1. Гродненский государственный университет имени Янки Купалы, Гродно, Беларусь
2. Гродненский Государственный медицинский университет, Гродно, Беларусь
Цель настоящей работы — выяснить механизмы нарушений структуры и функциональной активности изолированных митохондрий печени крыс ионами кальция в отсутствие и в присутствии ряда флавоноидов in vitro. В присутствии экзогенного Ca²⁺ (20-60 мкМ) выраженно возрастала гетерогенность митохондрий по размерам и электронной плотности. Большинство органелл характеризовалось набухшим электронно-светлым матриксом, удлиненными кристами и уменьшенным их числом. Набухшие митохондрии были значительно крупнее основной популяции контрольных митохондрий и лишены нативной структуры внутренней мембраны, вплоть до её отслоения. Одновременно регистрировали конденсированные митохондрии с электронно-плотным матриксом и расширенным интракристным пространством. Индуцируемое ионами кальция открытие митохондриальных пор высокой проницаемости (MPTP) приводило к ультраструктурным нарушениям органелл и сопровождалось полным разобщением процессов окисления и фосфорилирования в изолированных митохондриях печени крыс. Вторичные метаболиты растений полифенольной природы — флавоноиды нарингенин, катехин — в концентрации 10-25 мкМ дозозависимо ингибировали респираторную активность митохондрий и стимулировали процесс открытия MPTP в присутствии ионов Ca²⁺. Поскольку рутений красный — ингибитор митохондриального Ca²⁺ унипортера — эффективно предотвращал Ca²⁺-индуцируемое открытие MPTP как в отсутствие, так и в присутствии флавоноидов, можно предположить, что эффект флавоноидов на процесс MPTP опосредован активацией Ca²⁺ унипортера.
Заводник И.Б., Коваленя Т.А., Вейко А.Г., Лапшина Е.А., Ильич Т.В., Кравчук Р.И., Заводник Л.Б., Климович И.И. (2022) Структурные и функциональные изменения митохондрий печени крыс при нагрузке ионами кальция в отсутствие и в присутствии флавоноидов. Биомедицинская химия, 68(4), 237-249.
Заводник И.Б. и др. Структурные и функциональные изменения митохондрий печени крыс при нагрузке ионами кальция в отсутствие и в присутствии флавоноидов // Биомедицинская химия. - 2022. - Т. 68. -N 4. - С. 237-249.
Заводник И.Б. и др., "Структурные и функциональные изменения митохондрий печени крыс при нагрузке ионами кальция в отсутствие и в присутствии флавоноидов." Биомедицинская химия 68.4 (2022): 237-249.
Заводник, И. Б., Коваленя, Т. А., Вейко, А. Г., Лапшина, Е. А., Ильич, Т. В., Кравчук, Р. И., Заводник, Л. Б., Климович, И. И. (2022). Структурные и функциональные изменения митохондрий печени крыс при нагрузке ионами кальция в отсутствие и в присутствии флавоноидов. Биомедицинская химия, 68(4), 237-249.
Список литературы
Folmes C.D.L., Dzeja P.P., Nelson T.J., Terzic A. (2012) Mitochondria in control of cell fate. Circulation Res., 110(4), 526-529. CrossRef Scholar google search
Fatiga F.F., Wang L.-J., Hsu T., Capuno J.I., Fu C.-Y. (2021) Miro1 functions as an inhibitory regulator of MFN at elevated mitochondrial Ca2+ levels. J. Cell. Biochem., 122(12), 1848-1862. CrossRef Scholar google search
Заводник И.Б. (2016) Митохондрии, кальциевый гомеостаз и кальциевая сигнализация. Биомедицинская химия, 62(3), 311-317. CrossRef Scholar google search
Garbincius J.F., Elrod J.W. (2021) Mitochondrial calcium exchange in physiology and disease. Physiological Rev., 102(2), 893-992. CrossRef Scholar google search
Santo-Domingo J., Demaurex N. (2010) Calcium uptake mechanisms of mitochondria. Biochim. Biophys. Acta, 1797(6-7), 907-912. CrossRef Scholar google search
Gilbert G., Demydenko K., Dries E., Puertas R.D., Jin X., Sipido K., Roderick H.L. (2020) Calcium signaling in cardiomyocyte function. Cold Spring Harbor Perspectives in Biology, 12(3), a035428. CrossRef Scholar google search
de Stefani D., Raffaello A., Teardo E., Szabo I., Rizzuto R. (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature, 476(7360), 336-340. CrossRef Scholar google search
Territo P.R., French S.A., Dunleavy M.C., Evans F.J., Balaban R.S. (2001) Calcium activation of heart mitochondrial oxidative phosphorylation. Rapid kinetics of mvO2, NADH and light scattering. J. Biol. Chem., 276(4), 2586-2599. CrossRef Scholar google search
Pérez M.J., Quintanilla R.A. (2017) Development or disease: Duality of the mitochondrial permeability transition pore. Developmental Biology, 426(1), 1-7. CrossRef Scholar google search
Bernardi P., Rasola A., Forte M., Lippe G. (2015) The mitochondrial permeability transition pore: Channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiological Rev., 95(4), 1111-1155. CrossRef Scholar google search
Bernardi P. (2020) Mechanisms for Ca2+-dependent permeability transition in mitochondria. Proc. Natl. Acad. Sci. USA, 117(6), 2743-2744. CrossRef Scholar google search
Drahota Z., Milerová M., Endlicher R., Rychtrmoc D., Červinková Z., Ošťádal B. (2012) Developmental changes of the sensitivity of cardiac and liver mitochondrial permeability transition pore to calcium load and oxidative stress. Physiological Res., 61(Suppl. 1), S165-S172. CrossRef Scholar google search
Sandoval-Acuña C., Ferreira J., Speisky H. (2014) Polyphenols and mitochondria: An update on their increasingly emerging ROS-scavenging independent actions. Arch. Biochem. Biophys., 559, 75-90. CrossRef Scholar google search
Sandoval-Acuña C., López-Alarcón C., Aliaga M.E., Speisky H. (2012) Inhibition of mitochondrial complex I by various non-steroidal anti-inflammatory drugs and its protection by quercetin via a coenzyme Q-like action. Chemico-Biological Interactions, 199(1), 18-28. CrossRef Scholar google search
Lagoa R., Graziani I., López-Sánchez C., García-Martínez V., Gutierrez-Merino C. (2011) Complex I and cytochrome c are molecular targets of flavonoids that inhibit hydrogen peroxide production by mitochondria. Biochim. Biophys. Acta, 1807(12), 1562-1572. CrossRef Scholar google search
Ilyich T.V., Kovalenia T.A., Lapshina E.A., Stepniak A., Palecz B., Zavodnik I.B. (2021) Thermodynamic parameters and mitochondrial effects of supramolecular complexes of quercetin with β-cyclodextrins. J. Molecular Liquids, 325, 1-10. CrossRef Scholar google search
Zavodnik I., Buko V., Lukivskaya O., Lapshina E., Ilyich T., Belonovskaya E., Kirko S., Naruta E., Kuzmitskaya I., Budryn G., Zyzelevicz D., Orach J., Zakrzeska A., Kiryukhina L. (2019) Cranberry (Vaccinium macrocarpon) peel polyphenol-rich extract attenuates rat liver mitochondria impairments in alcoholic steatohepatitis in vivo and after oxidative treatment in vitro. J. Functional Foods, 57, 83-94. CrossRef Scholar google search
Johnson D., Lardy H.A. (1967) Isolation of liver or kidney mitochondria. Methods Enzymol., 10, 94-101. CrossRef Scholar google search
El'darov Ch.M., Vays V.B., Vangeli I.M., Kolosova N.G., Bakeeva L.E. (2015) Morphometric examination of mitochondrial ultrastructure in aging cardiomyocytes. Biochemistry (Moscow), 80(5), 604-609. CrossRef Scholar google search
Millonig G.A. (1961) Advantages of a phosphate buffer for osmium tetroxide solutions in fixation. J. Appl. Physics, 32, 1637-1643. Scholar google search
Reynolds E.S. (1963) The use of lead citrate at high pH as an electronopaque stain in electron microscopy. J. Cell Biol., 17(1), 208-212. CrossRef Scholar google search
Golovach N.G., Cheshchevik V.T., Lapshina E.A., Ilyich T.V., Zavodnik I.B. (2017) Calcium-induced mitochondrial permeability transitions: parameters of Ca2+ ion interactions with mitochondria and effects of oxidative agents. J. Membr. Biol., 250(2), 225-236. CrossRef Scholar google search
Richardson A.P., Halestrap A.P. (2016) Quantification of active mitochondrial permeability transition pores using GNX-4975 inhibitor titrations provides insights into molecular identity. Biochemical J., 473(9), 1129-1140. CrossRef Scholar google search
Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem., 193, 265-275. CrossRef Scholar google search
Petronilli V., Cola C., Massari S., Colonna R., Bernardi P. (1993) Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria. J. Biol. Chem., 268(29), 21939-21945. CrossRef Scholar google search
Williams G.S.B., Boyman L., Lederer W.J. (2015) Mitochondrial calcium and the regulation of metabolism in the heart. J. Mol. Cell. Cardiol., 78, 35-45. CrossRef Scholar google search
Zavodnik I.B., Dremza I.K., Cheshchevik V.T., Lapshina E.A., Zamaraewa M. (2013) Oxidative damage of rat liver mitochondria during exposure to t-butyl hydroperoxide. Role of Ca2+ ions in oxidative processes. Life Sciences, 92(23), 1110-1117. CrossRef Scholar google search
Fink B.D., Bai F., Yu L., Sivitz W.I. (2017) Regulation of ATP production: dependence on calcium concentration and respiratory state. Am. J. Physiol. Cell Physiol., 313(2), C146-C153. CrossRef Scholar google search
Dorta D.J., Pigoso A.A., Mingatto F.E., Rodrigues T., Pestana C.R., Uyemura S.A., Santos A.C., Curti C. (2008) Antioxidant activity of flavonoids in isolated mitochondria. Phytotherapy Res., 22(9), 1213-1218. CrossRef Scholar google search
Ilyich T., Charishnikova O., Sekowski S., Zamaraeva M., Cheshchevik V., Dremza I., Cheshchevik N., Kiryukhina L., Lapshina E., Zavodnik I. (2018) Ferutinin induces membrane depolarization, permeability transition pore formation, and respiration uncoupling in isolated rat liver mitochondria by stimulation of Ca2+-permeability. J. Membr. Biol., 251(4), 563-572. CrossRef Scholar google search
Montero M., Lobaton C.D., Hernandez-Sanmiguel E., Santodomingo J., Vay L., Moreno A., Alvarez J. (2004) Direct activation of the mitochondrial calcium uniporter by natural plant flavonoids. Biochemical J., 384, 19-24. CrossRef Scholar google search