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Major depressive disorder (MDD) is one of the most common diseases affecting millions of people
worldwide. The use of existing antidepressants in many cases does not allow achieving stable remission,
probably due to insufficient understanding of pathological mechanisms. This indicates the need for the development
of more effective drugs based on in-depth understanding of MDD's pathophysiology. Since the high costs
and long duration of the development of new drugs, the drug repositions may be the promising alternative.
In this study we have applied the recently developed DIGEP-Pred approach to identify drugs that induce changes
in expression of genes associated with the etiopathogenesis of MDD, followed by identification of their potential
MDD-related targets and molecular mechanisms of the antidepressive effects. The applied approach included
the following steps. First, using structure-activity relationships (SARs) we predicted drug-induced gene expression
changes for 3690 worldwide approved drugs. Disease enrichment analysis applied to the predicted genes
allowed to identify drugs that significantly altered expression of known MDD-related genes. Second, potential
drug targets, which are probable master regulators responsible for drug-induced gene expression changes,
have been identified through the SAR-based prediction and network analysis. Only those drugs whose
potential targets were clearly associated with MDD according to the published data, were selected for further
analysis. Third, since potential new antidepressants must distribute into brain tissues, drugs with an oral route
of administration were selected and their blood-brain barrier permeability was estimated using available
experimental data and in silico predictions. As a result, we identified 19 drugs, which can be potentially
repurposed for the MDD treatment. These drugs belong to various therapeutic categories, including
adrenergic/dopaminergic agents, antiemetics, antihistamines, antitussives, and muscle relaxants. Many of these
drugs have experimentally confirmed or predicted interactions with well-known MDD-related protein targets
such as monoamine (serotonin, adrenaline, dopamine) and acetylcholine receptors and transporters as well as with
less trivial targets including galanin receptor type 3 (GALR3), G-protein coupled estrogen receptor 1 (GPER1),
tyrosine-protein kinase JAK3, serine/threonine-protein kinase ULKI1. Importantly, that the most of 19 drugs
act on two or more MDD-related targets, which may produce the stronger action on gene expression changes
and achieve a potent therapeutic effect. Thus, the revealed 19 drugs may represent the promising candidates
for the treatment of MDD.
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INTRODUCTION

Major depressive disorder (MDD) is responsible
for a decrease in the quality of life of millions
of people worldwide. According to the World Health
Organization (WHO), depressive disorders are diagnosed
in approximately 5% of adults [1], and with
increasing age (especially in groups over 60 years old),
the number of people with depression also growths.
MDD is a third leading cause of disability worldwide [2]
associated with 700000 suicides per year [1]. Despite
the prevalence of depressive disorders, currently
existing antidepressants are not effective enough
and do not allow achieving complete remission
in more than half of cases [3]. This indicates the need
for the development of more effective drugs based

on in-depth understanding of MDD's etiopathogenesis.
However, the development of new drugs usually
takes 10-15 years and requires nearly $2.5 billion.
Drug repurposing approaches can speed up or side-step
some phases of drug development, resulting
in potentially faster and cheaper development
programs [4-8]. Connectivity Map is one of the most
widely used approaches for drug repurposing.
It is used to identify drugs which induce gene
expression profiles in cell lines that are reverse to those
observed in disease tissues [9—12]. For example, using
search for drugs that affect global gene expression
in a similar manner to atypical antipsychotics
Bortolasci et al. identified an ergot alkaloid metergoline
to treat psychiatric disorders [9]. The one of the main
limitations of the Connectivity Map approach is that
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the experimental data on drug-induced gene expression
profiles (DIGEPs) is absent for many existing drugs
as well as for billions of organic compounds with
drug-like properties. In 2013, we developed an in silico
approach to predict DIGEPs based on structural
formula of drug-like compounds using an analysis
of structure-activity relationships (SARs) [13].
It was based on the published data on chemical-induced
gene expression changes from the Comparative
Toxicogenomics Database (CTD) [14] and
SARs analysis performed by PASS software [15-17].
The approach allows predicting up- and down-regulation
of particular human genes at mRNA and protein levels
based on structural formula of drug-like compound.
Recently, we have extended this approach with
network analysis and implemented it in a freely
available DIGEP-Pred 2.0 web application [18].
DIGEP-Pred 2.0 is based on significantly larger data
on DIGEPs including data obtained in various cell lines.
More importantly, we implemented two types
of analysis that are based on the predicted genes.
First, the enrichment analysis can be performed
to identify pathways, biological processes, and diseases
associated with the predicted expression changes.
Second, in addition to prediction of gene expression
changes, the structural formula of a compound
is also used to predict its direct protein targets
by using PASS. The network analysis is applied
to reconstruct signaling and regulatory network
connecting probable targets to probable genes.
As a result, the user can obtain information
on potential protein targets, which are responsible
for drug-induced gene expression changes. All these
results can be obtained using only the structural
formula of a query compound.

In this study, we applied the DIGEP-Pred approach
to identify drugs that induce changes in expression
of genes associated with the etiopathogenesis of MDD,
followed by identification of their potential targets
and molecular mechanisms of antidepressive effects.
The study included three main steps. First, we predicted
DIGEPs for more than 3000 worldwide approved drugs.
Disease enrichment analysis applied to the predicted
genes allowed to identify drugs that significantly
altered the expression of MDD-related genes retrieved
from the literature. Second, potential drug targets,
which are probable master regulators responsible
for drug-induced gene expression changes, have been
identified through PASS prediction and network
analysis. Only those drugs whose potential targets
were clearly associated with MDD in the literature,
were selected for further analysis. Third, since potential
new antidepressants must cause effect within brain
tissues, blood-brain barrier (BBB) permeability
was estimated for the selected drugs using available
experimental data and in silico predictions. Moreover,
only drugs with an oral route of administration
were selected. As a result, we have identified
19 drugs which can be potentially repurposed
for the treatment of MDD.
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MATERIALS AND METHODS

World Wide Approved Drugs database

World Wide Approved Drugs database (WWAD)
[19] was used to identify drugs that could be potentially
repositioning for the treatment of MDD. The database
contains information on 3776 pharmaceutical
substances including structural formulas which have
been approved at least in one of 71 countries and
are not related to narcotic, psychotropic, and toxic
compounds. To perform DIGEP prediction, we selected
3690 out of 3776 drug structures that satisfied
the following conditions. First, the structure must
contain at least three carbon atoms and have
a molecular weight of less than 1500 Da. Second, each
chemical bond in the molecule is a covalent
single, double, or triple bond only. Metalloorganic
and complex compounds have been excluded.
Third, the total charge of the molecule is zero.
Fourth, the compound has a single-component
structure. These criteria are used in the PASS software
and represent a standard that is widely used in creating
training sets for SAR modeling and predicting
the biological activity of new compounds [17].

Prediction of Drug-Induced Gene Expression Changes

The DIGEPs of 3690 drugs were predicted
using SARs which were previously developed
and implemented in the DIGEP-Pred 2.0
web application [18]. Briefly, SARs have been created
using an information on DIGEPs at the mRNA level
from the CTD database. Each compound from
the CTD database was associated with a list of genes
flagged with the direction of expression changes,
up-regulation and down-regulation, for example,

“ADGRB3 UpRegulation”. Structural formulas
of compounds satisfying the above-mentioned
criteria ~were downloaded from PubChem.

The resulting training set contained 2620 structures.
The corresponding SAR models for each gene and
direction of its altered expression were created
by the PASS software. PASS uses the Multilevel
Neighborhoods of Atoms (MNA) molecular structure
descriptors and a modified naive Bayes approach
for simultaneous prediction of many types of biological
activities, including changes in expression of particular
genes. For example, compounds flagged with
“ADGRB3 UpRegulation” activity were considered
as “active” while other structures in the training set
lacking the corresponding flag were considered
as “inactive”. A binary classification SAR model
was then created. The same SAR analysis
was performed for all genes and direction of their
altered expression presented in the training set.
After the training, PASS was able to predict
18425 mRNA-related activities (up- or down-regulation
of particular genes) corresponding to 13377 individual
human genes with an average accuracy of 86.5% and
a minimal accuracy of 75% calculated by leave-one-out
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cross-validation [18]. PASS calculates two estimates
of probabilities for each biological activity
of a new chemical compound: Pa is a probability
to be active, Pi is a probability to be inactive.
If a compound has Pa > Pi, it can be considered active.
The larger the Pa and Pa - Pi values are,
the greater is the probability of obtaining the activity
in the experiment. More information on DIGEP
prediction and PASS software, could be found
in our previous publications [15-18].

Disease Enrichment Analysis

Using the up- and down-regulated genes predicted
with Pa values exceeding 0.5 we have performed
enrichment analysis for each of 3690 drugs.
The threshold of Pa > 0.5 was chosen to balance
the sensitivity and specificity of prediction [17].
If we have chosen the high Pa threshold, chances
to reveal experimental activity would be rather high,
but the compounds thus found may be close structural
analogues of compounds from the trainings set.
This may result in little or no drugs identified
for repositioning. In case of Pa > 0.5 as the threshold
criterion, chances of detecting activity in the experiment
are lower but the compounds will be less similar
to the compounds in the training set [17]. This may lead
to the identification of more drugs for repositioning,
whereas master-regulators analysis taking into account
experimentally confirmed and predicted drug targets
(see below) allowed to avoid identification of many
false positive results. The information on 265 genes
related to MDD (see Supplementary Materials,
Table S1) was obtained from a curated part
of the DisGeNET database [20]. To date DisGeNET
is the biggest database containing gene-disease
associations. We used the DisGeNET version
downloaded on January 26, 2024 and implemented
in DIGEP-Pred web application. Enrichment
analysis was performed for the combined lists
of up- and down-regulated genes of each drug.
To do this, the drug gene list was compared with
265 MDD-related genes and intersection between them
was found. Next, the background list of 23335 human
genes used in DIGEP-Pred was compared with
265 MDD-related genes and intersection between them
was also found. Finally, the Fisher exact test was used
to estimate the significance of differences between
the intersection sizes for the predicted and background
genes lists. This analysis allowed us to identify drugs
with predicted gene lists that were “enriched” with
known MDD-related genes. To perform further steps
of analysis (see below), we selected 1460 drugs with
enrichment p-values less than 0.05 and more than
50 predicted genes known to be associated with MDD.

Prediction of Direct Protein Targets and Molecular
Mechanisms of Action

The data on known human protein targets
of revealed 1460 drugs was obtained from

DrugBank [21], DrugCentral [22], and WWAD [19]
databases. These databases also provide information
about molecular mechanisms of drug action,
such as stimulator or inhibitor of protein function,
for a part of targets. Additional human targets were
predicted for 1460 drugs using SARs implemented
in DIGEP-Pred 2.0 web application [18]. Briefly,
to create SARs, information on ligand-protein
interactions from PubChem and ChEMBL databases
was used. The compounds were considered active
if their K; or ICs, values were less than 10 uM or
if the percent of inhibition was greater than 50%.
Data on molecular mechanisms of action such as
agonist or antagonist was also taken into account, e.g.,
“Substance-P receptor antagonist”, “Serine/threonine-
protein kinase ULK1 activator” [18, 23]. As a result,
a training set containing 656011 compounds
was obtained. To perform SAR analysis, PASS software
was used. After the training, PASS was able
to predict 2170 mechanisms of action corresponding
to 1940 individual human proteins with an average
accuracy of 97.9% and a minimal accuracy of 80%
calculated by leave-one-out cross validation.

Master-Regulator Analysis for the Identification
of Drug Targets Responsible for Induced Gene
Expression Changes

To identify protein targets of drugs which
are responsible for drug-induced changes in gene
expression, and, potentially, antidepressive effect,
the network-based analysis was done. The analysis
allowed to reconstruct the signaling regulatory
network connecting known and predicted targets
to predicted genes [18]. Briefly, network analysis
is divided into two steps: (1) the transcription factor
enrichment analysis is used to identify transcription
factors potentially responsible for gene expression
changes, and (2) “upstream” analysis is performed
to connect revealed transcription factors with predicted
protein targets. The data on transcription factor-gene
interactions derived from the CollecTRI database [24]
was used for enrichment analysis that was performed
using Fisher exact test. Transcription factors
with p-values less than 0.05 and associated with
at least two genes were selected for “upstream”
analysis in the signaling network obtained from
the OmniPath database [25]. To connect the known and
predicted drug targets with the enriched transcription
factors, we calculated shortest paths, taking into
account the direction of edges in the network.
The score reflecting the probability that the action
of a drug on a particular target is responsible
for gene expression changes was calculated using
the hyperbolic function [18]. The score represents
a sum of inversed lengths of shortest paths from a target
to the transcription factors. This function was chosen
because the changes in cell signaling and gene
expression caused by action of a drug on a target
protein decrease with an increase in the distance
between this protein and transcription factors [26, 27].
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The significance of scores was calculated using
the permutation test and protein targets with
p-values less than 0.05 were selected. As a result,
1047 out of 1460 drugs with predicted targets — master
regulators were selected for further analysis.

Estimation of Blood-Brain Barrier Permeability

The information on BBB permeability
for 408 out of 1047 studied drugs was obtained
from a large benchmark dataset, B3DB, complied
from 50 published resources and categorized based
on experimental uncertainty [28]. B3DB contains
both qualitative and quantitative experimental data
on BBB permeability for drugs. The drug was
considered to penetrate through BBB if the log BB value
was more than -1. Since many of studied
compounds did not have corresponding experimental
information, the BBB permeability was predicted using
ADMETlab 3.0 [29] and pkCSM [30] web applications.
ADMETIab 3.0 calculates probability that a compound
penetrates BBB. According to recommendations
of the authors, a compound with a probability greater
than 0.7 is considered permeable through the BBB [29].
pkCSM calculates log BB values for a query compound.
The authors recommend considering a compound
as BBB-permeable, if the predicted log BB value
was greater than -1 [30]. We considered a compound
to penetrate the BBB if both tools predicted
its permeability. We selected 325 out of 1047 drugs
with positive experimental and predicted data
on BBB permeability for further analysis.

Data on Routes of Administration and Drug Categories

Information on routes of administration and
therapeutic categories of 325 drugs was obtained from
the ATC/DDD Index 2024 and DrugBank databases.
We selected only drugs with oral mode
of administration for further analysis. The hormones
and antineoplastic drugs were excluded because
of large number of undesirable effects. We also excluded
the nervous system drugs (see Supplementary Materials,
Table S2) such as known antidepressants, analgesics,
antiepileptics, antiparkinsonian, sedative drugs, since
the most of them were studied for the antidepressive
effect. Additionally, we selected the drugs whose
targets — master regulators were clearly associated
with MDD in the literature. As a result, we identified
19 drugs which can be potentially repurposed
for the treatment of MDD.

RESULTS AND DISCUSSION

We applied the DIGEP-Pred approach
to identify drugs that can be potentially repurposed
for the treatment of MDD. We predicted DIGEPs
for 3690 worldwide approved drugs and identified
those which were significantly associated with
expression changes of MDD-related genes.
Network-based analysis of experimentally confirmed
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and predicted protein targets of drugs allowed
identifying probable targets — master regulators that
could be responsible for drug-induced gene expression
changes. The role of many revealed drug targets
in MDD pathophysiology was manually confirmed
by literature analysis. We have selected only orally
administrated drugs that are known or predicted
to penetrate through BBB, to ensure that they
may act within brain tissues. Among others we have
identified 64 drugs which are used to treat nervous
system disorders; these included 14 antidepressants
(see Supplementary Materials, Table S2). These
findings support the applicability of our approach
to identify drugs for the treatment of MDD.
Other nervous system drugs (analgesics, antiepileptics,
antiparkinsonian, and sedative drugs) have also been
previously studied in clinical and animal trials for their
antidepressive effect. In the current study, we have
focused on drugs whose indications are not related
to nervous system disorders. As a result, we identified
new 19 drugs with different indications that
can be potentially repurposed for the treatment of MDD.

Table 1 contains information on 19 drugs including
therapeutic categories, numbers of MDD-related genes
whose expression was predicted to be changed
by a drug, p-values from disease enrichment analysis,
and data on protein targets predicted by network
analysis as master regulators and potentially
responsible for gene expression changes. The most
of predicted drug-target interactions were supported
by experimental data from DrugBank, DrugCentral,
and WWAD databases. Most of interactions were also
associated with information on molecular mechanism
of action: stimulation or inhibition of protein targets'
function, e.g., agonist or antagonist of receptor.

All targets — master regulators presented
in Table 1 have known associations with MDD.
Besides well-known MDD-related protein targets
such as serotonin, adrenaline, dopamine, and muscarinic
acetylcholine receptors, less trivial targets and related
mechanisms of action have been found. These included
galanin receptor type 3 (GALR3) antagonist [31, 32],
G-protein coupled estrogen receptor 1 (GPERI)
agonist [33-35], tyrosine-protein kinase JAK3
inhibitor [36, 37], serine/threonine-protein kinase
ULKI1 activator [38, 39]. Galanin is a neuropeptide
involved in numerous functions such as nociception,
cognition, feeding behavior, nerve regeneration,
memory, neuroendocrine release, and addiction.
It participates in a wide range of physiological and
pathological conditions including epilepsy, chronic
anxiety, depression, and pain. It is currently known
that inhibition of galanin receptors 1 and 3 leads
to attenuation of depressive symptoms. These receptors
are promising targets for new antidepressants [31].
The G-protein coupled estrogen receptor 1 (GPER1)
is a membrane receptor that plays a role in cognition,
depression, homeostasis, pain, and other neurological
processes. There is evidence that estrogen
may accelerate the therapeutic effects of selective
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Table 1. Information on 19 drugs that can be potentially repurposed for the treatment of major depressive disorder

Drug name Drug category 1(\)qu ;;E: -log10 (p-value) Protein targets — master regulators
. Adrenergic/dopaminergic ADRA1A-(A), ADRA1B-(A), ADRA1D-(A),
Droxidopa agents 97 1.69 ADRB3-(A)
Phenylephrine ?gderrft‘;ergm/ dopaminergic 151 3.45 ADRAIA-(A), ADRAIB-(A), ADRAID-(A)
Methenamine Antibacterials 173 3.66 JAK3-(D)*, TYK2-(I)*

. . . . CHRM2-(I), DRD2, DRD3, HTR2A,

Diphenidol Antiemetics 170 4.01 SIGMAR1"

Tropisetron Antiemetics 159 4.46 HTR1A, HTR3-(1)", SLC6A4"

Isobromindione Antigouts 125 3.71 GALR3-()*, GPER1-(A)*, HTR2B-(I)*

. . . ADRAID, ADRA2A, CHRM2, DRD3, HTR2A,

Cyclizine Antihistamines 53 1.59 HTR2B, HTR2C, MAOB', SLC6A3"

ADRA2A, ADRA2B, ADRA2C, CHRM2 I,
. o . DRD2, DRD3, HTR1A, HTRID, HTR2A-(I),

Cyproheptadine Antihistamines 89 2.08 HTR2B-(I), HTR2C~(I), HTR6, HTR7-(I),
SLC6A2%, SLC6A4"

. . o . CHRM2-(I), HTR2A, HTR2B, HTR2C, HRH4,
Diphenhydramine | Antihistamines 51 2.02 SLC6A2Y, SLC6 A3". SLC6A 4
Diphenylpyraline | Antihistamines 95 1.96 SLC6A3-(1)*; DRD4-(I)*

o e CHRM2-(I), DRD2-(I), HTR1A-(I), HTR2A(]),
Pimethixene Antihistamines 80 2.78 HTR2B-~(I), HTR2C~(I), HTR6-(1), HTR7-(I)
Homarylamine | Antitussive — cough 97 222 GALR3-(I)*

suppressants
Eprazinone Antitussive — mucolytics 157 4.27 TACRI1-(I), ULK1-(A)*
ADRB3-(I), HTR1A-(I), HTR1B, HTR1D,
Propranolol Beta blocking agents 95 2.16 HTR2A, HTR2B, HTR2C, HTR6, SIGMAR1?,
SLC6A4"
Lacidipine Calcium channel blockers 81 1.86 DRD3, SLC6A2*

. CHRM2, HTR2A-(I), HTR2B-(I), HTR2C-(I),
Cyclobenzaprine | Muscle relaxants 203 4.85 HTR6-(I), HTR7-(I), SLC6A2- (I)#, SLC6A4- (I)#
Pridinol Muscle relaxants 172 4.28 CHRM2
Trospium Urologicals — muscarinic | ¢ 132 CHRM2-()

antagonist
Dapoxetine Urologicals — premature | g 479 HTRIA, HTR1B, HTR2C, SLC6A4-(I)!
ejaculation treatment

Drug category reflects the main therapeutic indication of a drug. Number of genes represents the number
of MDD-related genes, with predicted drug-included expression changes. -logl0 (p-values) is negative decimal
logarithm of p-values derived from a disease enrichment analysis. Protein targets — master regulators are protein targets
of drugs predicted by network analysis as master regulators and potentially responsible for gene expression changes.
The letters (A) and (I) mean that a drug activates or inhibits protein function, for example, a drug is an agonist or
antagonist of particular receptor. Asterisk (*) shows that the target was predicted by PASS and was not confirmed
in experiment. (#) shows that the target is known to be used for MDD treatment but it was not predicted by network
analysis as a master regulator.
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serotonin reuptake inhibitors through the GPERI
in the hypothalamic-pituitary system [33].
The JAK3 kinase is known to participate
in MDD pathophysiology [36, 37]. The JAK3 gene
transcription is increased in patients with depression
compared to healthy controls [36]. It was shown
that induction of stress in mice caused inhibition
of neurogenesis and appearance of MDD symptoms.
Application of JAK3 inhibitors normalized
inhibition of neurogenesis and the anxious-depressive
behavior [37]. The ULKI1 kinase is a well-known
regulator of authophagy. Chronic stress contributes
to the development of depression and associates
with reduced autophagy level; thus, ULK1 activators
may potentially induce the antidepressive effect [38, 39].

The identified 19 drugs belong to a wide
range of therapeutic  categories including
adrenergic/dopaminergic agents (2 drugs), antiemetics
(2 drugs), antihistamines (5 drugs), antitussives
(2 drugs), muscle relaxants (2 drugs). Many of these
drugs have experimentally confirmed information
on the interaction with monoamine (serotonin,
adrenaline, dopamine) and acetylcholine receptors
and transporters which were predicted as master
regulators. Certain evidence exists in the literature

ADCYS

lacidipine  [45], cyclobenzaprine [46], and
dapoxetine [47], exibited the potential antidepressive
effect in animal and clinical studies.

It is important that the majority of 19 drugs
act on at least two MDD-related targets. We suggest
that the more targets — master regulators affected
by a drug, the stronger effect on gene expression
should be observed. Figure 1 shows the signaling
regulatory  network  describing  mechanisms
of potential therapeutic effect of Eprazinone in MDD.
Eprazinone is a known antagonist of Substance P
receptor that one of the perspective targets
for the treatment of MDD [48, 49]. Eprazinone was also
predicted by PASS as an activator of the ULK1 kinase.
Both targets were predicted by network analysis
as master regulators that could initiate signaling
cascades leading to changes in activity of transcription
factors. Figure 1 contains data on 22 most significant
transcription factors revealed by enrichment analysis
of predicted genes with p-values less than 0.05 (after
Benjamini-Hochberg correction). In turn, Eprazinone
predicted to change expression of 157 MDD-related
genes (see Table 1) and 40 of them, which have
known relationships with transcription factors
in the CollecTRI database, are shown in Figure 1.
The figure demonstrates that the action of Eprazinone
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Figure 1. The signaling regulatory network describing mechanisms of potential therapeutic effect of Eprazinone
on major depressive disorder. Rectangles correspond to known (TACR1) and predicted (ULK1) targets of Eprazinone.
Red (blue) color of rectangle means that Eprazinone activates (inhibits) the corresponding target. Small purple circles
correspond to genes whose expression was predicted to be changed by Eprazinone. Green triangles correspond
to transcription factors potentially regulating expression of the genes. Grey circles correspond to intermediate proteins
that link Eprazinone targets with transcription factors. The color version of the figure is available in the electronic

version of the article.
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on the Substance P receptor and ULKI1 kinase
initiates two largely separate signaling cascades
and many of 22 transcription factors regulated
by only one of them. The same relative specificity
is true for the regulation of gene transcription
by transcription factors. It potentially means that
significant changes in expression of MDD-related
genes may be only induced by action on several targets
rather than one target. Recently, Arash Sadri proposed
that the target-based drug discovery has been inefficient
in the creation of new drugs for the treatment
of complex diseases such as MDD. It has been
shown that approved drugs mediate their therapeutic
effects through numerous off-target mechanisms
rather than a single target [50]. Thus, to achieve
the desired therapeutic effect, multi-target drug action
or the application of synergistic drug combinations
are required. The effective drugs should cause
permutation to a network of proteins rather than
particular single targets. The proposed DIGEP-Pred
approach is consistent with these principles
of network pharmacology [51]. Thus, the revealed
19 drugs may represent the promising candidates
for the treatment of MDD.

The proposed approach also has some limitations.
Since it is based on SAR modeling, the corresponding
predictions cannot be made for drugs that
are significantly dissimilar to those in the training sets.
The analysis also cannot be performed for drugs
that do not alter gene expression and drugs that
are not suitable for SAR analysis, such as inorganic,
metalloorganic, and complex compounds, and
macromolecules. Finally, like any other SAR-based
method, the proposed approach does not allow
to distinguish between drugs with similar structure
but with different properties, including DIGEP.

CONCLUSIONS

We have demonstrated the usefulness
of the DIGEP-Pred approach for the drug repositioning
in the MDD case study. We identified 19 drugs,
including adrenergic/dopaminergic agents, antiemetics,
antihistamines, antitussives, and muscle relaxants,
which can be potentially repurposed for the treatment
of depression. Many of these drugs have
experimentally confirmed or predicted interactions
with monoamine (serotonin, adrenaline, dopamine) and
acetylcholine receptors and transporters as well as with
less trivial targets including galanin receptor type 3,
G-protein coupled estrogen receptor 1, tyrosine-protein
kinase JAK3, and serine/threonine-protein kinase ULK1.
The most of 19 drugs act on two or more protein
targets that may lead to significant changes
in expression of genes participating in etiopathogenesis
of major depressive disorder, and, in turn, cause
pronounced therapeutic effect. Thus, the revealed
19 drugs may represent the promisimg candidates
for the treatment of major depression.
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PENO3UITNOHUPOBAHUE JIEKAPCTB JJIs TEPAIIUU
BOJIBIIOIO JEIMMPECCABHOI'O PACCTPOMCTBA HA OCHOBE ITPOTHO3A
JEKAPCTBEHHO-UHJYIIUPOBAHHBIX U3MEHEHUI SKCITPECCHUU TEHOB

C.M. Heanoe"*, A.A. lazynun'’, B.B. Ilopoiikog’

'Hayuno-nccnenoBarenbCckuil HHCTUTYT OnoMeauuuHCKoil xumun uM. B.H. OpexoBuua,
119121, Mocksa, [Toromusckas yi., 10; *3m1. moura: smivanov7@gmail.com
*Poccuiickuii HalMOHAJBHBINA UCCIEIOBATEIbCKUN MEAUIIMHCKIN yHUBepcuteT uMenn H.U. TTuporosa,
117513, Mockaa, yi. OCcTpoBUTSHOBA, 1, cTp. 6

Bomeimoe nenpeccuBroe pacerpoiictBo (BJIP) — omHO 13 caMmbIX pacnpocTpaHEHHBIX 3a00JCBaHU, KOTOPBIM
CTpa/laloT MUJUIMOHBI JIIOAEH BO BceM MUpe. VICTonp30BaHNe CyIIECTBYIONIMX AaHTHAECTIPECCAHTOB BO MHOTHX CIIydasx
HE TI03BOJSET HOOUTHCS YCTOMYMBONH PEMHCCHH, BEPOSTHO, M3-3a HEAOCTATOYHOTO ITOHMMAHUS 3THOINATOTeHE3a
3a0oneBanus. DTO yKa3blBaeT Ha HEOOXOAMMOCTh pa3paboTku Ooisiee 3((HEKTUBHBIX JIEKAPCTB Ha OCHOBE IITyOOKOTO
nonuManus narogusuonorun B/IP. [Tockoibky pa3paboTka HOBBIX MpENaparoB SBISETCS JUIMTEIbHBIM IPOLECCOM H
TpeOyeT OoNbIIMX (PMHAHCOBBIX 3aTpart, PEIO3NINOHUPOBAHHE JICKAPCTB SBIISICTCS. MHOTOOOEIIAIOIIEH aIbTepHATHBOM.
B nmamHOM wmCcrenoBaHWHM MBI NPUMCHIIN HEOaBHO pa3paboraHHbi Hamu moaxon DIGEP-Pred mist momcka
JIEKapCTB, BBI3BIBAIOIINX HM3MEHEHHS B DKCIIPECCHH T'€HOB, CBsi3aHHBIX ¢ BJIP, ¢ mocnmemyromedt maeHTHHUKAIUEH
UX MOTEHINAIBHBIX MUIICHEH, TaKkKe CBI3aHHBIX ¢ B/IP, 1 MOIEKyIApHBIX MEXaHU3MOB aHTHICIIPECCUBHBIX (P (HEeKTOB.
AHanu3 BKJIIOYAN CJIeXyloline 3Tambl. Bo-IepBBIX, MBI BBITOJHWIM HPOTHO3 JIEKAPCTBEHHO-HHIYIHPOBAHHBIX
M3MEHEHHUH 3KcIpeccuu reHoB A 3690 nexapcTB, 3aperuCTPUPOBAHHBIX B PA3HBIX CTPaHaX MUPA, C UCIOIb30BaHUEM
cBsselt “crpykrypa-aktuBHOCTE (CCA). AHanmu3 oOorameHus 3a0071€BaHu#, MPUMEHEHHBIN K MPEJCKa3aHHBIM T'eHAM,
MO3BOJIMJT MACHTU(HUINPOBATH JIEKApCTBA, KOTOPHIC OKAa3blBAIM CYIIECTBEHHOE BIMSHHE Ha DSKCIIPECCHIO TEHOB,
cBs3aHHBIX ¢ BJIP. Bo-BTOpBIX, MOTEHIMAJbHBIE OEIKH-MHIICHH JIEKapCTB, SIBISIOIINECS MacTep-peryasTopamu,
KOTOpbIE OTBETCTBEHHBI 3a HAOIIONAEMbIe M3MEHEHMS SKCIPECCHH T€HOB, OBIIM WACHTU(HUINPOBAHBI C ITOMOIIBIO
nporuo3a Ha ocHoBe CCA u aHanmm3a MOJEKyISIpHbIX ceTed. Jlis manpHeimiero aHammsa ObuUTH OTOOpaHBI
TOJIBKO T€ JIEKapCTBa, TOTEHIMAIbHBIE MUIIEHH KOTOPBIX, COINIACHO OIyOJIMKOBAaHHBIM JIaHHBIM, ObUIH CBsi3aHbI ¢ B/IP.
B-TpeTbnX, TOCKONBKY HOBBIC aHTHJIETIPECCAHTHI JIOJDKHBI JEHCTBOBATh B TKAHAX MO3ra, HAMU OBIIM BBIOpaHBI
JIeKapcTBa C MepopaibHBIM CIIOCOOOM IPUMEHEHHSI, a MX IPOHUIIAEMOCTh Yepe3 reMarosHuedanmieckuii 6apbep Obla
OLIEHEHA C HCTIO0JIb30BAHUEM MMEIOIIMXCS SKCIIEPUMEHTANIBHBIX JaHHBIX M IPOTHO3a in silico. B pe3ynbTare Mbl BEISIBHIH
19 nexapcTB, KOTOpbIE IMOTCHIMAIBHO MOTYT OBITh PENO3MIHMOHHPOBaHBI ais Teparmmu BJIP. Dtm mekapcrsa
OTHOCSITCS K Pa3IUuHbIM TEPANEBTUYECKUM KaTeropHsM, BKIIOYAsl aJpeHepriuuecKie/nohaMuHepruuecKiue cpecTBa,
MIPOTUBOPBOTHBIE, AaHTUTMCTAMUHHBIE, TPOTHBOKAIIJIEBBIE CPEACTBA U MHOPENIAKCAHThL. JIJI1 MHOTHX U3 HaWJEeHHBIX
JIEKapCcTB M3BECTHHI WM TIpEJCKa3aHbl B3aMMOAEHCTBUSI C OENKaMH-MHIICHSMH, CBS3b KOTOphIX ¢ BJIP xopormro
n3ydeHa, BKJIIOYasi MOHOAMHHOBBIE (CEPOTOHWH, aJpEHAIHMH, AO(GaMHH) W AaleTHIXOJIHHOBBIE PELEHTOPHl H
TPaAHCIIOPTEPHI, a TaKKe C MEHee TPHBHAIBHBIMH MHIICHAMH, BKIIO4as perenrtop ramaHuHa tuma 3 (GALR3),
acTporeHoBHI peumentop 1, cBs3anHwii ¢ G-6enkom (GPER1), mporemnkmuazsr JAK3 m ULKI. Baxwno,
9T0 OOJBIMMHCTBO M3 19 nexkapcTB BO3NEHCTBYIOT Ha JBe Wi Ooyiee MulleHw, cBs3aHHble ¢ BJIP, uto Moxer
NPUBONTH K 0OoJiee CHJILHOMY BO3JEHCTBHIO Ha JKCIIPECCHIO T'€HOB M, KaK CJIEACTBHE, K Oojee BBIPAKEHHOMY
TepareBTHYeckoMy 3 dekty. Takum oOpazoM, HIeHTUPHUIIUPOBAHHEIE 19 JIeKapCTB MOTYT SIBISTHCS NEPCIIEKTHBHBIMHU
KaHauaaramu juid tepanuu b/IP.
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