
INTRODUCTION

The completion of the Human Genome Project 
has finally dotted the i's and crossed the t's with regard
to the central dogma of molecular biology,
demonstrating the scale of the deviation from 
the principle “one gene — one protein”. For more than
a quarter of a century, it has been generally accepted
that alternative splicing (AS) in higher eukaryotes
increases the diversity of variants of exon sequence
combinations and thereby expands the spectrum 
of protein products (Fig. 1) encoded by a relatively
small set of genes [1]. More than 95% of multi-exon
human genes produce more than one (constitutive)
splice variant [2]. With the development 
of high-throughput methods for analyzing nucleotide
and amino acid sequences, a wide range of researchers
have the opportunity to analyze molecular profiles 
of objects of interest not only at the level of the master
protein (i.e., the generalized image of the protein
products of a gene [3]), but also at the level 
of specific proteoforms. 

1. ASSOCIATION OF ALTERNATIVE SPLICING
WITH DISEASE

“Fine-tuning” of the entire biological system 
due to AS is capable of changing its molecular
composition. For example, titin, which has the longest
amino acid sequence (reaching 38,138 residues),
changes its predominant splice form as a person ages [4].
Such modifications change the length of the protein 
and relative stiffness, and therefore affect ventricular

tension at rest and are associated with acquired forms 
of heart failure. Transcriptional and post-translational
changes that increase the length and extensibility of titin,
making the sarcomere longer and softer, are associated
with systolic dysfunction and left ventricular dilation.
Titin modifications that shorten both the protein 
itself and the sarcomere are associated with 
diastolic dysfunction [5]. 

In recent years, a trend has emerged in studies 
of molecular heterogeneity to search for a relationship
between splicing patterns and the occurrence and
development of diseases. In general, such studies 
are panoramic in nature and are aimed at forming 
the most complete transcriptomic and translational
profiles of the studied objects [6–9]. Good evidence
now exists that impairments in splicing mechanisms,
depending on their scale, can trigger production 
of functionally inactive proteins [10]. Such proteins,
exhibiting altered functions, distort the well-established
processes of differentiation, growth, intercellular
communication and apoptosis, in other words, disrupt
the normal functioning of the entire organism and 
can lead to its death [11]. The connection between
splicing aberrations is especially clearly demonstrated
by the example of “hallmarks of cancer”: each
distinctive feature characteristic of oncological diseases
corresponds to a case of disrupted splicing (Fig. 2). 
In 2022, the classic ten hallmarks of cancer (proliferative
signaling, replicative immortality, angiogenesis
induction, growth suppressor evasion, etc.) were
supplemented by the epigenetic reprogramming [12],
polymorphic microbiome [13], cell aging [14, 15], and
unlocking of phenotypic plasticity [16]. 
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It is difficult to find an example of an oncological
disease, for which cases of the disruption of normal
splicing patterns have not been identified. Knowledge
has been accumulated about splicing aberrations both 
in solid tumors (in the brain [17], liver [18], skin [19],
kidneys [20], lungs [21], breast [22], cervix [23],
ovaries [24], prostate [25]), and in oncohematology.
Most cases of pathological AS are explained 
by genetic mutations in constitutive splicing sites 
or impairments in the expression level of spliceosome
regulatory factors [26]. 

Numerous results of similar studies have revealed
the switching effect, which describes a change or
“switch” in the predominantly expressed splice 
variant of a gene during the transition from 
normal tissue to pathologically altered tissue [27, 28].
This phenomenon is determined as changes 
in the proportions of splice variants and/or their
differential expression of all expressed transcripts.
Sufficient evidence has been accumulated that 
changes in the abundance of splice variants of one gene
affect the development and functioning of a living cell
in normal conditions and pathology [29–31]. In general,

such conclusions are made based on an analysis 
of the enrichment of gene sets or metabolites, 
rather than a detailed study of cause-and-effect
relationships. In addition, switching analysis and
interpretation of results of transcriptome profiling,
consider all possible transcript variants, including
those, which are not translated into the amino acid
sequence [32]. As we have shown earlier, focusing
exclusively on protein-producing transcripts expectedly
reduces the array of cases of switching the predominant
splice form, but does not reduce it to tens of cases [28],
indirectly confirming the hypothesis about different
functional properties of proteoforms. 

The transition from the quantity of data to their
qualitative (functional) understanding may serve 
as protection against the tempting “post hoc, ergo
propter hoc” fallacy in searching for biological meaning
in sequencing data on alternative splicing switching. 
In order to fully exploit knowledge of splicing patterns
as a source of diagnostic, prognostic, predictive, and
therapeutic tools, it is necessary not only to notice 
the numerical patterns, but also to determine 
the functions of splice variants encoded by a single gene. 
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Figure 1. Stages of genetic information transfer that form the final phenotype of an object. As a result of alternative
splicing (AS), one gene can produce several splice variants, which repersent different combinations of exons 
(less often with introns included) and transcribed from different 3′- and 5′- splice sites.



2. FUNCTIONAL HETEROGENEITY 
OF SPLICES VARIANTS

Differently spliced protein products exhibit
different enzymatic activities, are localized in different
cellular compartments [33], and often behave as separate
proteins rather than as interchangeable variants 
of each other. They can exhibit dominant-negative
effects in relation to other forms encoded by the same
gene, be expressed to a greater or lesser extent than 
the constitutive variant, or even have opposite functions. 

The most demonstrative (but not the only) example
of a gene with functionally different splice variants 
is BCL2L1 from the family of apoptosis regulators.
Splice variants of this gene differ due to the presence 
of alternative 5′ splice sites in the second exon; 

the short form (BCL-XS) triggers cell death processes,
while the long form (BCL-XL) has an anti-apoptotic
function and is often activated in cancer [34]. 
The identified pattern is promising from a practical
point of view: antisense therapy aimed at changing 
the ratio between two BCL proteoforms may increase
the sensitivity of cells to chemotherapeutic drug-induced
apoptosis [35]. A similar situation exists with 
a representative of the tumor necrosis factor 
receptor superfamily TNFR2, which also encodes 
two splice variants with antagonistic functions. 
The canonical variant of the TNFR2 receptor 
mediates TNF-α-induced apoptosis, while the shorter
DS-TNFR2 variant, lacking the amino acid sequence
encoded by the seventh and eighth exons, blocks
apoptosis [35].Another example is the IG20 gene, which
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Figure 2. The place of alternative splicing in the realization of the current version of “hallmarks of cancer”: 
a concept designed to reduce the complexity of oncophenotypes to a conventional set of principles common to the origin
and development of various cancers. The illustration is built taking into account the evolution of the concept 
over the last 20 years [26–28] and provides landmark examples of genes, whose splicing is reliably associated with 
the occurrence and development of cancer.



is overexpressed in cancer cells and encodes at least 
six splice forms (IG20, IG20-PA or IG20pa, DENN or
MADD, DENN-SV, KIAA0358, and IG20-SV4),
differing in their apoptotic properties [36, 37]. 

The above examples of functional differences
between individual splice variants look impressive, 
but such a depth of study and elucidation of the role 
of splicing in the formation of a healthy or altered
phenotype is rather exceptional and has been 
achieved only for several dozen protein-coding genes,
often at the level of transcripts and translators. 
It took several years and several iterative approaches 
to studying the sources of heterogeneity in omics layers
to achieve consensus on issues of alternative splicing.
The path of the Laboratory of Structural and
Computational Biology of the Spanish National Cancer
Research Center is very demonstrative in this context.
Initially, in 2015, based on the results of eight 
large-scale proteomic experiments and analysis 
of databases deposited in the database, it was suggested
that AS did not play a significant role in the formation 
of protein diversity [38]. The modest set of alternatively
spliced proteins detected led researchers to the idea 
that most protein-coding genes probably produced 
only one — canonical — protein product [39], and 
most alternative variants did not withstand selective
pressure and could be functionally insignificant at all.
Several years later, the same researchers refuted their
previous assertions by analyzing alternative splicing 
at the protein level [40], which was tissue-specific 
for a third of genes. More recently, the same group,
based on the results of large proteomic experiments,
developed the bioinformatics tool TRIFID for predicting
the functional significance of splice forms and 
returned to the assertion that 85% of alternative
transcript variants were likely to be insignificant [41].
Such back-and-forth movements in the study 
of heterogeneity at different omics levels encourage
caution in studying the adaptivity of AS and trying 
to establish a correspondence between the diversity 
of mRNA variants and the proteins they encode. 

3. PROBLEMS IN FUNCTIONALITY STUDIES 
AT THE PROTEOME LEVEL 

The findings obtained at the transcriptome level
are difficult to transfer to the proteome, especially 
in the context of attempts to establish quantitative
patterns. The Pearson coefficient for correlation
between the transcript and protein abundances usually
does not exceed 0.5, as shown in studies analyzing 
the available relationships to study the possibility 
of constructing a protein abundance model based 
on transcriptome and translatome data [42–45].
Additional efforts to model the effect of protein
synthesis regulation after pre-mRNA splicing 
were able to explain 30% of the differences 
in protein and mRNA ratios [43]. Another achievement
in the search for consistency between transcript and

protein abundance was the rather natural observation
that exceeding certain transcript expression levels 
was a good predictor of protein expression [46].
Nevertheless, it is obvious that a complete
understanding of the living system functioning requires
information about the proteome component. 

The peptide-centric nature of proteomic 
data do not often discriminate individual splice 
forms [43–45, 47] because of problems of isolation 
and reliable detection of proteoform-specific 
peptides [48]. Protease cocktails [49], de novo data
processing [50, 51], and orthogonal sequencing
technologies [52, 53] have been used to improve 
the quality of protein sequence coverage; however,
even the sum of these efforts does not provide 
a full assessment of the number of proteoforms. 

Today, there are still many blank spots on the map
of systems biology, but the general consensus exists
that proteins are the driving force of living systems. 
The study of individual protein variants has already
achieved significant success [54–58]. We have proposed
to enhance the results of mass spectrometric 
profiling of HepG2 cell line proteins distributed across
the cells of a two-dimensional gel according to their
physicochemical properties [59] by using a customized
search library. Such library, built on the basis 
of transcriptome sequencing data for the studied 
HepG2 cells, generates a most accurate search 
space of expected proteoforms. On the one hand, 
this is achieved by taking into account splice variants
and sequences with point substitutions specific 
to a particular sample. On the other hand, the volume 
of the search space can be limited by ignoring sequences
whose production, according to transcriptome data,
should not be expected in the studied sample.
Integrated analysis in HepG2 cells increased 
the number of identified proteoforms by 76% 
compared to standard panoramic profiling without
preliminary fractionation on a two-dimensional gel.
This effect is achieved as a result of the synergy 
of two factors: firstly, a decrease in the complexity 
of the biological mixture, and secondly, additional
knowledge about the physicochemical properties 
of proteoforms [52, 53]. 

The use of original mass spectrometric 
approaches [60] and antibody enrichment 
technologies [61] has brought proteomics closer 
to answering the question: how does the final 
sequence and structure form the functionality of protein
variants and how do individual protein variants affect
the viability of the entire living system? 

4. TRANSITION FROM 
DIFFERENTIAL EXPRESSION DATA 
TO FUNCTIONAL ANNOTATION

The popularization of RNA sequencing methods
and the ability to analyze the abundance of genes 
and individual splice variants have made it possible 
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to accumulate data demonstrating the difference 
in their expression under different conditions.
Hundreds of papers have been published comparing 
the abundance of gene products in normal and tumor
tissues and assessing changes in molecular profiles
after gene knockout or knockdown [62, 63]. The results 
of such experiments can be reused, in particular, 
to identify new protein functions [33]. Detection 
of differentially expressed genes to determine 
protein functions is a standard approach applicable 
to transcriptomics. Transcriptomics has matured 
as a field of science, and protocols for transcriptomic
data collection and processing are optimized, 
reliable, and efficient [64]. This allows to develop
computational methods for systematical studies 
of protein functions at the isoform level [65–68]. 

Elucidation of protein function is the main
“activation barrier” in the formation of a systematic
understanding of the structure of living systems. 
High-throughput sequencing is becoming increasingly
accessible, data are multiplying, but a qualitative
transition from information on the expression 
of a single gene to understanding the role of a specific
protein molecule has not yet occurred. Despite
significant advances in proteome cataloging,
fundamental questions regarding the roles of individual
proteins in the complex proteome mechanism 
have not been resolved yet. The reason for this 
is a significant difference in the structures and sizes 
of the information space of the transcriptome 
and proteome [69]. 

5. PRACTICE OF PROTEIN 
FUNCTION DETERMINATION 

In the absence of a generally accepted 
standard for protein function determination, most 
of the functional annotations are predictive 
due to the widespread use of bioinformatics methods 
in addition to large omics data and the existing,
essentially fragmentary, information on cellular
processes regulation. The existing gap between 
the methods of experimental and computational
biochemistry in terms of labor intensity, cost, and
rapidity explains the predominance of bioinformatic
predictions over empirical evidence in determining
protein functions. In our previous retrospective 
studies, using the example of the neXtProt database,
known for the completeness and reliability 
of published information on human proteins, 
we analyzed the evolution of the terminology 
used to describe protein function [70]. We have 
noticed that in most cases the accumulated 
annotations are achieved by computational methods,
but even the best bioinformatics tools often yield
unsatisfactory results, when it comes to annotating 
non-canonical variants. The guilty by association
postulate is often used: based on the results 
of affinity purification – mass spectrometry (AP-MS)

and yeast-two-hybrid (Y2H) analysis technology,
protein function is attempted to be mapped 
to biochemical processes by studying contacts or
“handshakes” of target proteins. Another problem 
we have noticed studying the trends in functional
annotation of proteins concerns repositories with
manual verification of deposited data. Dataframes 
(i.e., tabular systems of the “observations – variables”
data architecture) of such repositories (e.g., neXtProt)
are not optimized for efficient storage of information 
in a proteoform-centric mode. Currently, neXtProt
provides information for approximately 10,000 splice
variants, 10% of which are differently localized 
in the cell and have distinct functions within 
a single gene [71].

Within the framework of existing experimental
approaches for functional annotation of proteins, 
two directions can be distinguished: 1) knockout or
alteration of the expression level of the gene of interest
to identify altered molecular pathways on the basis 
of the analysis of one or more omics levels and 
2) interactome analysis.

5.1. Loss-of-Function or Gain-of-Function

Suppression of gene expression apparently alters
the biological processes, in which the protein it encodes
is involved. These changes are not easy to detect and/or
unambiguously interpret: the available information 
on molecular pathways is fragmentary, and the pathways
themselves are non-linear and often duplicate 
a number of steps in cellular processes. Additional
complexity in such studies is introduced by targeted
changes in expression: introducing point mutations that 
disrupt the reading frame, or using the interference
phenomenon. Currently, the most popular method 
of knockout, as well as knockdown or knocking 
(in situations where knockout is impossible or,
conversely, expression is too low) is the use of genetic
editing based on the CRISPR-Cas9 system [72], 
which gives a more predictable and stable result than
interfering microRNAs. As we have previously shown,
the capabilities of CRISPR-Cas9-based methods 
for studying the properties of proteins and their
diversity in proteomic studies are impressive, but such
technologies have not yet been widely used to study
splice forms [72]. 

Results of several studies, applying genetic editing
methods to splice forms, demonstrate the importance 
of their presence for maintaining the function or
phenotype of the studied object. For example, knockout
of splice forms encoded by the Reep6 gene has shown
that the canonical Reep6.1 variant is critically important
for retinal rod functioning [73]. At the same time, 
the second splice form is important for maintaining
fertility in male mice, and both variants are expressed in
the testes. Comparative proteomic and phenotypic
analysis of ES-2 and OVCAR-8 cell lines with
knocked-out splice forms of the TGFβ receptor
revealed the different roles of these proteoforms 
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in the development of ovarian cancer [74]. Evaluation
of splice forms specific to gastric cancer by using
promoter knockout revealed that in the ZFHX3 tumor
suppressor, splice forms had opposite functions, similar
to BCL2 variants [75]. In the case of Duchenne muscular
dystrophy, a genetic disease caused by dystrophin
translational defects due to frameshift mutations,
methods for excluding exons with such errors 
to express a shorter version of the protein are developed
for treatment of this disease. Suppression of expression
of the canonical variant has been shown to be effective
in partially preserving the function of alternatively
spliced dystrophin [76, 77]. 

In our study of the function of the mitochondrial
protein importer TOMM34, we assessed changes
before/after its knockout at the transcriptomic,
proteomic, and metabolomic levels. One of the criteria
for choosing TOMM34 (in addition to its poorly
investigated role) was the presence of only one
translated mRNA, according to UniProt, which 
made it possible to describe the functional role 
of a specific amino acid sequence [63]. For complete
suppression of TOMM34 expression during 
TOMM34 knocking out, we had to introduce 
five mutations into the first exon. Focusing 
on a specific splice form, in addition to technical
difficulties, increases the risks of frameshifting and
additional off-target effects, which can in turn affect 
the cascade of molecular events [78].

5.2. Functional Annotation via the Interactome

Most splice variants within a single gene have 
less than 50% common partners for intermolecular
interactions [33]. It is noteworthy that partners,
interacting with a particular splice variant, are usually
expressed in a highly tissue-specific manner 
and belong to separate functional modules [34]. 
The association of protein partners with certain
functions helps to assume that the studied protein 
is also associated with it (i.e., using the guilty 
by association concept). In the case of splice forms, 
an additional complication is that functional annotation
is carried out using the combined information 
for proteoforms encoded by a single gene. 

At present, interactome profiles have been formed
for 80% of human genes [79, 80], and a trend 
has emerged towards identifying protein-protein
interactions (PPIs) for splice forms. Experimentally,
binary interactions can be studied by two-hybrid
methods using characteristic sequences as a target
protein or by AP-MS, which provides information
about the molecular complex. One of the most
impressive studies on the definition of PPIs for splice
forms was performed in 2016, in which interactome
profiles were determined for 366 out of more than 
a thousand splice forms studied using Y2H [36]. 
The authors of the study showed that even on a small
sample, the interactome network increased by 3.2 times
as compared to the gene-centric approach. 

In AP-MS experiments, protein partners 
are identified by mass spectrometry, i.e., by peptides
that are uniquely mapped to the amino acid sequence 
of a specific proteoform [81]. The IntACT database 
is one of the first resources containing data on PPIs 
for splice forms [82]; it deposits the results 
of interactome experiments, including those performed
using AP-MS methods. Despite the fact that 
AP-MS-based approaches make it possible not only 
to use the splice form as a target protein but also 
to describe specific proteoforms in the resulting
complexes, no emphasis is placed on splice forms [83].
An illustrative example is one of the largest 
BioPlex projects: despite the mention of splice forms,
the data are provided in a gene-centric format [84].

The accumulated AP-MS results make 
it possible to identify new interactions, including 
splice-specific PPIs. For example, we have reanalyzed
the mass spectrometric data array of the BioPlex 2.0
project. Based on the statistically significant 
frequency of co-occurrence, we were able to identify
287,474 interactions, predicted for the first time 
a function for 391 proteins and for 31 genes
demonstrated a difference in the interactome profiles 
of the splice forms encoded by them [85]. 

Although PMIs are the basis of cellular processes,
protein-metabolite interactions (PMIs) also play 
a significant role; the methods for their identification
we described in [86]. The value of PMIs for unraveling
the splice form interactome can be illustrated 
by the example of 505 splice forms: their unique role 
in biochemical processes is noticeable, when analyzing
interactions with small molecules, but is not distinguished
by standard analysis protocols [87].

Bioinformatic algorithms represent a significant
part of the interactome methods. They compare
sequences and extrapolate interactome profiles and
functions from studied objects to unstudied ones or
integrate different types of data to improve interactome
annotation. Five years ago we described existing
approaches to proteoform annotation [88], and their
basic principles did not change since that time.
However, at present, more and more works are devoted
to the development of methods for integrating PPI data
with expression/translation information to recognize
specific interactions directly for splice forms. 
For example, using the DIGGER method, based 
on the combined analysis of interactomes, data 
on the interaction of domains and amino acid residues,
as well as expression, it is possible to extract splice
form-specific subnetworks [89]. In a more advanced
method, LINDA, data on transcription factors, 
as well as the DIGGER results, are additionally used 
to decipher the interactomes of splice forms [90].
NEASE (Network Enrichment for AS Events) 
is another example of an even more specialized resource
for predicting splice variant functions [91]; during
identification of subnetworks for splice forms this
resource takes into consideration not only interactome
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data and quantitative changes, but also structural
features of proteins according to DOMINE [92], 
3did [93], Eukaryotic Linear Motif [94], and PDB [95]. 

5.3. Bioinformatics Methods and Tools

Bioinformatics methods for functional annotation
of proteoforms are developing not only within 
the framework of interactome analysis. Over 20 years
of active omics research, it was possible to build 
the architecture of various knowledge bases. 
These include both highly specialized knowledge 
bases focused exclusively on splicing [96–99], 
and comprehensive knowledge bases such as 
UniProt [100], neXtProt [101], RefSeq (NCBI) [102], 
Ensembl-GENCODE (EMBL) [103], and MANE [104].
These resources summarize the results of hundreds and
thousands of experiments capable of distinguishing
splice variants of a single gene at different omics levels.
Each of the listed resources with annotations of human
amino acid and nucleotide sequences provides
information on more than 100 thousand protein-coding
transcripts [105, 106]. At the same time, the pools 
of reported data differ greatly: for example, in 2018 
it was shown that the ENCODE and RefSeq databases
agreed on only 1/6 of all the presented transcripts [105]. 

Accumulated knowledge and experimental data
have facilitated the development of bioinformatic
methods for assessing protein function. Sequence
alignment and expression analysis are commonly used
to study gene function. The main idea for using these
approaches is that sequences that are conserved 
across species are likely to be functional [107]. 
Similar logic is used for splice variants: 
the conservation of a particular sequence (e.g., a protein
encoded by an alternative exon) in species that 
diverged evolutionarily tens of millions of years ago
indicates its functional significance [108]. Similarly,
the more evidence there is of the expression 
of a particular transcript in different species, the more
likely it is to be functional. Functional annotation 
is complicated by the fact [109] that the expression 
of most splice variants in humans is very low 
(often at the level of biological noise [110]), and 
tissue-specific [105].

Almost any functional analysis is focused 
on comparison of data on the known role of the protein
of interest in cellular processes. Among the various
resources describing and cataloging the functional
annotation of genes and their products, the most
popular is the Gene Ontology (GO) terminology 
system [111]. The system includes 45,000 terms and
combines them into three subontologies: molecular
functions (i.e., terms describing protein functions, 
such as kinase activity); biological processes 
(to describe the sequence of events occurring in a cell
or organism that involve genes and proteins they
encode, such as cell division or immune response), 
and cellular components (terms describing 
protein localization: nucleus, membrane, etc.). 

GO offers functional annotations only at the gene 
level, without detailing information for individual
splice variants [112]. To date, several algorithms 
have been developed: iMILP [67], mi-SVM [113], 
WLRM [114], IsoResolve [115], DeepIsoFun [116],
and DIFFUSE [117], designed to refine GO terms 
in relation to splice forms, based on multivariate
learning. The current limitation of such methods 
is the low prediction accuracy due to the difficulty 
of taking into account the hierarchical structure and
extensive semantics of GO terms during analysis.
Moreover, most algorithms assume that only one 
splice form is responsible for the implementation 
of the gene function, although in reality several 
variants can interact simultaneously to perform 
this function [70]. In a more advanced algorithm,
IsofunGO [116], special attention is paid to detection 
of different annotations for individual isoforms.

Three-dimensional protein structure prediction
technologies, feeding an RNA or protein sequence 
as input, are also used to determine the function 
of splice variant functions. The popular AlphaFold2
program allows automatic prediction of 3D protein
structures with high accuracy [108, 118, 119], including
splice forms. It is assumed that protein molecules,
whose sequence folds into an ordered structure 
(about 68% of the human proteome [118, 120]), 
are most likely functional, and, conversely, poorly
folded molecules are most likely inoperative. A similar
approach was tested on a data pool, summarizing 
the results of more than 10 thousand transcriptomic
experiments [108], using an optimized version 
of AlphaFold known as the ColabFold program [121].
An illustration of the determination of the splice 
form function is the analysis of the ASMT gene
(encoding N-acetylserotonin-O-methyltransferase),
which is involved in melatonin biosynthesis. Based 
on the combined transcriptome profiling of the pineal
gland, biopsied at night (due to its melatonin 
synthesis) [122], it was determined that the variant that
showed a more stable protein assembly was expressed
more than 10 times higher than other splice forms.

The scientific community has long relied 
on two methods for protein function discovery and
prediction: RNA-seq and DNA and protein sequence
alignment to detect evolutionary conservation.
Currently, hope is pinned on computational methods
based on GO, protein structure prediction, and
interactome interactions. It is worth recognizing 
that these are just the beginning. The development 
of computational methods for splice variant function
discovery will remain an area of active research 
for many years.

CONCLUSIONS

Researchers tend to study the same proteins
recurrently. Only 30 proteins of the human brain
account for 2/3 of all scientific literature 
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devoted to the analysis of the brain proteome. 
The Matthew effect, according to which 
“the rich get richer and the poor get poorer,” 
is also reflected in the issue of functional annotation 
of proteins. This state of affairs is facilitated 
rather by the availability of funding and existing
technological capabilities than by the fundamental or
practical value of studying a certain set of already 
well-studied proteins. The situation is naturally
aggravated when moving from master proteins, 
which we define as a set of protein products 
of a single gene without specifying proteoforms [69], 
to specific protein variants.

Having studied the degree of elaboration 
of the issue of functional annotation of individual splice
forms, we propose a roadmap (Fig. 3) and hope that 
the organized efforts of all community members 
will allow significant progress in understanding 
the structure of living systems.
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Изящество механизмов сплайсинга пре-мРНК не перестаёт интересовать ученых даже спустя 
более полувека с момента открытия того факта, что кодирующие участки в генах прерываются
некодирующими. Превалирующее большинство генов человека имеют несколько вариантов мРНК, которые, 
в свою очередь, кодируют структурно и функционально разные варианты белков — в тканезависимой манере и
с привязкой к конкретным этапам развития организма. Нарушение паттернов сплайсинга смещает баланс
функционально различающихся белков в живой системе, искажает нормальные молекулярные пути и 
может спровоцировать возникновение и развитие патологий. За последние два десятилетия выполнено
множество исследований в различных областях наук о жизни для более глубокого понимания механизмов
сплайсинга и степени его влияния на функционирование живых систем. Целью данного обзора было
суммирование экспериментальных и вычислительных подходов, используемых для выяснения функций 
сплайс-опосредованных белковых продуктов одного гена: на основе собственного опыта, накопленного 
в лаборатории интерактомики протеоформ Института биомедицинской химии, и лучших мировых практик. 
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