1. Физический факультет МГУ им. М.В. Ломоносова, Москва, Россия; Медицинский факультет, Московский финансово-промышленный университет “Синергия”, Москва, Россия 2. Физический факультет МГУ им. М.В. Ломоносова, Москва, Россия 3. Медицинский институт, Российский университет дружбы народов, Москва, Россия
Рассмотрены основные молекулярно-биологические особенности возбудителя COVID-19 — вируса SARS-CoV-2: его жизненный цикл, пути проникновения вируса в различные клетки, взаимодействие вирусных белков с белками человека, цитопатические эффекты. Проведён анализ патологических состояний, возникающих как в ходе заболевания COVID-19, так и после исчезновения вируса из организма. Приведён краткий обзор биологических активностей полисахаридов, выделенных из различных источников, рассмотрены возможные молекулярно-биологические механизмы этих активностей. Анализ совокупности данных показывает, что полисахариды представляют собой класс соединений, потенциально имеющих перспективы для использования в терапии как острых состояний при COVID-19, так и при постковидном синдроме.
Загрузить PDF:
Ключевые слова: SARS-CoV-2, рецепторы, пути проникновения в клетку, COVID-19, ассоциированные состояния, полисахариды
Цитирование:
Генералов Е.А., Симоненко Е.Ю., Кульченко Н.Г., Яковенко Л.В. (2022) Молекулярные основы биологической активности полисахаридов при ассоциированных с COVID-19 состояниях. Биомедицинская химия, 68(6), 403-418.
Генералов Е.А. и др. Молекулярные основы биологической активности полисахаридов при ассоциированных с COVID-19 состояниях // Биомедицинская химия. - 2022. - Т. 68. -N 6. - С. 403-418.
Генералов Е.А. и др., "Молекулярные основы биологической активности полисахаридов при ассоциированных с COVID-19 состояниях." Биомедицинская химия 68.6 (2022): 403-418.
Генералов, Е. А., Симоненко, Е. Ю., Кульченко, Н. Г., Яковенко, Л. В. (2022). Молекулярные основы биологической активности полисахаридов при ассоциированных с COVID-19 состояниях. Биомедицинская химия, 68(6), 403-418.
Список литературы
Yu Y., Shen M., Song Q., Xie J. (2018) Biological activities and pharmaceutical applications of polysaccharide from natural resources: Areview. Carbohydr. Polym., 183, 91-101. CrossRef Scholar google search
Granert C., Raud J. (1999) Effects of polysaccharide fucoidin on cerebrospinal fluid interleukin-1 and tumor necrosis factor alpha in pneumococcal meningitis in the rabbit. Infect. Immunol., 67(5), 2071-2074. CrossRef Scholar google search
International Committee on Taxonomy of Viruses Executive Committee (2020) The new scope of virus taxonomy: Partitioning the virosphere into 15 hierarchical ranks. Nat. Microbiol., 5(5), 668-674. CrossRef Scholar google search
Peacock T.P., Goldhill D.H., Zhou J., Baillon L., Frise R., Swann O.C., Barclay W.S. (2021) The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat. Microbiol., 6(7), 899-909. CrossRef Scholar google search
Samavati L., Uhal B.D. (2020) ACE2, much more than just a receptor for SARS-CoV-2. Front. Cell. Infect. Microbiol., 10, 317. CrossRef Scholar google search
Vkovski Ph., Kratzel A. (2021) Coronavirus biology and replication: Implications for SARS-CoV-2. Nature Reviews Microbiology, 19, 155-170. CrossRef Scholar google search
Clausen T.M., Sandoval D.R. et al. (2020) SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell, 183(4), 1043-1057. CrossRef Scholar google search
Chekol Abebe E., Mengie Ayele T., Tilahun Muche Z. et al. (2021) Neuropilin 1: A novel entry factor for SARS-CoV-2 infection and a potential therapeutic target. Biologics: Targets & Therapy, 15, 143-152. CrossRef Scholar google search
Zhang Q., Xiang R., Huo S. et al. (2021) Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct. Target Ther., 6, 233. CrossRef Scholar google search
Cantuti-Castelvetri L. et al. (2020) Neuropilin-1 facilitates SARS-CoV-2 cell entry and provides a possible pathway into the central nervous system. Science, 370(6518), 856-860. CrossRef Scholar google search
Wang Sh., Zongyang Q. et al. (2021) AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells. Cell Res., 31(2), 126-140. CrossRef Scholar google search
Wang K., Chen W., Zhang Z. et al. (2020) CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct. Target. Ther., 5(1), 283. CrossRef Scholar google search
Zhou Y.Q., Wang K., Wang X.Y. (2022) SARS-CoV-2 pseudovirus enters the host cells through spike protein-CD147 in an Arf6-dependent manner. Emerg. Microbes Infect., 11(1), 1135-1144. CrossRef Scholar google search
Shilts J., Crozier T.W.M., Greenwood E.J.D. (2021) No evidence for basigin/CD147 as a direct SARS-CoV-2 spike binding receptor. Sci. Rep., 11(1), 413. CrossRef Scholar google search
Hoffmann M., Pöhlmann S. (2022) Novel SARS-CoV-2 receptors: ASGR1 and KREMEN1. Cell Res., 32, 1-2. CrossRef Scholar google search
Cselenyi C., Lee E. (2008) Context-dependent activation or inhibition of Wnt-β-catenin signaling by KREMEN. Science Signaling, 1(8), 10. CrossRef Scholar google search
Hoober J.K. (2020) ASGR1 and its enigmatic relative, CLEC10A. Int. J. Mol. Sci., 21(14), 4818. CrossRef Scholar google search
Gu Y., Cao J., Zhang X. et al. (2022) Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2. Cell. Res, 32, 24-37. CrossRef Scholar google search
The human protein atlas. Retrieved November 11, 2022, from: https://www.proteinatlas.org. Scholar google search
Успенская Ю.А., Комлева Ю.К., Горина Я.В. (2018) Полифункциональность CD147 и новые возможности для диагностики и терапии. Сибирское медицинское обозрение, №4, 22-30. CrossRef Scholar google search
Викулова О.К., Зураева З.Т., Никанкина Л.В., Шестакова М.В. (2020) Роль ренин-ангиотензиновой системы и ангиотензинпревращающего фермента 2 типа в развитии и течении вирусной инфекции COVID-19 у пациентов с сахарным диабетом. Сахарный диабет, 23(3), 242-249. CrossRef Scholar google search
Davies J., Randeva H.S., Chatha K. et al. (2020) Neuropilin-1 as a new potential SARS-CoV-2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID-19. Mol. Med. Rep., 22(5), 4221-4226. CrossRef Scholar google search
Romano M., Ruggiero A., Squeglia F. (2020) A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells, 9(5), 1267. CrossRef Scholar google search
Pizzato M., Baraldi C., Sopetto G.B. et al. (2022) SARS-CoV-2 and the host cell: A tale of interactions. Front. Virology, 1, 815388. CrossRef Scholar google search
Harrison A.G., Lin T., Wang P. (2020) Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol., 41(12), 1100-1115. CrossRef Scholar google search
Gordon D.E., Jang G.M., Bouhaddou M. et al. (2020) A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583, 459-468. CrossRef Scholar google search
Sokullu E., Pinard M., Gauthier M.-S., Coulombe B. (2021) Analysis of the SARS-CoV-2-host protein interaction network reveals new biology and drug candidates: Focus on the spike surface glycoprotein and RNA polymerase. Exp. Opin. Drug Discov., 16(8), 881-895. CrossRef Scholar google search
Kee J., Thudium S., Renner D., Korb E. et al. (2021) SARS-CoV-2 ORF8 encoded protein contains a histone mimic, disrupts chromatin regulation, and enhances replication. Retrieved November 11, 2022, from bioRxiv. CrossRef Scholar google search
van de Leemput J., Han Z. (2021) Drosophila, a powerful model to study virus-host interactions and pathogenicity in the fight against SARS-CoV-2. Cell Biosci., 11(1), 110. CrossRef Scholar google search
Yan W., Zheng Y., Zeng X., He B., Cheng W. (2022) Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct. Target. Ther., 7, 26. CrossRef Scholar google search
Pandey P., Prasad K., Prakash A. et al. (2020) Insights into the biased activity of dextromethorphan and haloperidol towards SARS-CoV-2 NSP6: In silico binding mechanistic analysis. J. Mol. Med., 98, 1659-1673. CrossRef Scholar google search
Jit B.P., Qazi S., Arya R., Srivastava A. (2021) An immune epigenetic insight to COVID-19 infection. Epigenomics, 13(6), 465-480. CrossRef Scholar google search
Dewe J.M., Fuller B.L. et al. (2017) TRMT1-catalyzed tRNA modifications are required for redox homeostasis to ensure proper cellular proliferation and oxidative stress survival. Mol. Cell Biol., 37(21), e00214-17. CrossRef Scholar google search
Eskandarzade N., Ghorbani A., Samarfard S., Diaz J. et al. (2022) Network for network concept offers new insights into host- SARS-CoV-2 protein interactions and potential novel targets for developing antiviral drugs. Computers Biology Medicine, 146, 105575. CrossRef Scholar google search
Li T., Wen Y., Guo H., Yang T., Ji X. (2022) Molecular mechanism of SARS-CoVs Orf6 targeting the Rae1-Nup98 complex to compete with mRNA nuclear export. Front. Mol. Biosci., 8, 813248. CrossRef Scholar google search
Aslan A., Aslan C., Zolbanin N.M., Jafari R. (2021) Acute respiratory distress syndrome in COVID-19: Possible mechanisms and therapeutic management. Pneumonia, 13, 14. CrossRef Scholar google search
Sheng W.-H., Liu W.-D., Wang J.-T. et al. (2021) Dysosmia and dysgeusia in patients with COVID-19 in northern Taiwan. J. Formos. Med. Assoc., 120, 311-317. CrossRef Scholar google search
Ebrahimpour S., Mohseni Afshar Z., Mohseni S. et al. (2020) Neurologic manifestations in patients with COVID-19: A case report. Caspian J. Intern. Med., 11, 557-560. CrossRef Scholar google search
Коллектив авторов Министерства Здравоохранения РФ (2022) Временные методические рекомендации: профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19), версия 15. Scholar google search
Khaljiri H.J., Jamalkhah M., Harandi A.A. et al. (2021) Comprehensive review on neuro-COVID-19. Pathophysiology and clinical consequences. Neurotox. Res., 39(5), 1613-1629. CrossRef Scholar google search
Jiadi Lv. et al. (2021) Distinct uptake, amplification, and release of SARS-CoV-2 by M1 and M2 alveolar macrophages. Cell Discovery, 7, 24. CrossRef Scholar google search
Wang F., Nie J., Wang H., Zhao Q. et al. (2020) Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J. Infect. Dis., 221(11), 1762-1769. CrossRef Scholar google search
Tyurin A., Salimgareeva M., Miniakhmetov I. et al. (2022) Correlation of the imbalance in the circulating lymphocyte subsets with C-reactive protein and cardio-metabolic conditions in patients with COVID-19. Front. Immunol., 13, 856883. CrossRef Scholar google search
Wang N. (2014) Molecular mechanisms that influence the macrophage M1-M2 polarization balance. Front. Immunol., 5, 614. CrossRef Scholar google search
Sun Y. (2011) Structure and biological activities of the polysaccharides from the leaves, roots and fruits of Panax ginseng C.A. Meyer: An overview. Carbohydrate Polymers, 85, 490-499. CrossRef Scholar google search
Maurice M. Iwu (2013) Pharmacognostical profile of selected medicinal plants (chapter 3). in handbook of african medicinal plants, CRC Press, Boca Raton, USA, pp. 120-376. CrossRef Scholar google search
Liu J., Willför S., Xu C. (2015) A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioactive Carbohydrates Dietary Fibre, 5(1), 31-61. CrossRef Scholar google search
Li Y., Wang X., Sun C. (2021) Natural polysaccharides and their derivates: A promising natural adjuvant for tumor immunotherapy. Front. Pharmacol., 12, 621813. CrossRef Scholar google search
Herre J., Gordon S., Brown G. (2004) Dectin-1 and its role in the recognition of beta-glucans by macrophages. Molecular Immunology, 40, 869-876. CrossRef Scholar google search
Zhang Y.-M., Zhang L.-Y., Zhou H. et al. (2020) Astragalus polysaccharide inhibits radiation-induced bystander effects by regulating apoptosis in bone mesenchymal stem cells (BMSCs). Cell Cycle, 19(22), 3195-3207. CrossRef Scholar google search
Chen H., Sun J., Liu J. et al. (2019) Structural characterization and anti-inflammatory activity of alkali-soluble polysaccharides from purple sweet potato. Int. J. Biol. Macromol., 131, 484-494. CrossRef Scholar google search
Yang H.L., Yang T.Y., Gowrisankar Y.V. et al. (2020) Suppression of LPS-induced inflammation by chalcone flavokawain A through activation of Nrf2/ARE-mediated antioxidant genes and inhibition of ROS/NFκB signaling pathways in primary splenocytes. Oxid. Med. Cell. Longev., 2020, 3476212. CrossRef Scholar google search
Xiong Q., Hao H., He L., Chen J. et al. (2017) Anti-inflammatory and anti-angiogenic activities of a purified polysaccharide from flesh of Cipangopaludina chinensis. Carbohydrate Polymers, 176, 152-159. CrossRef Scholar google search
Yin Z., Sun-Waterhouse D., Wang J. et al. (2021) Polysaccharides from edible fungi Pleurotus spp.: Advances and perspectives. J. Future Foods, 1(2), 128-140. CrossRef Scholar google search
Lee J.-B., Takeshita A., Hayashi K., Hayashi T. (2011) Structures and antiviral activities of polysaccharides from Sargassum trichophyllum. Carbohydrate Polymers, 86(2), 995-999. CrossRef Scholar google search
Chaisuwan, W., Phimolsiripol Y. et al. (2021) The antiviral activity of bacterial, fungal, and algal polysaccharides as bioactive ingredients: potential uses for enhancing immune systems and preventing viruses. Front. Nutrition, 8, 772033. CrossRef Scholar google search
Trejo-Avila L.M., Morales-Martínez M.E. et al. (2014) In vitro anti-canine distemper virus activity of fucoidan extracted from the brown alga Cladosiphon okamuranus. VirusDisease, 25(4), 474-480. CrossRef Scholar google search
Pradhan B., Nayak R. et al. (2022) A state-of-the-art review on fucoidan as an antiviral agent to combat viral infections. Carbohydrate Polymers, 291, 119551. CrossRef Scholar google search
Hans N., Malik A., Naik S. (2021) Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: Mini review. Bioresource Technology Reports, 13, 100623. CrossRef Scholar google search
Kwon P.S., Oh H., Kwon S.J. et al. (2020) Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Discov., 6(1), 50. CrossRef Scholar google search
Song S., Peng H. et al. (2020) Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2. Food Funct., 11, 7415-7420. CrossRef Scholar google search
Ana P., Nathalie B., Gilles B. (2021) Anti-Herpes simplex virus (HSV-1) activity and antioxidant capacity of carrageenan-rich enzymatic extracts from Solieria filiformis (Gigartinales, Rhodophyta). Int. J. Biol. Macromol., 168, 322-330. CrossRef Scholar google search
Pereira L. (2017) Therapeutic and nutritional uses of algae. CRC Press, Boca Raton, USA, 672 p. CrossRef Scholar google search
Claus-Desbonnet H., Nikly E., Nalbantova V., Karcheva-Bahchevanska D. et al. (2022) Polysaccharides and their derivatives as potential antiviral molecules. Viruses, 14, 426. CrossRef Scholar google search
Lee J.S., Shin E.-C. (2020) The type I interferon response in COVID-19: Implications for treatment. Nature Reviews Immunology, 20, 585-586. CrossRef Scholar google search
Tsuji R., Hoshino K., Noro Y. et al. (2003) Suppression of allergic reaction by lambda-carrageenan: Toll-like receptor 4/MyD88-dependent and -independent modulation of immunity. Clin. Exp. Allergy, 33(2), 249-258. CrossRef Scholar google search
Zhang W., Oda T. (2015) Fucoidan from Macrocystis pyrifera has powerful immune-modulatory effects compared to three other fucoidans. Mar. Drugs, 13, 1084-1104. CrossRef Scholar google search
Cheng J.-J., Chao C.-H., Chang P.-C., Lu M.-K. (2016) Studies on anti-inflammatory activity of sulfated polysaccharides from cultivated fungi Antrodia cinnamomea. Food Hydrocolloids, 53, 37-45. CrossRef Scholar google search
Wu G.-J., Shiu S.-M., Hsieh M.-C., Tsai G.-J. (2016) Anti-inflammatory activity of a sulfated polysaccharide from the brown alga Sargassum cristaefolium. Food Hydrocolloids, 53, 16-23. CrossRef Scholar google search
Rand T.G., Robbins C., Rajaraman D., Sun M., Miller J. (2013) Induction of Dectin-1 and asthma-associated signal transduction pathways in RAW 264.7 cells by a triple-helical (1, 3)-β-D glucan, curdlan. Arch. Toxicol., 87, 1841-1850. CrossRef Scholar google search
Wang J., Yuan Y., Yue T. (2014) Immunostimulatory activities of beta-D-glucan from Ganoderma lucidum. Carbohydrate Polymers, 102, 47-54. CrossRef Scholar google search
Генералов Е.А., Яковенко Л.В. (2018) Биологические эффекты сигналинга полисахаридов. Актуальные вопросы биологической физики и химии, 3, 588-598. Scholar google search
Goodridge H.S., Wolf A.J., Underhill D.M. (2009) Beta-glucan recognition by the innate immune system. Immunological Rev., 230(1), 38-50. CrossRef Scholar google search
Reid D.M., Gow N.A., Brown G.D. (2009) Pattern recognition: Recent insights from Dectin-1. Curr. Opin. Immunol., 21(1), 30-37. CrossRef Scholar google search
Patin E.C., Thompson A., Orr S.J. (2019) Pattern recognition receptors in fungal immunity. Semin. Cell Dev. Biol., 89, 24-33. CrossRef Scholar google search
Schepetkin I.A., Faulkner C.L., Quinn M.T. (2005) Macrophage immunomodulatory activity of polysaccharides isolated from Juniperus scopolorum. International Immunopharmacology, 5(13-14), 1783-99. CrossRef Scholar google search
Yonekawa A., Saijo S., Hoshino Y., Yamasaki S. et al. (2014) Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria. Immunity, 41(3), 402-413. CrossRef Scholar google search
Wieland C.W., Koppel E.A., den Dunnen J., Geijtenbeek T.B. (2007) Mice lacking SIGNR1 have stronger T helper 1 responses to Mycobacterium tuberculosis. Microbes Infect., 9, 134-141. CrossRef Scholar google search
Farahani M., Niknam Z., Mohammadi Amirabad L. et al. (2022) Molecular pathways involved in COVID-19 and potential pathway-based therapeutic targets. Biomedicine Pharmacotherapy, 145, 112420. CrossRef Scholar google search
Ozato K., Tsujimura H., Tamura T. (2002) Toll-like receptor signaling and regulation of cytokine gene expression in the immune system. BioTechniques, 66, 70-72. CrossRef Scholar google search
Watts C., West M., Zaru R. (2010) TLR signaling regulated antigen presentation in dendritic cells. Curr. Opin.Immunol., 22, 124-130. CrossRef Scholar google search
Ma X., Yan W., Zheng H. et al. (2015) Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells. F1000Research, 4, 1465. CrossRef Scholar google search
Kanazawa N. (2016) C-Type Lectin Receptors. In: Kabashima K. (ed.), Immunology of the Skin). Springer, Tokyo, p.p. 255-274. CrossRef Scholar google search
Zelensky A.N., Gready J.E. (2005) The C-type lectin-like domain superfamily. FEBS J., 272, 6179-6217. CrossRef Scholar google search
Plato A., Willment J.A., Brown G.D. (2013) C-type lectin-like receptors of the dectin-1 cluster: ligands and signaling pathways. Int. Rev. Immunol., 32(2), 134-156. CrossRef Scholar google search
Kaur H., Ghorai S.M. (2022) Role of cytokines as immunomodulators. In: Kesharwani R.K., Keservani R.K., Sharma A.K. (eds.) Immunomodulators and Human Health. Springer, Singapore. CrossRef Scholar google search
Generalov E.A. (2015) A water-soluble polysaccharide from Heliantnus tuberosus L.: Radioprotective, colony-stimulating, and immunomodulating effects. Biophysics, 60, 60-65. CrossRef Scholar google search
Generalov E.A. (2015) Spectral characteristics and monosaccharide composition of an interferon-inducing antiviral polysaccharide from Heliantnus tuberosus L. Biophysics, 60, 53-59. CrossRef Scholar google search
Moss W.C., Irvine D.J., Davis M.M., Krummel M.F. (2002) Quantifying signaling-induced reorientation of T-cell during immunological synapse formation. PNAS, 99(23), 15024-15029. CrossRef Scholar google search
Drummond R., Dambuza I., Vautie S. et al. (2016) CD4+ T-cell survival in the GI tract requires dectin-1 during fungal infection. Mucosal Immunology, 9, 492-502. CrossRef Scholar google search
Ferreira-Gomes M., Wich M., Böde S. et al. (2021) B cell recognition of Candida albicans hyphae via TLR2 promotes IgG1 and IL-6 secretion for TH17 differentiation. Front. Immunol., 12, 698849. CrossRef Scholar google search
Generalov E.A., Levashova N.T., Sidorova A.E., Chumakov P.M., Yakovenko L.V. (2017) An autowave model of the bifurcation behavior of transformed cells in response to polysaccharide. Biophysics, 62, 717-721. CrossRef Scholar google search