
INTRODUCTION

The global prevalence of malaria in 2022 
was estimated at 249 million cases, resulting 
in 5 million cases above that of 2021, with associated
608,000 deaths, and the most vulnerable group 
was children under the age of five years old [1]. 
TheAfrican region continues to bear the bulk of malaria
cases and deaths, with Nigeria, the most populous
country, accounting for 27% of malaria morbidity and
31% mortality [1]. The gains of the widely advocated
artemisinin-based combination therapies (ACTs),
including high efficacy, short duration of treatment
which improves compliance, and a globally reduced
rate of morbidity and mortality, have been threatened
due to the emergence of resistance to artemisinin [1, 2].
The reported incidence of malaria parasite decreased
sensitivity to the ACT drugs is of great concern and 
this could be disastrous for malaria global control.

Cerebral malaria (CM), a fatal complicating
nervous syndrome resulting from Plasmodium
falciparum infection, is known to be associated with
permanent disabilities and/or deaths, especially 
among children [3]. The emergence of CM occurs 
in only about 1% of P. falciparum infections; however
the mortally rate can reach 15–25% [4]. Survivors
experience acute or long-lasting physical disability and

neurological syndrome post-infection treatment [4, 5].
These appearances vary in children and adults 
and depend on the commencement and severity 
of the infection and associated symptoms, which
include coma, status epilepticus, focal sequelae,
hyperactivity, impaired movement, inappropriate vision,
and speech. Better management of CM and associated
neurological alterations can only be achieved with
precise and early diagnosis, resulting from improved
knowledge of the disease pathology and specificity 
of the infection [4, 5]. The intent of managing CM 
is to primarily decrease mortality and improve 
the quality of life thereby curtailing the neurological
syndromes that follow even after effective use 
of antimalarial. Hence, there is a need to continue 
the search for new pharmacotherapy that would 
not only terminate the disease advancement but also
reverse the pathological proceedings in the brain [4]. 
More details on the CM pathology and associated
neurological syndromes have been presented in [5].

Natural products have played critical roles 
in the management of malaria, and medicinal plants
have been sources of very effective antimalarial drugs
including quinine and artemisinin. With the renewed
interest in the integration of traditional with orthodox
medicine, the need for a better understanding 
of the pharmacology of natural products is inevitable.
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Honey is one of the mostly used natural products 
for varieties of beneficial health purposes [6]. 
In general, good evidence exists that honey possesses
antioxidant, anti-inflammatory, anti-hyperglycaemia, etc
properties [6, 7]. However, it should be noted that 
the medicinal properties of honey largely depend 
on the sources of the nectars used by the honey bees [8].
Bitter honey is a variety of honey that is cultivated
predominantly from the nectar of plants which conserve
distinct bitter bioactive compounds [8]. Our earlier
works on the medicinal properties of bitter honey, 
have been able to establish botanical and bioactive 
markers, inhibitory effects on pancreatic alpha-amylase
activity, and anti-dyslipidaemia, cardio-protective, 
and ameliorative effects on hepatorenal damage 
in streptozotocin-induced diabetic rats [8–11].
Therefore, bitter honey may have potential usefulness
in ameliorating neurological syndrome and 
CM-mediated inflammasome-induced cell death. 

It is a well-known fact that several highly effective
drugs act on several targets rather than just one target.
Today, by utilizing network pharmacology-based
computational methods to integrate and analyze 
large-scale data from diverse sources, it is possible 
to identify the underlying biological mechanisms 
of drug action and potential drug targets. 
Network pharmacology is an interdisciplinary field 
of research that aims to understand the multifaceted
interactions between biological systems and drugs 
at a molecular level [12]. It has been used to investigate
the molecular mechanisms of disease and to identify
new drug targets, drug combinations, repurposing
existing drugs, and improving the safety and efficacy 
of drugs for the treatment of complex diseases [12, 13]. 

We have earlier presented a detailed review,
highlighting some of the biochemical and molecular
players in the CM pathology, with special emphasis 
on the functional interplay between inflammatory
mediators, neurotransmitters, and molecular
chaperones of human and plasmodial origins [5]. 
In this study, we have identified phytochemicals
associated with bitter honey, and targets associated 
with CM, inflammation, inflammasome, and bitter
honey phytochemicals. Finally, these targets were
analyzed using a Network Pharmacology approach
integrated with molecular docking.

MATERIAL AND METHODS

The workflow for the network pharmacology
integrated molecular docking approach adopted 
in this study is presented in Figure 1.

Phytochemical Profiling of Bitter Honey by GC-MS

Phytochemical profiling of bitter honey samples was
conducted using Agilent 8860 gas chromatography (GC)
coupled with a 5977B mass spectrometry 
detector (MSD), fitted with an HP5 capillary column

coated with 5% phenyl methyl siloxane (30 m length ×
0.32 mm diameter × 0.25 μm film thickness), and
equipped with GC/MSD Chemstation (MassHunter)
suite of software (Agilent Technologies, USA). 
The protocol for the GC-MS phytochemical 
profiling was adapted from previous reports [14, 15].
Briefly, 1 μl of the samples were injected using 
an Agilent 8860 Automatic Liquid Sampler (ALS) and
in split-less mode, injection temperature of 250°C. 
The inlet pressure was set at 10.296 psi and a total 
flow of 45.2 ml/min. Purge flow to the split vent 
was set at 40 ml/min at 0.5 min. Helium was used 
as a carrier gas of 99.9% with a constant column 
flow of 1 ml/minute. The GC oven temperature 
was initially programmed at 80°C (2.0 min) and 
then ramped at 30°C/min to 320°C (5 min). 
The MSD temperature was set at 300°C with 
Hydrogen : Air flow at 20 ml/min : 30 ml/min.
Determination of the levels of GC amenable
phytochemicals in the sample was carried out 
using GC-MS by operating MSD in scan mode. 
After the instrument was prepared for analysis, 
a sequence of samples was created on the Masshunter
GC-MS Acquisition software. The sequence was then
analyzed and the obtained data was subsequently
analyzed on the Agilent Data Analysis software
(version 12.1). The 3D structures and SMILES
representations of the phytochemicals were obtained
from the PubChem database [16]. A local database 
of the phytochemicals was generated in sdf format from
the 3D structure using Discovery Studio Visualizer [17].

Retriever and Generation of Consensus Genes

Genes associated with CM, inflammation, and
inflammasome were retrieved from the Open Targets
and Human Genes Database [18, 19]. Duplicate entries
were removed from each set of genes and stored 
in Microsoft Excel for subsequent use. The prediction
of interacting genes for each BH phytochemical 
was performed using Swiss Target Prediction [20]. 
The predicted genes for all the phytochemicals were
combined, and duplicate entries were also removed.
The online Venn Diagram [21] was used to generate
consensus genes.

Network Analysis of the Consensus Genes

Network analysis, including gene ontology and
pathways enrichment analysis [22], of the final
consensus genes was performed using STRING and
ShinyGO (version 0.80) online servers [23, 24], with
further analysis and hub genes identification and ranking
using Cytoscape [25]. A protein-protein interaction (PPI)
network was obtained from STRING using a full
STRING Network, with a medium confidence 
score of 0.4000 and an FDR (false discovery rate)
stringency of 0.5. Also, the setting did not allow 
the automatic inclusion of additional proteins apart from
those supplied as query targets. The PPI was retrieved
from STRING via the ShinyGO 0.80 web interface, 



and the PPI edges indicate both functional and physical
protein associations. To further assess the functional
roles of these genes, NLRP3, one of the most studied
genes in inflammasome, was included, to determine
potential functional relationship with the consensus
genes, and serve as functional control.

Molecular Docking of BH Phytochemicals 
Into the Consensus Genes

Representative protein structures for all identified
targets were retrieved from the protein databank [26]
and were prepared for docking as earlier described [27].
These included: ADORA2A (PDB: 3PWH), 
C5AR1 (PDB: 8HK5), FCGR1A (PDB: 4X4M),

ITGB2 (PDB: 3K72), NOS2 (PDB: 4NOS), 
PTGS2 (PDB: 3HS5), STAT3 (PDB: 6NJS), 
VDR (PDB: 5V39), VEGFA (PDBs: 4KZN and 6ZFL),
and added NLRP3 (PDB: 8ETR). Briefly, the downloaded
structures were first checked and corrected for missing
atoms using a Swiss-pdb viewer [28]. Thereafter, 
using the VEGA ZZ platform [29], water and hydrogen
were removed, and the coordinates were normalized
and checked for charge distribution. The binding site
residues were mapped around co-crystallized 
ligands with a radius of 5 Å, followed by the removal
of the co-crystallized ligands to create the needed 
space for docking, as implemented in VEGA ZZ [29].
The BH phytochemicals were screened against these
targets using Autodock Vina [30], while their respective
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Figure 1. Network Pharmacology integrated Molecular docking workflow. PPI, Protein-Protein Interaction; 
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BH, Bitter Honey; ADMET, Absorption,
Distribution, Metabolism, Excretion, and Toxicity. The pkCSM, admetLab2.0, STRING, ShinyGO, Swiss Target
Prediction, Venn, Gene Cards, KEGG, and Open Targets are online resources. Cytoscape is a software with the capacity
to interact with online resources, such as the STRING database.



co-crystallized ligands served as controls. The generated
poses from Autodock Vina were rescored using
PLANTS, XScore, and NNSCORE [29, 31, 32] and 
the results were subjected to consensus analysis 
as earlier described [27]. The generated scores from 
the screening were ranked, and the ranked scores 
were analyzed to determine the phytochemical(s) 
with the highest potential for functional interaction 
with multiple targets.

In Silico ADMET Screening 
of Bitter Honey Phytochemicals

The sub-database in sdf and SMILES
representations of the top 10 phytochemicals with 
the highest potential for functional interactions 
with multiple targets were generated from the local
database of BH phytochemicals using ADSV [17]. 
The ADMET screening was performed using 
pkCSM and admetlab 2.0 online servers [33, 34]. 

RESULTS

Comparative Analysis of Target Genes Associated 
with BH Phytochemicals

Comparative analysis was performed with genes
predicted to be associated with CM, inflammation, 
and inflammasome. Venn analysis has shown that 
a substantial part of the genes predicted to be associated
with inflammasome (1948 genes) and CM (391) 
are subsets of inflammation-associated genes (13646)
(Supplementary Materials Fig. S1A and S1B). Further
analysis revealed association of CM-inflammasome
consensus genes (134) with inflammation
(Supplementary Materials Fig. S1C and S1D).
Meanwhile, the BH chemical profiling using GC-MS
produced 28 phytochemicals (Supplementary Materials
Tables S4 and S5). The quantitative analysis 
of these phytochemicals as reported by the GC-MS 
is given in Supplementary Materials Table S7. 
A high percentage of genes associated with BH (329)
were found to be involved in inflammation (303 genes)
(Supplementary Materials Fig. S2B), a subset of which
is associated with CM (28) (Supplementary Materials
Fig. S2A and S2D) and inflammasome (66)
(Supplementary Materials Fig. S2C and S2F). The least
association is BH-CM-Inflammasome, which produced
9 consensus genes (Supplementary Materials Fig. S2E).
It is interesting to note that the consensus analysis 
of CM-Inflammation-Inflammasome (CM-II) with 
BH-associated genes also produced 9 genes 
(Fig. 2A), similar to BH-CM-Inflammasome consensus
(Supplementary Materials Fig. S2E and S3C). 
Also, all the BH-associated genes (329) are associated
with inflammation, of which 66 genes are also
associated with inflammasome (Fig. 2D). However, 
in the context of CM and CM-inflammation-associated
BH genes, 28 genes were identified, of which 9 genes
showed association with CM, inflammation, and

inflammasome. Therefore, this analysis revealed 
9 BH-associated targets that are also involved 
in the pathogenic mechanisms of CM, inflammation,
and inflammasome. These included ADORA2A,
C5AR1, FCGR1A, ITGB2, NOS2, PTGS2, STAT3,
VDR, and VEGFA.

Protein-Protein Interaction Analysis

Protein-protein interaction (PPI) analysis provides
an opportunity to assess the functional relationship
between identified targets. For better understanding 
of the functional roles of these targets, 
NLRP3, one of the most studied inflammasome 
proteins [36–38], was included as a functional control
to ascertain the potential functional interplay 
with the identified targets. Comparative analysis 
of the functional interactions among these 
targets with and without NLRP3 was performed. 
The results of the PPI analysis of the 9 targets 
alone and with NLRP3 are shown in Figure 3. 
The PPI analysis identified 38 (p = 1.05e-11) (Fig. 3B)
and 29 (p = 2.64e-08) (Fig. 3A) functional and physical
protein interactions with and without NLRP3
respectively. This suggests that the presence of NLRP3
does increase the prospects of functional interactions 
of the identified targets.

Gene Ontology and Enrichment Analysis

A total of 162 and 146 enriched biological
functions (BF) were identified with the target genes
with or without NLRP3 included in the analysis
respectively (Supplementary Materials Table S1). 
Of these, 134 were similar, and though numerically
different in some associated BF, the percentage 
of occurrences of the identified targets in these BF 
were not significantly different with or without NLRP3.
Analysis of the association of identified targets with BF
(Table 1 upper panel) has shown that all the 9 targets
are implicated in 8 BF, namely, positive regulation 
of the cellular process, regulation of catalytic 
activity, regulation of the cellular metabolic process,
regulation of nitrogen compound metabolic process,
regulation of the primary metabolic process, 
response to organic substance, and signal 
transduction (Supplementary Materials Table S1).
Interestingly, NLRP3 was also found to be associated
with these BFs (Supplementary Materials Table S1). 
In addition, NLRP3 was also found in association 
with a high percentage of BF found to be associated
with 8, 7, 6, and 5 of the identified targets 
(Table 1 upper panel), suggesting a potential functional
relationship between NLRP3 and the target genes. 

Similarly, a total of 96 KEGG pathways were
found in association with the target with or without
NLRP3 (Supplementary Materials Table S2). Of these,
only five pathways showed association with NLRP3
and one or two of the targets, from which only one
(pertussis) was found within the top 20 pathways 
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Table 1. Analysis of genes association with Biological Functions and KEGG Pathways with or without NLRP3

Figure 2. Comparative analysis of the BH-associated genes with CM-associated Inflammation and Inflammasome genes.
BH, Bitter Honey; CM, Cerebral malaria, Ifs, Inflammasome; Ifn, Inflammation; II, Inflammasome-Inflammation.
Venn diagrams show a consensus of (A) BH-CM-II, (B) CM-Ifn-II, and (C) BH-CM-II. (D) is the bar plot 
of BH-associated genes in consensus with CM, inflammation, and inflammasome genes. The bar plot was generated 
on Microsoft Excel, and images were prepared using Microsoft PowerPoint and GIMP 2.10.14 [35].

Consensus Genes Association with Biological Functions

Number of Consensus Genes Number of Associated BF Number of Associated BF
with NLRP3 Association % NLRP3 Association

9 8 8 100.00
8 14 11 78.57
7 13 8 61.54
6 15 8 53.33
5 17 10 58.82
4 23 8 34.78
3 21 4 19.05
2 23 0 0

Consensus Genes Association with KEGG Pathways

Number of Consensus Genes Number of Associated
KEGG Pathways

Number of Associated
KEGG Pathways with

NLRP3 Association
% NLRP3 Association

4 3 0 0
3 9 0 0
2 20 2 10.00
1 64 3 4.69
0 0 6 0



(Table 1 lower panel, Table 2, and Supplementary
Materials Table S2). The additional six pathways 
were only associated with NLRP3 (Supplementary
Materials Table S2). The lack of significant association 
of NLRP3 with the targets in the KEGG pathways
suggests a differential functional association 
in most of the identified KEGG pathways. Analysis 
of the frequency of gene association revealed 
that 4 was the highest number of genes and 
was found in association with three disease pathways,
namely, Leishmaniasis, Tuberculosis, and pathways 
in Cancer (Tables 1, 2, and Supplementary Materials
Table S2). This is followed by 9, 20, and 64 pathways 
in association with 3, 2, and 1 pathway(s), respectively
(Table 1 lower panel, Table 2, and Supplementary 
Materials Table S2). 

Therefore, it does appear that the presence 
of NLRP3 does not alter the target gene association 
in the KEGG pathways. This is further confirmed 
by the enrichment functional charts and hierarchical
clustering trees (Supplementary Materials Fig. S4). 
The analysis showed that except for the replacement 
of Rheumatoid arthritis with COVID-19, 
the inclusion of NLRP3 did not significantly alter 
the KEGG enrichment pathways. However, fold
enrichment and the number of genes associated 
with each pathway were altered. Also, the trees help 
to appreciate the correlation among significant pathways
(Supplementary Materials Fig. S4A) by clustering
together the pathways that share similar genes. 
The hierarchical clustering revealed more significant 
p-values with tuberculosis and leishmaniasis.

Furthermore, the 12 scoring functions 
of the cytoHubba plugin in Cytoscape [25] were 
used to rank the genes. The consensus analysis 
of cytoHubba ranked scores identified several 
hub genes (ranked parenthesis) below. Without NLRP3
the genes were ranked as STAT3 (1), ITGB2 (2),
FCGR1A (3), C5AR1 (4), PTGS2 (5), and NOS2 (6). In
the case of analysis with NLRP3, the genes 
were ranked in the following order: STAT3 (1), 
PTGS2 (2), C5AR1 (3), FCGR1A (4), NLRP3 (5),
ITGB2 (6), and NOS2 (7). The results showed that 
the presence of NLRP3 did alter the PPI among 
the target genes as earlier stated.

Screening and Identification of the Most Promising
BH Phytochemicals 

We performed an in silico screening of the functional
interaction of BH phytochemicals against the identified
targets and NLRP3 to identify promising
phytochemicals from BH with the potential 
to alter CM-mediated inflammasome cell death. 
Small molecule co-crystalized ligands associated 
with all the downloaded proteins from PDB served 
as control(s) for each protein. The resulting energy 
of binding from virtual screening is presented 
in Supplementary Materials Table S4. Following
consensus analysis of docking scores, for each screening
against a specific receptor site of the downloaded 
target proteins, the phytochemicals were ranked from
lowest/best (ranked 1) to the highest/failed (ranked 29 —
BH phytochemicals and the co-crystalized control)
(Supplementary Materials Table S5). Consensus
analysis of the rank scores was performed for the entire
set of proteins (target proteins and NLRP3), as earlier
described [27]. Our analysis revealed that of the control
co-crystalized ligands, three ranked 1, one ranked 2,
two ranked 4, four ranked between 12 and 16, 
and others ranked above 22 (Supplementary 
Materials Table S5), suggesting that most 
of the BH phytochemicals interacted with the proteins
better than their co-crystalized ligands. The relative
positions of the top 10 BH phytochemicals and control
in a total of 29 ligands (28 BH phytochemicals and 
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Figure 3. Protein-protein interaction (PPI) analysis 
of the identified targets alone (A) and with NLRP3 (B).
Nodes, representing each protein, are represented 
as spherical shapes and filled nodes indicate that 
the 3D structure is known or predicted. Lines represent
interactions predicted from experimentally determined
data (purple), protein homology (light blue), 
co-expression (black), gene neighborhood (green), and
gene co-expression (blue). Images were generated from
ShinyGO-String and prepared using Microsoft PowerPoint
and GIMP 2.10.14 [35]. The color version of the figure 
is available in the electronic version of the article.



1 co-crystalized ligand as control) are shown in Table 3.
The 2D representations of the structures of the top 10
BH-derived phytochemicals are provided in Figure 4,
and those of the representative co-crystallized ligands
are presented in Supplementary Materials Figure S3.
When taken together, the consensus scoring 
analysis revealed that the BH phytochemicals have 

the potential to perform functional interaction across 
all the target proteins, especially with the top 3
phytochemicals (Table 3). 

Furthermore, we checked the identified top 10
phytochemicals for ADMET properties using online
pkCSM and admetlab2.0 servers [33, 34]. Our analysis
revealed that the top 10 phytochemicals showed 
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Table 2. KEGG enrichment pathways and associated consensus genes

* KEGG Pathway that is associated with NLRP3.

S/No. KEGG Pathways Genes
Enrichment

Fold FDR
1 Leishmaniasis FCGR1A, ITGB2, NOS2, PTGS2 133.81 1.37E-06
2 VEGF signaling pathway PTGS2, VEGFA 86.18 0.001753
3 Staphylococcus aureus infection FCGR1A, ITGB2, C5AR1 81.14 0.000181
4 Acute myeloid leukemia FCGR1A, STAT3 75.89 0.002101
5 HIF-1 signaling pathway NOS2, STAT3, VEGFA 69.97 0.000212
6 Pancreatic cancer STAT3, VEGFA 66.90 0.002365
7 Pertussis* ITGB2, NOS2, NLRP3 66.90 0.002365
8 EGFR tyrosine kinase inhibitor resistance STAT3, VEGFA 64.36 0.002405
9 Complement and coagulation cascades ITGB2, C5AR1 59.82 0.002628
10 Tuberculosis FCGR1A, ITGB2, NOS2, VDR 56.81 2.17E-05
11 Small cell lung cancer NOS2, PTGS2 55.27 0.002770
12 Rheumatoid arthritis ITGB2, VEGFA 55.27 0.002770
13 MicroRNAs in cancer PTGS2, STAT3, VEGFA 47.37 0.000534
14 Neutrophil extracellular trap formation FCGR1A, ITGB2, C5AR1 40.35 0.000553
15 Kaposi sarcoma-associated herpesvirus infection PTGS2, STAT3, VEGFA 39.31 0.000553
16 Chemical carcinogenesis-receptor activation STAT3, VDR, VEGFA 38.72 0.000553
17 Rap1 signaling pathway ADORA2A, ITGB2, VEGFA 36.32 0.000602
18 Human cytomegalovirus infection PTGS2, STAT3, VEGFA 34.05 0.000663
19 Calcium signaling pathway ADORA2A, NOS2, VEGFA 31.78 0.000746
20 Pathways in cancer NOS2, PTGS2, STAT3, VEGFA 19.19 0.000534

Table 3. Rank scores of the top 10 bitter honey phytochemicals following docking against target proteins

PHYTOCHEMICALS

A
D

O
R

A
2A

C
5A

R
1

FC
G

R
1A

IT
G

B
2

N
L

R
P3

N
O

S2

PT
G

S2

ST
AT

3

V
D

R

V
E

G
FA

Average

Score Rank

Ergosta-5,22-dien-3-ol 1 1 1 3 1 2 3 2 6 2 2.2 1
Friedelan-3-one 4 2 2 1 2 4 1 3 7 1 2.6 2
Alpha-Amyrin 7 3 3 1 3 3 1 4 13 3 4.3 3
Aciphyllene 3 4 6 7 6 6 4 5 11 4 5.6 4
(E)-2-bromobutyloxychalcone 5 5 4 17 5 5 5 11 2 8 6.7 5
Beta-Guaiene 6 9 7 4 10 8 6 9 4 5 6.8 6
5-Acetamido-4,7-dioxo-4,7-
dihydrobenzofurazan 15 10 5 4 8 11 8 6 7 6 8.0 7

Octahydronaphthalene 9 5 8 7 11 10 7 11 5 9 8.2 8
aR-Turmerone 7 7 9 9 8 9 9 14 10 7 8.9 9
1H-Cyclopropa[a]naphthalene 10 7 10 14 7 7 10 11 14 10 10.0 10
Control (Co-crystalized ligand) 2 25 19 12 4 1 25 1 1 24 — —



good ADMET properties (Table 4 and Supplementary
Materials Table S6). Essentially, the top 3 compounds
revealed a high probability for intestinal absorption,
CNS and BBB permeability, and very low potential 
for toxicity (Table 4), and shared similar structural
backbones (Fig. 4), indicating added advantages 
that can be explored for improved activities 
against inflammasome mediated cell death in CM.
Interestingly, the top 3 phytochemicals ranked mostly
within 1 and 3 in their interaction with the hub genes,
further confirmed their potential multi-targets
functional interactions. 

In addition, the interaction scheme for the best
interacting phytochemical and control co-crystallized
ligand for each of the target proteins and NLRP3 
are presented in Figure 5. The interaction analysis
revealed that apart from VDR which showed preference
interaction with (E)-2-bromobutyloxychalcone, 
the best interactions with other target proteins 
and NLRP3 were mainly with the three 
promising BH phytochemicals: Ergosta-5,22-dien-3-ol,
Friedelan-3-one, and Alpha-Amyrin. Of these three,
Ergosta-5,22-dien-3-ol ranked top with six targets. 
In addition to being commercially available,
quantitatively, GC-MS revealed 3.18%, 13.55%, 

and 1.08% abundance of Ergosta-5,22-dien-3-ol, 
Friedelan-3-one, and Alpha-Amyrin in the bitter honey
respectively (Supplementary Materials Table S7).
Though showing interactions with residues within 
the mapped receptor site, and with some similar
residues when compared to control co-crystallized
ligand, and hydrogen bond interactions with some 
key residues, suggesting stability of interaction, 
the functional relevance of these interactions needs 
to be further explored.

DISCUSSION

Inflammasomes are intricate protein assemblies
situated within the cytosol. The initiation of these
assemblies occurs upon the identification of stimuli 
that are linked to infection or stress [39]. 
It is a key component of the innate immune system 
and is primarily involved in detecting intracellular
pathogens, as well as endogenous danger signals,
known as damage-associated molecular patterns
(DAMPs) [40]. The activation of the inflammasome
can be initiated by a wide variety of microbial
pathogens, and its primary function is to contribute 
to the host's defense mechanism by promptly 
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Figure 4. 2D Structures of the top 10 BH-derived phytochemicals exhibiting functional interactions with identified
target  proteins and NLRP3.
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initiating inflammatory responses and restricting
pathogen replication [41]. Recent research has provided
evidence suggesting that the inflammasome, 
in addition to its role in immune defense against
pathogens, plays a pivotal role in the regulation 
of inflammatory responses and cellular apoptosis [42].
There are several types of inflammasomes identified,
but the most extensively studied and well-characterized
inflammasome is the NOD-like receptor family, 
pyrin domain-containing 3 (NLRP3) inflammasome.

Aberrant activation of the NLRP3 inflammasome, 
in particular, has been implicated in several neurological
conditions including cerebral malaria [36, 38].
Therefore, NLRP3 is a critical factor in CM-mediated
inflammasome, and any direct or indirect interaction
with small molecules may have profound effects 
on the NLRP3 inflammasome pathways. 

In CM, factors released by P. falciparum parasites,
as well as host-derived molecules, can activate 
the NLRP3 inflammasome [36]. As it has been earlier
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Figure 5. Representative interaction analysis of the best most promising phytochemicals and co-crystallized ligands
with selected proteins. Images are labelled as protein : ligand. Ligands and interacting protein residues are represented
as sticks, coloured by element. Hydrogen bonds are shown as surface with shades of purple and green representing
hydrogen donor and acceptor respectively. Hydrogen bond interactions are indicated as green broken lines. 
Images were generated using ADSV, arranged on Microsoft PowerPoint, and prepared using GIMP 2.10.14 [35]. 
The color version of the figure is available in the electronic version of the article.



reported [5], this is undoubtedly a complex interplay 
of many factors, including neurotransmitters, 
molecular chaperones, and inflammatory and
inflammasome mediators. In this study, we have
identified 9 target genes with links to inflammation,
inflammasome, and CM, and having potential 
for functional and physical interactions using 
a combination of comparative genes analysis and
network pharmacology. The PPI analysis revealed
significant (p = 2.64e-08) functional and physical
interactions among these targets. We further explored
the potential of these genes to functionally interact 
with NLRP3, a well-studied inflammasome protein.
The increase in significant (p = 1.05e-11) functional
and physical interactions from 29 to 38 is a clear
demonstration of the potential functional interplay
between the 9 consensus proteins and NLRP3, 
as well as the potential of the identified targets 
to modulate NLRP3 activities. This is further supported
by the gene ontology and enrichment analysis, which
revealed that NLRP3 was also found to be in association
together with these genes in several biological
functions (BF). The identified genes are: ADORA2A,
C5AR1, FCGR1A, ITGB2, NOS2, PTGS2, STAT3,
VEGFA, and VDR. However, Cytoscape revealed 
that six of them could be considered as hub genes
(C5AR1, FCGR1A, ITGB2, NOS2, PTGS2, STAT3).
Available evidence show that these genes have potential
for functional interplay with NLRP3, performed 
active roles in inflammation, inflammasome, and CM,
and may serve as drug targets in CM and associated
inflammasome pathways [36, 43]. Cell death 
is a fundamental biological process that occurs 
in various physiological and pathological contexts, 
and several reports have provided insights into 
the mechanisms of cell death in CM, with clear links 
to inflammatory and inflammasome mediators [43].
This study has shown that a high percentage 
of the genes associated with CM and inflammasome 
are also associated with inflammation.

In light of the above potentials of the identified
targets, we further explored the functional interaction 
of the 9 CM-Inflammasome linked targets with 
BH-derived phytochemicals. In silico screening 
of the BH-derived phytochemicals against these targets
and NLRP3 performed using molecular docking and
ADMET, identified 10 most promising BH-derived
phytochemicals with significantly higher functional
interaction when compared to their respective 
co-crystalized ligands. However, with the added
advantages of high probability for intestinal 
absorption, CNS and BBB permeability, and very low
potential for toxicity (Table 4 and Supplementary
Materials Table S6), the top 3 BH phytochemicals 
can be explored further as lead molecules against CM
and associated inflammasome-mediated cell death.
These BH phytochemicals (Ergosta-5,22-dien-3-ol,
Friedelan-3-one, and Alpha-Amyrin) which shared
some levels of structural similarities, also showed very
strong functional interaction with the six hub targets

(Fig. 5). While the functional relevance of these
interactions needs further exploration, the observed
interactions with a higher or equivalent number 
of key residues within the receptor site in most 
of the interacting partners, as compared to the control
co-crystallized ligand, confirm the potential of these
BH phytochemicals as promising drug candidates.
Meanwhile, though the overall inference from our
ADMET analysis of the BH phytochemicals 
(Table 4 and Supplementary Materials Table S6) 
shows that BH is to a large extent safe, the potential
inhibitory effects of the individual phytochemicals 
on P-glycoprotein I or II, and hERG, as well 
as serving as inhibitor and/or substrates of some 
key cytochrome P450 enzymes, may be an indication 
of possible side effects and/or drug-drug interactions.
This, however, will need further evaluation.

CONCLUSIONS

We have performed a comparative analysis 
of genes associated with CM, inflammation,
inflammasome, and BH-derived phytochemicals, using
a Venn diagram, and identified 9 consensus genes.
Network analysis revealed significant functional and
physical interactions among these targets alone and
with NLRP3. These targets are implicated in many
biological functions, with clear link to inflammation,
inflammasome, and directly or indirectly with CM, 
and to a larger extent with NLRP3 inflammasome
pathways, suggesting potential for functional interplay.
Further analysis with Cytoscape revealed six hub genes.
The in silico screening of bitter honey-derived
phytochemicals against these targets identified 
3 most promising candidates for further experimental
validation. Based on these results, we predict 
that the identified targets could serve as potential 
drug targets, and the bitter honey may aid 
in the suppression of CM-mediated inflammasome 
cell death via its interactions with these targets.
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Церебральная малярия (ЦМ) — смертельно опасное осложнение инфекции, вызванной Plasmodium
falciparum. Биологическая и физиологическая связь между ЦМ, воспалением и формированием инфламмасом
свидетельствует о сложности патологического процесса. Возникновение резистентности к доступным
недорогим лекарственным препаратам и усугубляющийся экономический кризис обуславливают
необходимость поиска новой эффективной фармакотерапии на основе интеграции подходов официальной и
традиционной медицины. Ранее мы изучили лечебные свойства горького мёда и определили его ботанические
и биологически активные характеристики, включая ингибирование активности панкреатической 
альфа-амилазы, антидислипидемические, кардиопротекторные эффекты, а также регенерирующее 
действие при гепаторенальном синдроме у крыс с диабетом, индуцированным стрептозотоцином. 
В настоящем исследовании с помощью газовой хроматографии в сочетании с масс-спектрометрией (ГХ-МС)
были определены фитохимические соединения горького мёда (ГМ), с использованием диаграмм Венна были
обнаружены 9 мишеней среди генов, связанных с ЦМ, воспалением, инфламмасомами ифитокомпонентами ГМ.
Сетевой анализ выявил значимые функциональные и физические взаимодействия между белками-мишенями,
кодируемыми этими генами, и белками, содержащими NOD- и LRR-домены, а также содержащим пириновый
домен белком 3 (NLRP3). Молекулярный докинг фитокомпонентов горького мёда к этим мишеням 
позволил определить три наиболее перспективных соединения для дальнейшей экспериментальной проверки.
На основе полученных данных можно предполагать, что горький мёд может способствовать подавлению
инфламмасом-зависимой гибели клеток при ЦМ благодаря взаимодействию с установленными в результате
исследования мишенями. 

Полный текст статьи на русском языке доступен на сайте журнала (http://pbmc.ibmc.msk.ru).
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