(IBMC, Russia).

FUNDING

This work was supported by the Russian Science
Foundation (project No. 23-25-00066).

Buneeva et al.

29

Table 4. Isatin-binding proteins with significantly altered relative content in the brain of rats immediately after the end
of a course of rotenone administration to animals (compared to control)a

aModified from [10] and supplemented. 

Figure 2. A Venn diagram comparing relative content 
of brain isatin-binding proteins (versus control)
immediately after the course of rotenone administration
and 5 days later. 

##
Uniprot

accession
number

Uniprot
gene name Uniprot protein name Function Localization

Difference from
control

References
Fold

change
-Log(P-
value)

1 P04797 Gapdh Glyceraldehyde-3-phosphate
dehydrogenase 1 C, N 1.6 2.4 [32, 33]

2 P07943 Akr1b1 Aldo-keto reductase family 1
member B1 7 С 2.0 3.4 —

3 P19527 Nefl Neurofilament light polypeptide 2 С, S 0.5 3.1 [42]

4 P38983 Rpsa 40S ribosomal protein SA 5 C, N, PM 2.8 4.0 [43]

5 P62744 Ap2s1 AP-2 complex subunit sigma 2 M, PM 2.4 3.4 [44, 45]

6 P62815 Atp6v1b2 V-type proton ATPase subunit B,
brain isoform 2 M, PM, Ve, S 1.7 4.4 [24]

7 Q63198 Cntn1 Contactin-1 3 PM 3.7 3.0 [46]

8 Q6P0K8 Jup Junction plakoglobin 2 C, M 10.5 3.0 [47, 48]

9 A0A8I6A1Y1 Ogdh Oxoglutarate dehydrogenase
(succinyl-transferring) 1 Mch, N 0.7 3.4 [49, 50]

10 A0A8I6A7U6 Sfpq Splicing factor proline and
glutamine rich 5 C, N 0.3 4.9 [51, 52]

11 A0A8I6A304 Basp1 Brain abundant, membrane
attached signal protein 1 3 C, N 18.3 5.1 [53]
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ОТСРОЧЕННОЕ ДЕЙСТВИЕ РОТЕНОНА НА ОТНОСИТЕЛЬНОЕ СОДЕРЖАНИЕ 
ИЗАТИН-СВЯЗЫВАЮЩИХ БЕЛКОВ МОЗГА 

У КРЫС С ЭКСПЕРИМЕНТАЛЬНЫМ ПАРКИНСОНИЗМОМ
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Изатин (индолдион-2,3) — эндогенный биологический регулятор, обнаруженный в мозге, периферических
тканях и биологических жидкостях человека и животных. Его биологическую активность опосредуют 
изатин-связывающие белки, многие из которых были идентифицированы в ходе протеомного профилирования
препаратов мозга мышей и крыс. Ряд этих белков имеет отношение к развитию нейродегенеративных
заболеваний. Ранее на модели экспериментального паркинсонизма, индуцированного семидневным 
введением пестицида ротенона, были обнаружены выраженные нарушения поведенческих реакций, а также
изменения профиля и относительного содержания изатин-связывающих белков мозга. В данной работе 
мы исследовали поведенческие реакции и относительное содержание изатин-связывающих белков мозга крыс 
с индуцированным ротеноном экспериментальным паркинсонизмом через 5 дней после завершения курсового
введения этого нейротоксина. Несмотря на отмену введения ротенона, у животных сохранялись нарушения
двигательной активности и координации движений. По результатам протеомного анализа выявлены изменения
в относительном содержании 120 белков мозга (относительное содержание 83 белков увеличивалось, 
а 37 белков снижалось). Сравнительный анализ изатин-связывающих белков, относительное содержание
которых в мозге менялось после последней инъекции ротенона (n=16) и через 5 дней (n=11), выявил совпадение
только двух (глицеральдегид-3-фосфатдегидрогеназы и субъединицы B протонной ATPазы V-типа). 
При этом большинство обнаруженных белков ассоциировано с нейродегенерацией, включая болезни
Паркинсона и Альцгеймера.

Полный текст статьи на русском языке доступен на сайте журнала (http://pbmc.ibmc.msk.ru).

Ключевые слова: паркинсонизм; нейротоксин ротенон; нейродегенерация; изатин-связывающие белки;
нейропротекторы; изатин; мозг; протеомное профилирование
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