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Traditional testing methods in pharmaceutical development can be time-consuming and costly, but in silico
evaluation tools can offer a solution. Our in-house Active-IT system, a Ligand-Based Virtual Screening (LBVS) tool,
was developed to predict the biological and pharmacological activities of small organic molecules. It includes
four independent modules for generating molecular descriptors (3D-Pharma), machine learning modeling (ExCVBA),
a database of bioactivity models, and a prediction module. Activity data collected from the PubChem BioAssay
database was used for modelling SVM and Naive Bayes machine learning methods. Models have been constructed
using a recursive stratified partition method and validated through an activity randomization (Y-random) process.
Over 3500 bioassays were modeled, each comprising 30 SVM and 30 Naive Bayes models and 60 randomized
models. Bioassays with low performance or discrimination between regular and randomized were discarded. Using
the Active-IT system we have evaluated three bioactive compounds of Ayahuasca tea. The predictions were thoroughly
validated using known targets described in several public databases. The external validation results are noteworthy,
with 16 of 33 (48.5% with p-value<0.0001) known targets correctly predicted. This level of accuracy in large-scale
virtual screening methods is very significant and demonstrates the effectiveness of the Active-IT methodology
in predicting the potential biological activities of small organic molecules.
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INTRODUCTION
Although traditional testing methods
in pharmaceutical development can be both

time-consuming and costly, the advent of in silico
evaluation tools offers a promising alternative.
The Active-IT system is a cutting-edge platform that
combines advanced molecular descriptor generation,
machine learning, predictive models, and a dedicated
prediction module [1]. This system has proven
to be worthy in the field of drug discovery and
development [1-5].

Active-IT uses multi-conformational binary
pharmacophore fingerprints as molecular descriptors.
This innovative approach combines 3D structures and
conformational dynamics, moving away from
the conventional 2D calculations typically employed
in virtual screening [6]. What sets Active-IT apart
is its rejection of a single “best model” in favor
of a recursive partition approach for developing and
validating multiple models. These varied models
are also used during the prediction phase, resulting
in a more robust and diverse set of predictions.

The primary goal of this study is to present
the Active-IT methodology and its wvalidation
by investigating the bioactivity of the alkaloids

from the stem of Banisteriopsis caapi and leaves
of Psychotria viridis. These two plants are used to make
Ayahuasca tea (used in Indigenous religious rituals),
known for its psychoactive properties [7]. Our in-house
Active-IT system targeted alkaloids 1 to 3 (Fig. 1) from
these species for predicting potential biological and
pharmacological activities [8, 9].

METHODS

The NEQUIM Active-IT system is an innovative
ligand-based bioactivity prediction platform with
four essential components (Fig. 2) that integrate
the creation of descriptors for substances (3D-Pharma),
advanced machine learning techniques (ExCVBA),
a comprehensive database of activity models,
and a robust prediction module (Active-IT). Figure 2
shows a simplified depiction of the Active-IT modules
and a detailed modeling process.

The 3D-Pharma module utilizes 3D pharmacophore
fingerprints to encode molecular structures from
a set of conformations [10]. These fingerprints can help
to identify the key features responsible for the biological
activity of compounds. Each 3D structure is carefully
analyzed, with all non-hydrogen atoms categorized
into six groups: positive, negative, hydrogen donor,
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Figure 1. Chemical structure of 7-methoxy-1-methyl-9H-pyrido[3,4-b]indole (harmine 1) and 7-methoxy-1-methyl-

4,9-dihydro-3H-pyrido[3,4-bJindole (harmaline 2) from stems of B.

caapi, and 2-(1H-indol-3-yl)-N,N-

dimethylethanamine (N,N-dimethyltryptamine 3) (DMT) from leaves of P. viridis.
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Figure 2. Flow chart of the Active-IT system with its four modules and the modeling protocol using a recursive
stratified random partition method controlled by the ExCVBA module is also shown. The color version of the figure

is available in the electronic version of the article.

hydrogen acceptor, hydrophobic, and aromatic [11].
Additionally, the 3D-Pharma module calculates
all possible combinations of three pharmacophores
by considering their distances (discretized
in ten distance bins). Each triplet is represented
by a 6-character string (3 characters for the feature
on vertices and 3 for the distance bins on the edges)
that identifies it unequivocally [12]. Each conformation
of the compound is associated with an unambiguous
vector of 3-point potential pharmacophores (3PPP).
To have one representative vector of the compound,
all uniconformational vectors of the compound
are combined into a unique multiconformational binary
modal vector [13]. This single vector contains valuable
information about structural details and dynamic
behavior of compounds in four dimensions [14].
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The Active-IT system relies on extensive data
collected from the PubChem BioAssay database [15, 16].
This systematic data collection ensures that
our models accurately represent real-world situations.
Each compound classified as active or inactive
within the PubChem QOutcome field in each bioassay
had its structure (up to 10 conformations) downloaded
from the PubChem Compound database [17] and
processed as discussed above. We meticulously
collected over 3,500 bioassays, assembling them
with the EXCVBA module [18] and utilizing
the capabilities of supervised machine learning methods,
such as Support Vector Machine (implemented through
LibSVM by Chang and Lin, [19]) and Naive Bayes
(available in the CPAN repository and developed
by Williams [20]) in our custom Perl program.
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The construction of the bioactivity models
employs a rigorous random recursive stratified
partition method. This method ensured that
the distribution of active and inactive compounds
was consistent in both the test (or validation) and
modeling groups. Our approach involved randomly
dividing each set of compounds into two subsets,
with a 30% and 70% split, without replacement,
corresponding to test and modeling groups.
This recursive process was repeated at least
of 30 times (as illustrated in Fig. 2) for each
bioassay, resulting in 30 distinct models for each
machine-learning method. To validate the effectiveness
of our models, we subjected each dataset to an activity
randomization process (known as Y-random).
This process generated randomized groups,
allowing us to assess the validity of the models against
the overfitting risk [21]. As a result, 120 models —
60 regular and 60 randomized — were developed
for each bioassay analyzed.

Figure 3 presents the distribution of the area
under the receiver operating characteristic curve
(AUC-ROC) values for PubChem Bioassay AID 1194
(DSSTox Salmonella Mutagenicity). It shows all four
model sets (SVM and Naive Bayes, both regular and
randomized) and provides a compelling visualization
of the randomization process. When the models
generated through randomizing activities were found
to have the same predictive accuracy as conventional
models (verified by superposition of AUC distribution
curves), they were quickly rejected as unsuitable
for accurately predicting potential biological activities.

Additionally, the models created for each bioassay
were assessed, using only the validation groups,
in order to determine the overall AUC for each method.
Consequently, we rejected the low-performing
modeled bioassay, using the overall AUC>0.6
as an accuracy threshold. About 22% of SVM and
39% of Naive Bayes modeled datasets were rejected
based on these two filters.

The support Vector Machine (SVM) method with
linear kernel requires a fine-tuning of cost parameter
that we made through a 5-fold cross-validation
on the modeling group, using the Power Metric (PM)
as the optimization objective [22, 23]. To predict
the potential biological activities of new compounds,
their structures are obtained from the PubChem
Compound database and subjected to the mentioned
processing steps. In cases where structures
are unavailable, they are constructed with
ChemAxon tools (https://www.chemaxon.com), while
conformations are obtained using the OpenEye
OMEGA program [24].

When beginning to predict a new compound,
its multiconformational modal fingerprint is entered
into all the models designed for each bioassay.
Each model produces a raw score, which is compared
with the raw score distribution of active and inactive
compounds when they appear in the validation
group. Through this comparison, two new values
are derived, providing the compound with a likelihood
of being either active (Pa) or inactive (Pi)
(as illustrated in Fig. 4) [25]. In our previous research
work [5], we have set threshold values of 0.5 and 0.8

AUC DISTRIBUTION (AID 1194)

-SVM —SVM_Random

30

—Bayes —Bayes_Random

25

20

15

10

NUMBER OF MODELS

-\

0 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1

AREA UNDER THE ROC CURVE (AUC)

Figure 3. Distributions of the area under the ROC curve (AUC) values for the models generated for each method
(SVM and Naive Bayes) and activity randomization process (Y-random) for the PubChem Bioassay AID 1194
(DSSTox Salmonella Mutagenicity). The vertical lines represent the value of the overall AUC calculated over the full
set of models using the validation set only. In the case of this bioassay, the overall AUC exceeds the cutoff value of 0.6
and is considered satisfactory. The color version of the figure is available in the electronic version of the article.
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for the Pa — Pi values in the SVM and Naive Bayes
methods, respectively, to be considered promising
activity for the compound under study.

The limiting lines in Figure 4 are estimated from
the variance of Pa — Pi (o}, p;, analytically calculated
as discussed before by Rocha et al. [2] according
to Equation (1), where Na and Ni are the number
of active and inactive compounds.

Pax(1 — Pa) Pix(1 — Pi)
+

Na Ni M

Glga—Pi:

The confidence interval of Pa — Pi was
calculated from the variance and Student z-value
for a 95% confidence level (Equation 2) [26].

x \’ GlgafPi

(Pa — Pi) =(Pa—Pi),p, Tt

stat (2 )

estimate mean

RESULTS AND DISCUSSION

The potential biological activities of Ayahuasca
components 1 to 3 were predicted through calculations
with the Active-IT system. Their pharmacophore
fingerprints were submitted to the Active-IT system
to forecast their potential activities using SVM with
2,782 bioassays and Naive Bayes with 2,176 bioassays.
Considering only the bioassays associated with specific
biological targets, these numbers are 1,550 for SVM
and 1,111 for Naive Bayes.

For external validation of the predictions,
the targets found in the PubChem Compound webpage
(“Chemical-Target Interactions”) of the compounds
harmine (1) (77 targets), harmaline (2) (30 targets), and

N,N-dimethyltryptamine (3) (13 targets) were used.
This information was obtained from several databases,
such as DrugBank, IUPHAR/BPS, Therapeutic Target
Database (TTD), and Comparative Toxicogenomics
Database (CTD).

Considering only targets available in the Active-IT
system, 33 predictable targets remained. Analyzing
only the cases in which the predicted Pa — Pi values
exceed the aforementioned cutoff values, the SVM and
Naive Bayes methods correctly predicted 16 targets
with high complementarity (Table 1). Thus, around
48% of the targets were correctly predicted.

To estimate the statistical significance
of our results, we use the p-value, which indicates
the probability of obtaining a result equal to or more
extreme than the observed due to chance. The p-value
of the prediction using the Active-IT system
was estimated using a hypergeometric distribution
(Equation 3), where N is the number of modeled
bioassays used in the prediction, & is the number
of known targets, M is the number of bioassays
selected, and n is the number of known targets
predicted among the bioassays selected.

lue = k)(N—k
p-value = || 3

Table 2 shows the number of bioassays selected
for each compound in both prediction methods
used to estimate the p-values of the predictions.
The number of 16 targets predicted using both methods
corresponds to a p-value<0.0001, demonstrating
the high significance of our predictions.
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Figure 4. Distribution of the probabilities of a compound being active (Pa), ascending blue lines, and inactive (P1),
descending red lines, as a function of the SVM (or Naive Bayes) raw score for the PubChem Bioassay AID 1194
(DSSTox Salmonella Mutagenicity). The color version of the figure is available in the electronic version of the article.
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Table 1. The number of known targets for the analyzed compounds and the number of targets correctly predicted

by the Active-IT system

PubChem Bioassays
Compound Targets Known
SVM Selected | Naive Bayes Selected | SVM or Naive Bayes Selected
Harmine (1) 19 5 (26%) 5 (26%) 8 (42%)
Harmaline (2) 11 4 (36%) 4 (36%) 6 (55%)
N,N-Dimethyltryptamine (3) 3 1 (33%) 1 (33%) 2 (67%)
Total 33 10 (30%) 10 (30%) 16 (48%)

Table 2. The number of modeled PubChem Bioassays associated with biological targets used in the predictions and
the number of bioassays selected by each method. The last column shows the p-values estimated for the prediction with

both methods (SVM or Naive Bayes)

Compound "Il;argets PubChem Bioassays povalue
NOWR | SVM Selected | Naive Bayes Selected | SVM or Naive Bayes Selected
Harmine (1) 19 137 78 193 <0.00005
Harmaline (2) 11 125 49 160 <0.00002
N,N-Dimethyltryptamine (3) 3 109 32 132 <0.01000
All targets selected 33 371 159 485 <0.00010
All targets predicted — 1550 1111 2661 —
CONCLUSION COMPLIANCE WITH ETHICAL STANDARDS

This study focuses on developing and assessing
the Active-IT system, a cutting-edge ligand-based
virtual screening tool for predicting biological
and pharmacological activities of small organic
molecules. The Active-IT approach encompasses
multi-conformational binary pharmacophore fingerprints
for molecular descriptor generation, recursive stratified
random dataset partition for machine learning
model development, and a robust prediction module
for dependable bioactivity predictions.

The Active-IT predictive accuracy was confirmed
by evaluating three bioactive compounds from
Ayahuasca tea. A remarkable 48.5% (p-value<0.0001)
of known targets were accurately predicted.
This high level of accuracy in large-scale virtual
screening is noteworthy. These external validation
results show that the Active-IT system is effective
in bioactivity prediction and can contribute significantly
to computational drug discovery and development.
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KPYIIHOMACIHITABHOE IPEJICKA3BAHUE BHOJOTMYECKOM AKTUBHOCTH
C UCITOJIB30BAHUEM CUCTEMBI ACTIVE-IT
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TpaguuuoHHBIE METOIBI TECTHPOBAHUS IPH Pa3padOTKe HOBBIX (hapMaleBTUUECKHX MPEINapaToB SIBISIOTCA
TPyROEMKAMH M JIOPOTUMH, OJHAKO WHCTPYMEHTHI in Silico OLEHKH MOTYT MOMOYb B PEUICHUH 3TOH MPOOIEMBI.
Cucrema Active-IT — “nHCcTpyMeHT” AJisl IPOBENIEHHS] BUPTYaJIbHOTO CKPUHHHIA HA OCHOBE CTPYKTYphI JIMT'AHIOB,
KOTOpBIA ObUT pa3pabOTaH HaMu ISl TpecKa3aHusi OMOJIIOTHYECKOM aKTMBHOCTH MajlbIX OPraHMYECKHX MOJIEKYII.
Ona BKIIIOYaeT B ce0sl YeThIpe HE3aBUCUMBIX MOJYJISI: MOYJIb T€HEepauy MOJIEKYISIPHBIX JeckpunTopoB (3D-Pharma);
Moxyinb MamuHHOTO 0o0ydeHHs (ExCVBA); 6a3y maHHBIX O OMOJIOTHYECKHX AKTUBHOCTSX; MOAYJb MNpEICKa3aHusl.
JlarHbIE 0 OHONOTHMYECKUX AKTHBHOCTSIX ObUTH moiydeHbl 3 0a3bl qanHeIX PubChem BioAssay. s moctpoeHust
MoieTieil MaIMHHOTO OOYyYeHUs UCTIONB30BaHbl METOI ONIOPHBIX BEKTOPOB M HAMBHBIN 0alileCOBCKHUM KITacCH(PHUKATOP.
Mopenu ObUTH CKOHCTPYHPOBAHBI C UCTIOJIb30BAHUEM CITYYallHOI'O PEKYpPCHBHOTO CTPaTU(QHIMPOBAHHOTO pa3OueHus,
UX BaJUJalHUI0 NPOBOJMIM NyTEM paHAOMHU3alUUU JaHHBIX 1o akTuBHOCTH (Y-random). Bbuin mocTpoeHsl
mozenu ast 3500 GHOIOTHYECKHX TECT-CHCTeM, Kakaash M3 KOTOphIX cocTouT u3: (i) 30 mopenel, mOCTPOCHHBIX
C UCIOJIB30BaHNEM METOa ONIOPHBIX BEKTOPOB; (ii) 30 Mozerneit, MoCcTpOeHHBIX 10 HAMBHOMY 0aiiecOBCKOMY alropuTMy;
(iii) 60 paHmOMH3MPOBAHHBIX MOJENEH AN BalWAANWU. BHONIOTHYECKHE TeCcT-CHCTEMBI, OONAafoIIue HU3KOM
MPOU3BOJUTENILHOCTHIO MIIH HEBBICOKOHM TUCKPHIMHUHAIMOHHON CIIOCOOHOCTRIO, OBUTH HCKITIOUEHBI. C UCIIONb30BaHUEM
cucrembl Active-IT B nanHoM paboTe Oblna mHpoBeieHa OlLEHKAa TPEX OMOAKTUBHBIX KOMIIOHEHTOB 4as Astyacka.
[TporHo3s! OBUTM MPOBEPEHBI C UCIIOJIb30BAHUEM HM3BECTHBIX MHIICHEH, OMHCAHHBIX B HECKOJBKHUX OOIIEAOCTYIHBIX
0a3ax JaHHBIX. Pe3ynbraThl BHEIIHEH Bamumanuu mokasand, uro 16 u3 33 (48,5%, p<0,0001) u3BeCTHBIX MUIICHEH
ObUTM TIpeAcKa3aHbl BepHO. Takoi YpPOBEHb TOYHOCTH NPH KPYHHOMAacIITAa0HOM BHPTYaJIbHOM CKPHUHHMHTIE
SBJISIETCS YIOBJIETBOPUTEIBHBIM, YTO JEMOHCTPUPYET 3((deKTnBHOCTH MeTononoruu Active-IT B mporaosupoBanumu
6MONIOrNYeCKOi aKTUBHOCTH U1l MAJIbIX OPTaHWYECKUX MOJIEKYIL.

Tonuwiti mexcm cmamuvu Ha PyCCKOM A3bIKe 0OCmyneH Ha caume xcypuana (http://pbmc.ibmc.msk.ru).
KioueBble €10Ba: BUPTYalbHBIM CKPUHHHT HAa OCHOBE CTPYKTYPBI JIHMIAHIOB; IMPEACKa3aHHE OHOIOTHYECKON
aKTUBHOCTH, MAIIMHHOE OOydYeHHEe, CIy4allHOe PEeKypCHBHOE CTparh(uIpoBaHHOE pazOueHme; dapMaxopOopHEIE

(uHTeprpUHTHL; 3D MONEKyISIpHBIE CTPYKTYPHI

®unancupoBanue. lcciemqoBanue OBIIO mopmepxkaHo Opasmibckodl mporpammoit “Hayka 6e3 rpaHmi’
(CNPq ctumenaus 202407/2014-4 to JCDL u 249299/2013-5 to VLA) u FAPEMIG crunienaus BIP-00213-24 to VLA.

[Mocrynuna B penakuuto: 07.10.2024; nocne nopadotku: 01.11.2024; npunsita k nevaru: 03.11.2024.
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