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IDENTIFICATION OF MOUSE BRAIN PROTEOFORMS:
COMPARISON OF 2D-ELECTROPHORESIS DATA AND INDEPENDENT
EXPERIMENT WITH MASS SPECTROMETRIC IDENTIFICATION

A.V. Rybina

Institute of Biomedical Chemistry,
10 Pogodinskaya str., Moscow, 119121 Russia; e-mail: aleona.rybina@ibmc.msk.ru

A previously developed algorithm for the preliminary identification of protein proteoforms associated
with post-translational modifications (PTMs) based on 2D electrophoresis data (DOI: 10.18097/ BMCRMO00191)
has been used in this study for analysis of experimental data obtained using mice and reported in two papers by different
authors. The authors of the first paper identified 8 groups of spots on 2D electrophoretic maps corresponding
to 8 proteins with at least two unconcretised proteoforms. The authors of the second paper analyzed brain samples
by means of the LC-MS/MS. In this study identification of peptides with PTMs was repeated using the raw data
from the second paper. Among the 8 target proteins, 7 were identified in most of the biological samples. For 4 of them,
17 possible peptides with modifications were found. The 5 proteoform variants with identified PTMs matched
the spots on the 2D electrophoresis maps. Thus, the prediction of pl values for proteins with hypothetical PTMs

allows to form a set of hypotheses about the presence of particular proteoforms on the 2D electrophoretic maps.
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INTRODUCTION

Post-translational modifications (PTMs) of proteins
play an important role in the regulation of many
biochemical processes in the cell in normal and
pathological conditions [1]. Experiments performed
using two-dimensional (2D) gel electrophoresis often
reveal proteins existing as multiple proteoforms [2].
In the case of the change in the pl value rather than
the protein mass, the electrophoretic shift is most likely
attributed to the presence of PTMs rather than
the presence of proteoforms originated from alternative
splicing or degradation of the protein sequence.
However, analysis of 2D gel electrophoresis data
does not always culminate in detection of PTMs.
For example, enzyme immunoassay-based protein
detection cannot distinguish between modified and
unmodified forms of proteins [2]. Even when
tandem mass spectrometry (MS/MS) is performed
for analysis of selected 2D gel spots, a researcher
does not often need to achieve full coverage
of the protein sequence or search for modified sites;
in many cases it is usually sufficient to identify
2-3 characteristic peptides. For this reason, researchers
rarely configure identification programs to search
for a large number of PTMs, as this significantly
increases computational time and can be an additional
source of errors. At the same time, it is very likely that
primary ion masses (and sometimes secondary spectra)
for peptides containing modifications are measured
and recorded during MS/MS analysis. Previously,
a method has been proposed for generation
of hypotheses about specific PTMs of proteins

identified in a 2D gel electrophoresis map; it is based
on the prediction of protein pl values [3]. This paper
attempts to evaluate how these predictions work.

METHODS

Results of two experimental studies in mice
obtained by different groups of researchers were used
as the data for analysis in this study. In one of them,
animals were subjected to autohypoxia-induced hypoxic
preconditioning (HPC) [4]. After a 2D electrophoresis
procedure, brain proteins were identified using
the MALDI-TOF MS method. In the other one,
brain ischemia was simulated by middle cerebral artery
occlusion (MCAQO) and brain preparations were
analyzed by the LC-MS/MS method [5]. The raw data
from [5] are available in the ProteomeXchange
database [6] (accession number PXD032141).

2D electrophoresis maps were analyzed using
the method described in [3], and isoelectric point
value prediction was performed using plIPredict 3.0
software [7] (a variant taking into account the influence
of neighboring amino acid residues). Images and
annotations of two maps of the cytosolic fraction
of the cerebral cortex of control and HPC-treated mice
were used. The authors of the experimental work [4]
identified 8 groups of points on the 2D electrophoretic
maps (Fig. 1), corresponding to 8 proteins with at least
two unconcretised proteoforms.

These data were supplemented (Table 1) with
information obtained from UniProt on all experimentally
confirmed or identified by homology PTM present
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Figure 1. Position on 2D electrophoresis maps (A) of proteins with proteoforms identified in [4]. (B) is an enlarged

image of map fragments. Modified from [4].

in these proteins. The space of all possible peptides
that could be produced by trypsin treatment was then
generated. Peptides with a single missing cleavage
were allowed. For each of these peptides, the retention
time (RT) was predicted using the RTP program [8] and
a virtual fragmentation spectrum (CID) was generated,
which was used for comparison with the data from
the second study.

In the present work the following algorithm was
used to re-identify peptides from the original data [5]:

1. Peptide identification was performed using
PEAKS-X Pro [9] (identification error for primary ions
5 ppm and 0.1 Da for secondary ions, false discovery
rate (FDR) 1%). The condition for protein identification
was the presence of three wunique peptides.
Only one data set of 4 (young male mice, 24 biological
samples) was used in this work.

2. The Progenesis LC-MS program (Nonlinear
Dynamics, UK) was used to align the data from
all 24 samples to RT. The RT values were then aligned
with the RT values predicted by the RTP program
using the non-PTM peptide identification data
obtained in step 1.

3. For each of the virtual peptides, the entire set
of secondary spectra obtained in [5] was searched
for matches wusing the following parameters:
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primary ion identification error 2 ppm, RT deviation
from the predicted value within a window of 3 min,
secondary ion fragment identification error 0.05 Da.

RESULTS AND DISCUSSION

The results of the match search are summarized
in Table 2. In the first stage (data analysis using
PEAKS-X Pro) only 6 out of 8 proteins were
identified and no peptide with the expected PTMs
was found. It can be assumed that the problem
with identification is that the search algorithm
is dynamically tuned to identify the peptide with
the best performance when the spectrum is mixed,
i.e. contains more than one peptide. A window of 5 ppm
is claimed in [5]. Indirect evidence that secondary
spectra are predominantly mixed is provided
by the fact that a large number of secondary spectra
(even with a small total mass of the primary ion)
contain several thousand peaks. The data obtained
in this step were therefore only used for the subsequent
RT alignment of individual samples and it was necessary
to use the identification procedure described for step 3.

Among the 8 target proteins, 6 were also identified
in all samples, one in more than half of the samples
and one in 5 samples (Table 1). For 4 of these proteins,
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Table 1. Proteins with proteoforms identified in [4]
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(*) Identification was performed in that paper.

17 peptides with the expected PTMs were found
(Table 2). With this search variant it is difficult to say
how many fragments of the secondary spectrum
are sufficient for identification. The table includes
variants with at least 4 (y or b ions). Some of the peptides
also have a matching fragment due to the presence
of “missing cleavage” or confirmed different
PTM positions. For at least 2 proteins it can be said
that the peptides found with PTMs may correspond
to proteoforms represented in 2D maps (Table 2).
In another case (for glutamine synthetase,
UniProt ID P15105), the possible proteoform
corresponds to the same darkened region where the spots
on the 2D map are highlighted. Since it corresponds
to the N-terminal acetylation, it can be assumed that
the “zero” point (position on the electrophoretic map
of the unmodified protein) is misidentified and
is not pronounced and should be shifted to the basic
region. For alpha-enolase (P17182), 7 PTM variants

were found in 11 peptides (Table 2 and Fig. 2);
some of them corresponded to proteoforms on 2D maps.
It should be noted that their combination can result
in proteoforms that are also represented on 2D maps.
Alpha-enolase seems to be subjected to multiple
acetylation, as there are spots that correspond
to proteoforms with triple acetylation and even with
triple acetylation and phosphorylation, while there
is no point in the single acetylation site on the map.

In some of the identified peptides acetylation
of the C-terminal lysine was detected. Although this
conflicts trypsin specificity rules, it is nevertheless
known that trypsin can (albeit with much lower
efficiency) hydrolyze not only after positively charged
residues [10]. For some of these peptides, we also found
forms where this modified amino acid residue
is located in the internal part of the amino acid
sequence, which may serve as additional evidence
for the existence of this PTM.
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Figure 2. Analysis of control (A) and HPC (B) electrophoretic maps for protein P17182. The numbered zones
correspond to the proteoform variants: 0 — no PTM, 1 — single acetylation, 2 — single phosphorylation,
3 — single succinylation or double acetylation, 4 — triple acetylation, 5 — triple acetylation and single phosphorylation.

CONCLUSIONS

Thus, using pl value prediction for proteins
with hypothetical PTMs it is possible to form
a set of hypotheses about particular proteoforms
observed in the 2D electrophoresis maps.
In this work, for 3 of the 8 proteins, 5 variants
of proteoforms with identified PTMs that coincided
with spots on the 2D electrophoresis maps
could be hypothesized. In addition, using combined
techniques (2D electrophoresis and LC-MS/MS),
it is possible to specify a given region on the gel
to be analyzed to identify specific proteoforms.
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UJIEHTUO®UKAIIUA TIPOTEO®OPM MO3T'A MBIIIEMN:
CPABHEHHME JAHHBIX 2D-3JIEKTPO®OPE3A U HE3ABUCHUMOTI'O
3KCHEPUMEHTA C MACC-CIEKTPOMETPAUYECKOMN UJIEHTU®UKAIIMENR

A.B. Pviouna

HayuHno-uccnenoBarensckuii HHCTUTYT Onomenuuackoid xumun uM. B.H. Opexosuya,
119121, Mockaa, yi. [Toromunckas, 10; a51. mouta: aleona.rybina@ibme.msk.ru

Panee Obul mpenyioeH ajNrOpuTM NpPEIBapUTENbHOH HACHTU(UKAIUU OEJIKOBBIX INPOTeodopM,
ACCOIIMUPOBAHHBIX C MOCTTpaHCIAUMOHHBIMA Momudukammsamu (IITM), Ha ocHoBe maHHBIX 2D-3nmexrpodopesa
(DOI: 10.18097/BMCRMO00191). B nmanHO#t pa®oTe mpennpuHATA IOMBITKA OLEHUTh €ro paboTOCIIOCOOHOCTH,
UCIIONB3ysd OKCIIEPUMEHTAIbHbIE IaHHBIE W3 JBYX pabOT pasHBIX aBTOPOB, IOJYYEHHBIX HA MBbIIIaX.
ABTOpBI 11epBOY pabOTHI BBIJCIHIM § TPy MATeH Ha 2D-31eKTpoopeTHIecKuX KapTax, COOTBETCTBYIOIINX 8 OeKam,
MMEIOUIMM HE MEeHee JBYX HEKOHKPETH3HPOBAHHBIX NMPOTeO0(GopM. ABTOpPBI BTOPOW aHAIM3MPOBAIN 00pa3lbl MO3ra,
ucnons3yst Merog LC-MS/MS. B nannoli pabore maentudukanus mentunoB ¢ IITM Obuta BbINOIHEHa 3aHOBO
C HCIIONB30BAaHMEM HCXOOHBIX NaHHBIX M3 BTOpod paborsl. M3 8 meneBbIx OenkoB 7 ObUIM HMAECHTH(UIMPOBAHBI
B OompmmHCTBe OMonormueckux mpo6. dus 4 u3 HuX Obulo HaiimeHO 17 BO3MOXHBIX MOIU(PUKAIIHA.
5 BapumanToB mporteodopMm ¢ upeHTH(UIEpoBaHHEIMA IITM coBnamm ¢ Toukamm Ha kKaprax 2D-snexrpodopesa.
Takum 00pa3oM, HCIONIB30BaHWE TpeACKa3zaHusi BenuuuHbl pl anms OenkoB ¢ rumorerndeckumu I1TM mo3Bomser
chopMHUpOBaTh HAOOP TUIIOTE3, KAKUE KOHKPETHO MPOTEOPOPMBI HAOIIOMA0TCs Ha KapTax 2D-anekrpodopesa.

Tonuwiii mexcm cmamuvu HA PYCCKOM 3bIKe docmynel Ha cavime xcypuana (hitp://pbmce.ibme.msk.ru).
KaroueBrbie ciioBa: 6uonHpopmaruka; 2D-anekrpodopes; Macc-CrieKTPOMETPHST; UILIEMUYECKUI HHCYIBT

dunancupoBanue. Pabora BeimosiiHeHAa B pamkax l[IporpamMmbl (pyHIAMEHTAIbHBIX HAYYHBIX HCCIIEIO0BAHHIMA
B Poccntiickoit @eneparnmn Ha monrocpounsrit meprox (2021-2030 rogsr) (Ne 122030100170-5).
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