
INTRODUCTION

Major depressive disorder (MDD) is responsible
for a decrease in the quality of life of millions 
of people worldwide. According to the World Health
Organization (WHO), depressive disorders are diagnosed
in approximately 5% of adults [1], and with 
increasing age (especially in groups over 60 years old),
the number of people with depression also growths.
MDD is a third leading cause of disability worldwide [2]
associated with 700000 suicides per year [1]. Despite
the prevalence of depressive disorders, currently
existing antidepressants are not effective enough 
and do not allow achieving complete remission 
in more than half of cases [3]. This indicates the need
for the development of more effective drugs based 

on in-depth understanding of MDD's etiopathogenesis.
However, the development of new drugs usually 
takes 10–15 years and requires nearly $2.5 billion.
Drug repurposing approaches can speed up or side-step
some phases of drug development, resulting 
in potentially faster and cheaper development 
programs [4–8]. Connectivity Map is one of the most
widely used approaches for drug repurposing. 
It is used to identify drugs which induce gene
expression profiles in cell lines that are reverse to those
observed in disease tissues [9–12]. For example, using
search for drugs that affect global gene expression 
in a similar manner to atypical antipsychotics
Bortolasci et al. identified an ergot alkaloid metergoline
to treat psychiatric disorders [9]. The one of the main
limitations of the Connectivity Map approach is that 
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Major depressive disorder (MDD) is one of the most common diseases affecting millions of people 
worldwide. The use of existing antidepressants in many cases does not allow achieving stable remission, 
probably due to insufficient understanding of pathological mechanisms. This indicates the need for the development 
of more effective drugs based on in-depth understanding of MDD's pathophysiology. Since the high costs 
and long duration of the development of new drugs, the drug repositions may be the promising alternative. 
In this study we have applied the recently developed DIGEP-Pred approach to identify drugs that induce changes 
in expression of genes associated with the etiopathogenesis of MDD, followed by identification of their potential 
MDD-related targets and molecular mechanisms of the antidepressive effects. The applied approach included 
the following steps. First, using structure-activity relationships (SARs) we predicted drug-induced gene expression
changes for 3690 worldwide approved drugs. Disease enrichment analysis applied to the predicted genes 
allowed to identify drugs that significantly altered expression of known MDD-related genes. Second, potential 
drug targets, which are probable master regulators responsible for drug-induced gene expression changes, 
have been identified through the SAR-based prediction and network analysis. Only those drugs whose 
potential targets were clearly associated with MDD according to the published data, were selected for further 
analysis. Third, since potential new antidepressants must distribute into brain tissues, drugs with an oral route 
of administration were selected and their blood-brain barrier permeability was estimated using available 
experimental data and in silico predictions. As a result, we identified 19 drugs, which can be potentially 
repurposed for the MDD treatment. These drugs belong to various therapeutic categories, including
adrenergic/dopaminergic agents, antiemetics, antihistamines, antitussives, and muscle relaxants. Many of these 
drugs have experimentally confirmed or predicted interactions with well-known MDD-related protein targets 
such as monoamine (serotonin, adrenaline, dopamine) and acetylcholine receptors and transporters as well as with 
less trivial targets including galanin receptor type 3 (GALR3), G-protein coupled estrogen receptor 1 (GPER1),
tyrosine-protein kinase JAK3, serine/threonine-protein kinase ULK1. Importantly, that the most of 19 drugs 
act on two or more MDD-related targets, which may produce the stronger action on gene expression changes 
and achieve a potent therapeutic effect. Thus, the revealed 19 drugs may represent the promising candidates 
for the treatment of MDD.
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the experimental data on drug-induced gene expression
profiles (DIGEPs) is absent for many existing drugs 
as well as for billions of organic compounds with 
drug-like properties. In 2013, we developed an in silico
approach to predict DIGEPs based on structural
formula of drug-like compounds using an analysis 
of structure-activity relationships (SARs) [13]. 
It was based on the published data on chemical-induced
gene expression changes from the Comparative
Toxicogenomics Database (CTD) [14] and 
SARs analysis performed by PASS software [15–17].
The approach allows predicting up- and down-regulation
of particular human genes at mRNA and protein levels
based on structural formula of drug-like compound.
Recently, we have extended this approach with 
network analysis and implemented it in a freely
available DIGEP-Pred 2.0 web application [18].
DIGEP-Pred 2.0 is based on significantly larger data 
on DIGEPs including data obtained in various cell lines.
More importantly, we implemented two types 
of analysis that are based on the predicted genes. 
First, the enrichment analysis can be performed 
to identify pathways, biological processes, and diseases
associated with the predicted expression changes.
Second, in addition to prediction of gene expression
changes, the structural formula of a compound 
is also used to predict its direct protein targets 
by using PASS. The network analysis is applied 
to reconstruct signaling and regulatory network
connecting probable targets to probable genes. 
As a result, the user can obtain information 
on potential protein targets, which are responsible 
for drug-induced gene expression changes. All these
results can be obtained using only the structural
formula of a query compound.

In this study, we applied the DIGEP-Pred approach
to identify drugs that induce changes in expression 
of genes associated with the etiopathogenesis of MDD,
followed by identification of their potential targets 
and molecular mechanisms of antidepressive effects.
The study included three main steps. First, we predicted
DIGEPs for more than 3000 worldwide approved drugs.
Disease enrichment analysis applied to the predicted
genes allowed to identify drugs that significantly
altered the expression of MDD-related genes retrieved
from the literature. Second, potential drug targets,
which are probable master regulators responsible 
for drug-induced gene expression changes, have been
identified through PASS prediction and network
analysis. Only those drugs whose potential targets 
were clearly associated with MDD in the literature,
were selected for further analysis. Third, since potential
new antidepressants must cause effect within brain
tissues, blood-brain barrier (BBB) permeability 
was estimated for the selected drugs using available
experimental data and in silico predictions. Moreover,
only drugs with an oral route of administration 
were selected. As a result, we have identified 
19 drugs which can be potentially repurposed 
for the treatment of MDD.

MATERIALS AND METHODS

World Wide Approved Drugs database

World Wide Approved Drugs database (WWAD)
[19] was used to identify drugs that could be potentially
repositioning for the treatment of MDD. The database
contains information on 3776 pharmaceutical
substances including structural formulas which have
been approved at least in one of 71 countries and 
are not related to narcotic, psychotropic, and toxic
compounds. To perform DIGEP prediction, we selected
3690 out of 3776 drug structures that satisfied 
the following conditions. First, the structure must
contain at least three carbon atoms and have 
a molecular weight of less than 1500 Da. Second, each
chemical bond in the molecule is a covalent 
single, double, or triple bond only. Metalloorganic 
and complex compounds have been excluded. 
Third, the total charge of the molecule is zero. 
Fourth, the compound has a single-component
structure. These criteria are used in the PASS software
and represent a standard that is widely used in creating
training sets for SAR modeling and predicting 
the biological activity of new compounds [17].

Prediction of Drug-Induced Gene Expression Changes

The DIGEPs of 3690 drugs were predicted 
using SARs which were previously developed 
and implemented in the DIGEP-Pred 2.0 
web application [18]. Briefly, SARs have been created
using an information on DIGEPs at the mRNA level
from the CTD database. Each compound from 
the CTD database was associated with a list of genes
flagged with the direction of expression changes, 
up-regulation and down-regulation, for example,
“ADGRB3 UpRegulation”. Structural formulas 
of compounds satisfying the above-mentioned 
criteria were downloaded from PubChem. 
The resulting training set contained 2620 structures.
The corresponding SAR models for each gene and
direction of its altered expression were created 
by the PASS software. PASS uses the Multilevel
Neighborhoods of Atoms (MNA) molecular structure
descriptors and a modified naive Bayes approach 
for simultaneous prediction of many types of biological
activities, including changes in expression of particular
genes. For example, compounds flagged with
“ADGRB3 UpRegulation” activity were considered 
as “active” while other structures in the training set
lacking the corresponding flag were considered 
as “inactive”. A binary classification SAR model 
was then created. The same SAR analysis 
was performed for all genes and direction of their
altered expression presented in the training set. 
After the training, PASS was able to predict 
18425 mRNA-related activities (up- or down-regulation
of particular genes) corresponding to 13377 individual
human genes with an average accuracy of 86.5% and 
a minimal accuracy of 75% calculated by leave-one-out
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cross-validation [18]. PASS calculates two estimates 
of probabilities for each biological activity 
of a new chemical compound: Pa is a probability 
to be active, Pi is a probability to be inactive. 
If a compound has Pa > Pi, it can be considered active.
The larger the Pa and Pa − Pi values are, 
the greater is the probability of obtaining the activity 
in the experiment. More information on DIGEP
prediction and PASS software, could be found 
in our previous publications [15–18].

Disease Enrichment Analysis

Using the up- and down-regulated genes predicted
with Pa values exceeding 0.5 we have performed
enrichment analysis for each of 3690 drugs. 
The threshold of Pa > 0.5 was chosen to balance 
the sensitivity and specificity of prediction [17]. 
If we have chosen the high Pa threshold, chances 
to reveal experimental activity would be rather high,
but the compounds thus found may be close structural
analogues of compounds from the trainings set. 
This may result in little or no drugs identified 
for repositioning. In case of Pa > 0.5 as the threshold
criterion, chances of detecting activity in the experiment
are lower but the compounds will be less similar 
to the compounds in the training set [17]. This may lead
to the identification of more drugs for repositioning,
whereas master-regulators analysis taking into account
experimentally confirmed and predicted drug targets
(see below) allowed to avoid identification of many
false positive results. The information on 265 genes
related to MDD (see Supplementary Materials, 
Table S1) was obtained from a curated part 
of the DisGeNET database [20]. To date DisGeNET 
is the biggest database containing gene-disease
associations. We used the DisGeNET version
downloaded on January 26, 2024 and implemented 
in DIGEP-Pred web application. Enrichment 
analysis was performed for the combined lists 
of up- and down-regulated genes of each drug. 
To do this, the drug gene list was compared with 
265 MDD-related genes and intersection between them
was found. Next, the background list of 23335 human
genes used in DIGEP-Pred was compared with 
265 MDD-related genes and intersection between them
was also found. Finally, the Fisher exact test was used
to estimate the significance of differences between 
the intersection sizes for the predicted and background
genes lists. This analysis allowed us to identify drugs
with predicted gene lists that were “enriched” with
known MDD-related genes. To perform further steps 
of analysis (see below), we selected 1460 drugs with
enrichment p-values less than 0.05 and more than 
50 predicted genes known to be associated with MDD.

Prediction of Direct Protein Targets and Molecular
Mechanisms of Action

The data on known human protein targets 
of revealed 1460 drugs was obtained from 

DrugBank [21], DrugCentral [22], and WWAD [19]
databases. These databases also provide information
about molecular mechanisms of drug action, 
such as stimulator or inhibitor of protein function, 
for a part of targets. Additional human targets were
predicted for 1460 drugs using SARs implemented 
in DIGEP-Pred 2.0 web application [18]. Briefly, 
to create SARs, information on ligand-protein
interactions from PubChem and ChEMBL databases
was used. The compounds were considered active 
if their Ki or IC50 values were less than 10 μM or 
if the percent of inhibition was greater than 50%. 
Data on molecular mechanisms of action such as
agonist or antagonist was also taken into account, e.g.,
“Substance-P receptor antagonist”, “Serine/threonine-
protein kinase ULK1 activator” [18, 23]. As a result, 
a training set containing 656011 compounds 
was obtained. To perform SAR analysis, PASS software
was used. After the training, PASS was able 
to predict 2170 mechanisms of action corresponding 
to 1940 individual human proteins with an average
accuracy of 97.9% and a minimal accuracy of 80%
calculated by leave-one-out cross validation.

Master-Regulator Analysis for the Identification 
of Drug Targets Responsible for Induced Gene
Expression Changes

To identify protein targets of drugs which 
are responsible for drug-induced changes in gene
expression, and, potentially, antidepressive effect, 
the network-based analysis was done. The analysis
allowed to reconstruct the signaling regulatory 
network connecting known and predicted targets 
to predicted genes [18]. Briefly, network analysis 
is divided into two steps: (1) the transcription factor
enrichment analysis is used to identify transcription
factors potentially responsible for gene expression
changes, and (2) “upstream” analysis is performed 
to connect revealed transcription factors with predicted
protein targets. The data on transcription factor-gene
interactions derived from the CollecTRI database [24]
was used for enrichment analysis that was performed
using Fisher exact test. Transcription factors 
with p-values less than 0.05 and associated with 
at least two genes were selected for “upstream” 
analysis in the signaling network obtained from 
the OmniPath database [25]. To connect the known and
predicted drug targets with the enriched transcription
factors, we calculated shortest paths, taking into
account the direction of edges in the network. 
The score reflecting the probability that the action 
of a drug on a particular target is responsible 
for gene expression changes was calculated using 
the hyperbolic function [18]. The score represents 
a sum of inversed lengths of shortest paths from a target
to the transcription factors. This function was chosen
because the changes in cell signaling and gene
expression caused by action of a drug on a target
protein decrease with an increase in the distance
between this protein and transcription factors [26, 27].



The significance of scores was calculated using 
the permutation test and protein targets with 
p-values less than 0.05 were selected. As a result, 
1047 out of 1460 drugs with predicted targets — master
regulators were selected for further analysis.

Estimation of Blood-Brain Barrier Permeability

The information on BBB permeability 
for 408 out of 1047 studied drugs was obtained 
from a large benchmark dataset, B3DB, complied 
from 50 published resources and categorized based 
on experimental uncertainty [28]. B3DB contains 
both qualitative and quantitative experimental data 
on BBB permeability for drugs. The drug was
considered to penetrate through BBB if the log BB value
was more than -1. Since many of studied 
compounds did not have corresponding experimental
information, the BBB permeability was predicted using
ADMETlab 3.0 [29] and pkCSM [30] web applications.
ADMETlab 3.0 calculates probability that a compound
penetrates BBB. According to recommendations 
of the authors, a compound with a probability greater
than 0.7 is considered permeable through the BBB [29].
pkCSM calculates log BB values for a query compound.
The authors recommend considering a compound 
as BBB-permeable, if the predicted log BB value 
was greater than -1 [30]. We considered a compound 
to penetrate the BBB if both tools predicted 
its permeability. We selected 325 out of 1047 drugs
with positive experimental and predicted data 
on BBB permeability for further analysis.

Data on Routes of Administration and Drug Categories

Information on routes of administration and
therapeutic categories of 325 drugs was obtained from
the ATC/DDD Index 2024 and DrugBank databases.
We selected only drugs with oral mode 
of administration for further analysis. The hormones
and antineoplastic drugs were excluded because 
of large number of undesirable effects. We also excluded
the nervous system drugs (see Supplementary Materials,
Table S2) such as known antidepressants, analgesics,
antiepileptics, antiparkinsonian, sedative drugs, since
the most of them were studied for the antidepressive
effect. Additionally, we selected the drugs whose
targets — master regulators were clearly associated
with MDD in the literature. As a result, we identified 
19 drugs which can be potentially repurposed 
for the treatment of MDD.

RESULTS AND DISCUSSION

We applied the DIGEP-Pred approach 
to identify drugs that can be potentially repurposed 
for the treatment of MDD. We predicted DIGEPs 
for 3690 worldwide approved drugs and identified
those which were significantly associated with 
expression changes of MDD-related genes. 
Network-based analysis of experimentally confirmed

and predicted protein targets of drugs allowed
identifying probable targets — master regulators that
could be responsible for drug-induced gene expression
changes. The role of many revealed drug targets 
in MDD pathophysiology was manually confirmed 
by literature analysis. We have selected only orally
administrated drugs that are known or predicted 
to penetrate through BBB, to ensure that they 
may act within brain tissues. Among others we have
identified 64 drugs which are used to treat nervous
system disorders; these included 14 antidepressants 
(see Supplementary Materials, Table S2). These
findings support the applicability of our approach 
to identify drugs for the treatment of MDD. 
Other nervous system drugs (analgesics, antiepileptics,
antiparkinsonian, and sedative drugs) have also been
previously studied in clinical and animal trials for their
antidepressive effect. In the current study, we have
focused on drugs whose indications are not related 
to nervous system disorders. As a result, we identified
new 19 drugs with different indications that 
can be potentially repurposed for the treatment of MDD.

Table 1 contains information on 19 drugs including
therapeutic categories, numbers of MDD-related genes
whose expression was predicted to be changed 
by a drug, p-values from disease enrichment analysis,
and data on protein targets predicted by network
analysis as master regulators and potentially
responsible for gene expression changes. The most 
of predicted drug-target interactions were supported 
by experimental data from DrugBank, DrugCentral,
and WWAD databases. Most of interactions were also
associated with information on molecular mechanism
of action: stimulation or inhibition of protein targets'
function, e.g., agonist or antagonist of receptor.

All targets — master regulators presented 
in Table 1 have known associations with MDD. 
Besides well-known MDD-related protein targets 
such as serotonin, adrenaline, dopamine, and muscarinic
acetylcholine receptors, less trivial targets and related
mechanisms of action have been found. These included
galanin receptor type 3 (GALR3) antagonist [31, 32],
G-protein coupled estrogen receptor 1 (GPER1) 
agonist [33–35], tyrosine-protein kinase JAK3 
inhibitor [36, 37], serine/threonine-protein kinase
ULK1 activator [38, 39]. Galanin is a neuropeptide
involved in numerous functions such as nociception,
cognition, feeding behavior, nerve regeneration,
memory, neuroendocrine release, and addiction. 
It participates in a wide range of physiological and
pathological conditions including epilepsy, chronic
anxiety, depression, and pain. It is currently known 
that inhibition of galanin receptors 1 and 3 leads 
to attenuation of depressive symptoms. These receptors
are promising targets for new antidepressants [31]. 
The G-protein coupled estrogen receptor 1 (GPER1) 
is a membrane receptor that plays a role in cognition,
depression, homeostasis, pain, and other neurological
processes. There is evidence that estrogen 
may accelerate the therapeutic effects of selective
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Table 1. Information on 19 drugs that can be potentially repurposed for the treatment of major depressive disorder

Drug category reflects the main therapeutic indication of a drug. Number of genes represents the number 
of MDD-related genes, with predicted drug-included expression changes. -log10 (p-values) is negative decimal
logarithm of p-values derived from a disease enrichment analysis. Protein targets – master regulators are protein targets
of drugs predicted by network analysis as master regulators and potentially responsible for gene expression changes.
The letters (A) and (I) mean that a drug activates or inhibits protein function, for example, a drug is an agonist or
antagonist of particular receptor. Asterisk (*) shows that the target was predicted by PASS and was not confirmed 
in experiment. (#) shows that the target is known to be used for MDD treatment but it was not predicted by network
analysis as a master regulator.

Drug name Drug category Number
of genes -log10 (p-value) Protein targets – master regulators

Droxidopa Adrenergic/dopaminergic
agents 97 1.69 ADRA1A-(A), ADRA1B-(A), ADRA1D-(A),

ADRB3-(A)

Phenylephrine Adrenergic/dopaminergic
agents 151 3.45 ADRA1A-(A), ADRA1B-(A), ADRA1D-(A)

Methenamine Antibacterials 173 3.66 JAK3-(I)*, TYK2-(I)*

Diphenidol Antiemetics 170 4.01 CHRM2-(I), DRD2, DRD3, HTR2A,
SIGMAR1#

Tropisetron Antiemetics 159 4.46 HTR1A, HTR3-(I)#, SLC6A4#

Isobromindione Antigouts 125 3.71 GALR3-(I)*, GPER1-(A)*, HTR2B-(I)*

Cyclizine Antihistamines 53 1.59 ADRA1D, ADRA2A, CHRM2, DRD3, HTR2A,
HTR2B, HTR2C, MAOB#, SLC6A3#

Cyproheptadine Antihistamines 89 2.08

ADRA2A, ADRA2B, ADRA2C, CHRM2_I,
DRD2, DRD3, HTR1A, HTR1D, HTR2A-(I),
HTR2B-(I), HTR2C-(I), HTR6, HTR7-(I),
SLC6A2#, SLC6A4#

Diphenhydramine Antihistamines 51 2.02 CHRM2-(I), HTR2A, HTR2B, HTR2C, HRH4,
SLC6A2#, SLC6A3#, SLC6A4#

Diphenylpyraline Antihistamines 95 1.96 SLC6A3-(I)#; DRD4-(I)*

Pimethixene Antihistamines 80 2.78 CHRM2-(I), DRD2-(I), HTR1A-(I), HTR2A-(I),
HTR2B-(I), HTR2C-(I), HTR6-(I), HTR7-(I)

Homarylamine Antitussive — cough
suppressants 97 2.22 GALR3-(I)*

Eprazinone Antitussive — mucolytics 157 4.27 TACR1-(I), ULK1-(A)*

Propranolol Beta blocking agents 95 2.16
ADRB3-(I), HTR1A-(I), HTR1B, HTR1D,
HTR2A, HTR2B, HTR2C, HTR6, SIGMAR1#,
SLC6A4#

Lacidipine Calcium channel blockers 81 1.86 DRD3, SLC6A2#

Cyclobenzaprine Muscle relaxants 203 4.85 CHRM2, HTR2A-(I), HTR2B-(I), HTR2C-(I),
HTR6-(I), HTR7-(I), SLC6A2-(I)#, SLC6A4-(I)#

Pridinol Muscle relaxants 172 4.28 CHRM2

Trospium Urologicals — muscarinic
antagonist 65 1.32 CHRM2-(I)

Dapoxetine Urologicals — premature
ejaculation treatment 81 4.79 HTR1A, HTR1B, HTR2C, SLC6A4-(I)#



serotonin reuptake inhibitors through the GPER1 
in the hypothalamic-pituitary system [33]. 
The JAK3 kinase is known to participate 
in MDD pathophysiology [36, 37]. The JAK3 gene
transcription is increased in patients with depression
compared to healthy controls [36]. It was shown 
that induction of stress in mice caused inhibition 
of neurogenesis and appearance of MDD symptoms.
Application of JAK3 inhibitors normalized 
inhibition of neurogenesis and the anxious-depressive
behavior [37]. The ULK1 kinase is a well-known
regulator of authophagy. Chronic stress contributes 
to the development of depression and associates 
with reduced autophagy level; thus, ULK1 activators 
may potentially induce the antidepressive effect [38, 39].

The identified 19 drugs belong to a wide 
range of therapeutic categories including
adrenergic/dopaminergic agents (2 drugs), antiemetics
(2 drugs), antihistamines (5 drugs), antitussives 
(2 drugs), muscle relaxants (2 drugs). Many of these
drugs have experimentally confirmed information 
on the interaction with monoamine (serotonin,
adrenaline, dopamine) and acetylcholine receptors 
and transporters which were predicted as master
regulators. Certain evidence exists in the literature 
that tropisetron [40–43], cyproheptadine [44], 

lacidipine [45], cyclobenzaprine [46], and 
dapoxetine [47], exibited the potential antidepressive
effect in animal and clinical studies.

It is important that the majority of 19 drugs 
act on at least two MDD-related targets. We suggest
that the more targets — master regulators affected 
by a drug, the stronger effect on gene expression 
should be observed. Figure 1 shows the signaling
regulatory network describing mechanisms 
of potential therapeutic effect of Eprazinone in MDD.
Eprazinone is a known antagonist of Substance P
receptor that one of the perspective targets 
for the treatment of MDD [48, 49]. Eprazinone was also
predicted by PASS as an activator of the ULK1 kinase.
Both targets were predicted by network analysis 
as master regulators that could initiate signaling
cascades leading to changes in activity of transcription
factors. Figure 1 contains data on 22 most significant
transcription factors revealed by enrichment analysis 
of predicted genes with p-values less than 0.05 (after
Benjamini-Hochberg correction). In turn, Eprazinone
predicted to change expression of 157 MDD-related
genes (see Table 1) and 40 of them, which have 
known relationships with transcription factors 
in the CollecTRI database, are shown in Figure 1. 
The figure demonstrates that the action of Eprazinone
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Figure 1. The signaling regulatory network describing mechanisms of potential therapeutic effect of Eprazinone 
on major depressive disorder. Rectangles correspond to known (TACR1) and predicted (ULK1) targets of Eprazinone.
Red (blue) color of rectangle means that Eprazinone activates (inhibits) the corresponding target. Small purple circles
correspond to genes whose expression was predicted to be changed by Eprazinone. Green triangles correspond 
to transcription factors potentially regulating expression of the genes. Grey circles correspond to intermediate proteins
that link Eprazinone targets with transcription factors. The color version of the figure is available in the electronic
version of the article.



on the Substance P receptor and ULK1 kinase 
initiates two largely separate signaling cascades 
and many of 22 transcription factors regulated 
by only one of them. The same relative specificity 
is true for the regulation of gene transcription 
by transcription factors. It potentially means that
significant changes in expression of MDD-related
genes may be only induced by action on several targets
rather than one target. Recently, Arash Sadri proposed
that the target-based drug discovery has been inefficient
in the creation of new drugs for the treatment 
of complex diseases such as MDD. It has been 
shown that approved drugs mediate their therapeutic
effects through numerous off-target mechanisms 
rather than a single target [50]. Thus, to achieve 
the desired therapeutic effect, multi-target drug action
or the application of synergistic drug combinations 
are required. The effective drugs should cause
permutation to a network of proteins rather than
particular single targets. The proposed DIGEP-Pred
approach is consistent with these principles 
of network pharmacology [51]. Thus, the revealed 
19 drugs may represent the promising candidates 
for the treatment of MDD.

The proposed approach also has some limitations.
Since it is based on SAR modeling, the corresponding
predictions cannot be made for drugs that 
are significantly dissimilar to those in the training sets.
The analysis also cannot be performed for drugs 
that do not alter gene expression and drugs that 
are not suitable for SAR analysis, such as inorganic,
metalloorganic, and complex compounds, and
macromolecules. Finally, like any other SAR-based
method, the proposed approach does not allow 
to distinguish between drugs with similar structure 
but with different properties, including DIGEP.

CONCLUSIONS

We have demonstrated the usefulness 
of the DIGEP-Pred approach for the drug repositioning
in the MDD case study. We identified 19 drugs,
including adrenergic/dopaminergic agents, antiemetics,
antihistamines, antitussives, and muscle relaxants,
which can be potentially repurposed for the treatment
of depression. Many of these drugs have
experimentally confirmed or predicted interactions
with monoamine (serotonin, adrenaline, dopamine) and
acetylcholine receptors and transporters as well as with
less trivial targets including galanin receptor type 3, 
G-protein coupled estrogen receptor 1, tyrosine-protein
kinase JAK3, and serine/threonine-protein kinase ULK1.
The most of 19 drugs act on two or more protein 
targets that may lead to significant changes 
in expression of genes participating in etiopathogenesis
of major depressive disorder, and, in turn, cause
pronounced therapeutic effect. Thus, the revealed 
19 drugs may represent the promisimg candidates 
for the treatment of major depression.
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РЕПОЗИЦИОНИРОВАНИЕ ЛЕКАРСТВ ДЛЯ ТЕРАПИИ 
БОЛЬШОГО ДЕПРЕССИВНОГО РАССТРОЙСТВА НА ОСНОВЕ ПРОГНОЗА 
ЛЕКАРСТВЕННО-ИНДУЦИРОВАННЫХ ИЗМЕНЕНИЙ ЭКСПРЕССИИ ГЕНОВ
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Большое депрессивное расстройство (БДР) — одно из самых распространённых заболеваний, которым
страдают миллионы людей во всем мире. Использование существующих антидепрессантов во многих случаях
не позволяет добиться устойчивой ремиссии, вероятно, из-за недостаточного понимания этиопатогенеза
заболевания. Это указывает на необходимость разработки более эффективных лекарств на основе глубокого
понимания патофизиологии БДР. Поскольку разработка новых препаратов является длительным процессом и
требует больших финансовых затрат, репозиционирование лекарств является многообещающей альтернативой.
В данном исследовании мы применили недавно разработанный нами подход DIGEP-Pred для поиска 
лекарств, вызывающих изменения в экспрессии генов, связанных с БДР, с последующей идентификацией 
их потенциальных мишеней, также связанных с БДР, и молекулярных механизмов антидепрессивных эффектов.
Анализ включал следующие этапы. Во-первых, мы выполнили прогноз лекарственно-индуцированных
изменений экспрессии генов для 3690 лекарств, зарегистрированных в разных странах мира, с использованием
связей “структура-активность” (ССА). Анализ обогащения заболеваний, применённый к предсказанным генам,
позволил идентифицировать лекарства, которые оказывали существенное влияние на экспрессию генов,
связанных с БДР. Во-вторых, потенциальные белки-мишени лекарств, являющиеся мастер-регуляторами,
которые ответственны за наблюдаемые изменения экспрессии генов, были идентифицированы с помощью
прогноза на основе ССА и анализа молекулярных сетей. Для дальнейшего анализа были отобраны 
только те лекарства, потенциальные мишени которых, согласно опубликованным данным, были связаны с БДР.
В-третьих, поскольку новые антидепрессанты должны действовать в тканях мозга, нами были выбраны
лекарства с пероральным способом применения, а их проницаемость через гематоэнцефалический барьер была
оценена с использованием имеющихся экспериментальных данных и прогноза in silico.Врезультате мы выявили
19 лекарств, которые потенциально могут быть репозиционированы для терапии БДР. Эти лекарства 
относятся к различным терапевтическим категориям, включая адренергические/дофаминергические средства,
противорвотные, антигистаминные, противокашлевые средства и миорелаксанты. Для многих из найденных
лекарств известны или предсказаны взаимодействия с белками-мишенями, связь которых с БДР хорошо
изучена, включая моноаминовые (серотонин, адреналин, дофамин) и ацетилхолиновые рецепторы и
транспортеры, а также с менее тривиальными мишенями, включая рецептор галанина типа 3 (GALR3),
эстрогеновый рецептор 1, связанный с G-белком (GPER1), протеинкиназы JAK3 и ULK1. Важно, 
что большинство из 19 лекарств воздействуют на две или более мишени, связанные с БДР, что может 
приводить к более сильному воздействию на экспрессию генов и, как следствие, к более выраженному
терапевтическому эффекту. Таким образом, идентифицированные 19 лекарств могут являться перспективными
кандидатами для терапии БДР.
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