1. Национальный медицинский исследовательский центр психиатрии и наркологии имени В.П. Сербского Минздрава России, Москва, Россия 2. Институт биологии гена Российской академии наук, 119334, Москва, Россия 3. Институт общей физики им. А.М. Прохорова РАН, Москва, Россия; Национальный исследовательский ядерный университет МИФИ, Москва, Россия
Глиобластома — первичная опухоль головного мозга — является одним из наиболее агрессивных видов злокачественных новообразований. Даже в случае ранней диагностики и при своевременно начатом лечении с помощью современных химиотерапевтических препаратов, лучевой терапии и хирургического лечения прогноз остаётся неблагоприятным с коротким периодом выживания после постановки диагноза. В связи с этим продолжается исследование основных патогенетических звеньев развития глиобластом. В настоящее время основное внимание уделяется исследованию молекулярной характеристики опухолей, включая анализ внеклеточных везикул, которые играют важную роль в процессах межклеточной коммуникации. В настоящем обзоре с целью освещения актуальной информации о роли внеклеточных везикул в диагностике и терапии глиом проведён анализ накопленных результатов российских и зарубежных исследований, связанных с данным направлением. Основной задачей данной работы было рассмотрение особенностей внеклеточных везикул как контейнеров и переносчиков глиомных маркеров, а также нуклеиновых кислот, используемых в диагностике и терапии.
Филин А.А., Чернышева А.А., Павлова Г.В., Лощенов В.Б., Гурина О.И. (2022) Внеклеточные везикулы в диагностике и терапии глиом: проблемы и перспективы. Биомедицинская химия, 68(6), 419-426.
Филин А.А. и др. Внеклеточные везикулы в диагностике и терапии глиом: проблемы и перспективы // Биомедицинская химия. - 2022. - Т. 68. -N 6. - С. 419-426.
Филин А.А. и др., "Внеклеточные везикулы в диагностике и терапии глиом: проблемы и перспективы." Биомедицинская химия 68.6 (2022): 419-426.
Филин, А. А., Чернышева, А. А., Павлова, Г. В., Лощенов, В. Б., Гурина, О. И. (2022). Внеклеточные везикулы в диагностике и терапии глиом: проблемы и перспективы. Биомедицинская химия, 68(6), 419-426.
Список литературы
Louis D.N., Perry A., Wesseling P., Brat D.J., Cree I.A., Figarella-Branger D., Hawkins C., Ng H.K., Pfister S.M., Reifenberger G., Soffietti R., von Deimling A., Ellison D.W. (2021) The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro-Oncology, 23(8), 1231-1251. CrossRef Scholar google search
Schwartzbaum J.A., Fisher J.L., Aldape K.D., Wrensch M. (2006) Epidemiology and molecular pathology of glioma. Nat. Clin. Pract. Neurol., 2(9), 494-503. CrossRef Scholar google search
Weller M., van den Bent M., Preusser M., le Rhun E., Tonn J.C., Minniti G., Bendszus M., Balana C., Chinot O., Dirven L., French P., Hegi M.E., Jakola A.S., Platten M., Roth P., Rudà R., Short S., Smits M., Taphoorn M.J.B., von Deimling A., Westphal M., Soffietti R., Reifenberger G., Wick W. (2022) Author correction: EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat. Rev. Clin. Oncol., 19(5), 357-358. CrossRef Scholar google search
Mallawaaratchy D.M., Hallal S., Russell B., Ly L., Ebrahimkhani S., Wei H., Christopherson R.I., Buckland M.E., Kaufman K.L. (2017) Comprehensive proteome profiling of glioblastoma-derived extracellular vesicles identifies markers for more aggressive disease. J. Neurooncol., 131(2), 233-244. CrossRef Scholar google search
Vagner T., Chin A., Mariscal J., Bannykh S., Engman D.M., di Vizio D. (2019) Protein composition reflects extracellular vesicle heterogeneity. Proteomics, 19(8), e1800167. CrossRef Scholar google search
Ebrahimkhani S., Vafaee F., Hallal S., Wei H., Lee M.Y.T., Young P.E., Satgunaseelan L., Beadnall H., Barnett M.H., Shivalingam B., Suter C.M., Buckland M.E., Kaufman K.L. (2018) Deep sequencing of circulating exosomal microRNA allows non-invasive glioblastoma diagnosis. NPJ Precis. Oncol., 12(28), 1-9. CrossRef Scholar google search
Chistiakov D.A., Chekhonin V.P. (2014) Extracellular vesicles shed by glioma cells: Pathogenic role and clinical value. Tumour Biol., 35(9), 8425-8438. CrossRef Scholar google search
Sourani A., Saghaei S., Sabouri M., Soleimani M., Dehghani L. (2021) A systematic review of extracellular vesicles as non-invasive biomarkers in glioma diagnosis, prognosis, and treatment response monitoring. Mol. Biol. Rep., 48(10), 6971-6985. CrossRef Scholar google search
Jurj A., Zanoaga O., Braicu C., Lazar V., Tomuleasa C., Irimie A., Berindan-Neagoe I. (2020) A comprehensive picture of extracellular vesicles and their contents. Molecular transfer to cancer cells. Cancers (Basel), 12(2), 298. CrossRef Scholar google search
Palviainen M., Saari H., Kärkkäinen O., Pekkinen J., Auriola S., Yliperttula M., Puhka M., Hanhineva K., Siljander P.R. (2019) Metabolic signature of extracellular vesicles depends on the cell culture conditions. J. Extracell. Vesicles., 8(1), 1596669. CrossRef Scholar google search
Batool S.M., Hsia T., Khanna S.K., Gamblin A.S., Rosenfeld Y., You D.G., Carter B.S., Balaj L. (2022) Decoding vesicle-based precision oncology in gliomas. Neurooncol. Adv., 4(Suppl 2), ii53-ii60. CrossRef Scholar google search
Kalra H., Simpson RJ., Ji.H., Aikawa E., Altevogt P., Askenase P., Bond V.C., Borràs F.E., Breakefield X., Budnik V., Buzas E., Camussi G., Clayton A., Cocucci E., Falcon-Perez J.M., Gabrielsson S., Gho Y.S., Gupta D., Harsha H.C., Hendrix A., Hill A.F., Inal J.M., Jenster G., Krämer-Albers E.M., Lim S.K., Llorente A., Lötvall J., Marcilla A., Mincheva-Nilsson L., Nazarenko I., Nieuwland R., Nolte-'t Hoen E.N., Pandey A., Patel T., Piper M.G., Pluchino S., Prasad T.S., Rajendran L., Raposo G., Record M., Reid G.E., Sánchez-Madrid F., Schiffelers R.M., Siljander P., Stensballe A., Stoorvogel W., Taylor D., Thery C., Valadi H., van Balkom B.W., Vázquez J., Vidal M., Wauben M.H., Yáñez-Mó M., Zoeller M., Mathivanan S. (2012) Vesiclepedia: A compendium for extracellular vesicles with continuous community annotation. PLoS Biol., 10(12), e1001450. CrossRef Scholar google search
Jurj A., Pop-Bica C., Slaby O., Stefan C.D., Cho W.C., Korban S.S., Berindan-Neagoe I. (2020) Tiny actors in the big cellular world: Extracellular vesicles playing critical roles in cancer. Int. J. Mol. Sci., 21(20), 7688. CrossRef Scholar google search
Chuo S.T., Chien J.C., Lai C.P. (2018) Imaging extracellular vesicles: Current and emerging methods. J. Biomed. Sci., 25(1), 91. CrossRef Scholar google search
Zhang Y., Liu Y., Liu H., Tang W.H. (2019) Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci., 9,19. CrossRef Scholar google search
André-Grégoire G., Bidère N., Gavard J. (2018) Temozolomide affects extracellular vesicles released by glioblastoma cells. Biochimie, 155, 11-15. CrossRef Scholar google search
Evans S.M., Putt M., Yang X.Y., Lustig R.A., Martinez-Lage M., Williams D., Desai A., Wolf R., Brem S., Koch C.J. (2016) Initial evidence that blood-borne microvesicles are biomarkers for recurrence and survival in newly diagnosed glioblastoma patients. J. Neurooncol., 127(2), 391-400. CrossRef Scholar google search
Shao H., Chung J., Balaj L., Charest A., Bigner D.D., Carter B.S., Hochberg F.H., Breakefield X.O., Weissleder R., Lee H. (2012) Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat. Med., 18(12), 1835-1840. CrossRef Scholar google search
Koch C.J., Lustig R.A., Yang X.Y., Jenkins W.T., Wolf R.L., Martinez-Lage M., Desai A., Williams D., Evans S.M. (2014) Microvesicles as a biomarker for tumor progression versus treatment effect in radiation/temozolomide-treated glioblastoma patients. Transl. Oncol., 7(6), 752-758. CrossRef Scholar google search
Colombo F., Norton E.G., Cocucci E. (2021) Microscopy approaches to study extracellular vesicles. Biochim. Biophys. Acta Gen. Subj., 1865(4), 129752. CrossRef Scholar google search
Marei H.E., Althani A., Afifi N., Hasan A., Caceci T., Cifola I., Caratelli S., Sconocchia G., d'Agnano I., Cenciarelli C. (2022) Glioma extracellular vesicles for precision medicine: Prognostic and theragnostic application. Discov. Oncol., 13(1), 49. CrossRef Scholar google search
Müller Bark J., Kulasinghe A., Chua B., Day B.W., Punyadeera C. (2020) Circulating biomarkers in patients with glioblastoma. Br. J. Cancer., 122(3), 295-305. CrossRef Scholar google search
Wang H., Jiang D., Li W., Xiang X., Zhao J., Yu B., Wang C., He Z., Zhu L., Yang Y. (2019) Evaluation of serum extracellular vesicles as noninvasive diagnostic markers of glioma. Theranostics, 9(18), 5347-5358. CrossRef Scholar google search
van der Vos K.E., Abels E.R., Zhang X., Lai C., Carrizosa E., Oakley D., Prabhakar S., Mardini O., Crommentuijn M.H., Skog J., Krichevsky A.M., Stemmer-Rachamimov A., Mempel T.R., El Khoury J., Hickman S.E., Breakefield X.O. (2016) Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain. Neuro-Oncology, 18(1), 58-69. CrossRef Scholar google search
Simionescu N., Nemecz M., Petrovici A.R., Nechifor I.S., Buga R.C., Dabija M.G., Eva L., Georgescu A. (2022) Microvesicles and microvesicle-associated microRNAs reflect glioblastoma regression: Microvesicle-associated miR-625-5p has biomarker potential. Int. J. Mol. Sci., 23(15), 8398. CrossRef Scholar google search
Huang W., Shi Y., Han B., Wang Q., Zhang B., Qi C., Liu F. (2020) LncRNA GAS5-AS1 inhibits glioma proliferation, migration, and invasion via miR-106b-5p/TUSC2 axis. Hum. Cell, 33, 416-426. CrossRef Scholar google search
Liu F., Gong J., Huang W., Wang Z., Wang M., Yang J., Wu C., Wu Z., Han B. (2013) MicroRNA-106b-5p boosts glioma tumorigensis by targeting multiple tumor suppressor genes. Oncogene, 33, 4813-4822. CrossRef Scholar google search
Wu H., Li X., Zhang T., Zhang G., Chen J., Chen L., He M., Hao B., Wang C. (2020) Overexpression miR-486-3p promoted by allicin enhances temozolomide sensitivity in glioblastoma via targeting MGMT. NeuroMolecular Medicine, 22, 359-369. CrossRef Scholar google search
You Y., Que K., Zhou Y., Zhang Z., Zhao X., Gong J., Liu Z. (2018) MicroRNA-766-3p inhibits tumour progression by targeting Wnt3a in hepatocellular carcinoma. Mol. Cells, 41, 830-841. CrossRef Scholar google search
Zhao Q., Yuan X., Zheng L., Xue M. (2022) miR-30d-5p: A non-coding RNA with potential diagnostic, prognostic and therapeutic applications. Front. Cell Dev. Biol., 10, 829435. CrossRef Scholar google search
Zhang J., Zhang J., Zhang J., Qiu W., Xu S., Yu Q., Liu C., Wang Y., Lu A., Zhang J., Lu X. (2017) MicroRNA-625 inhibits the proliferation and increases the chemosensitivity of glioma by directly targeting AKT2.Am. J. Cancer Res., 7(9), 1835-1849. Scholar google search
Ghaemmaghami A.B., Mahjoubin-Tehran M., Movahedpour A., Morshedi K., Sheida A., Taghavi S.P., Mirzaei H., Hamblin M.R. (2020) Role of exosomes in malignant glioma: MicroRNAs and proteins in pathogenesis and diagnosis. Cell Commun. Signal., 18(1), 120. CrossRef Scholar google search
Yang C.H., Yue J., Pfeffer S.R., Fan M., Paulus E., Hosni-Ahmed A., Sims M., Qayyum S., Davidoff A.M., Handorf C.R., Pfeffer L.M. (2014) MicroRNA-21 promotes glioblastoma tumorigenesis by down-regulating insulin-like growth factor-binding protein-3 (IGFBP3). J. Biol. Chem., 289(36), 25079-25087. CrossRef Scholar google search
Hermansen S.K., Nielsen B.S., Aaberg-Jessen C., Kristensen B.W. (2016) MiR-21 is linked to glioma angiogenesis: A co-localization study. J. Histochem. Cytochem., 64(2), 138-148. CrossRef Scholar google search
Akers J.C., Ramakrishnan V., Kim R., Skog J., Nakano I., Pingle S., Kalinina J., Hua W., Kesari S., Mao Y., Breakefield X.O., Hochberg F.H., van Meir E.G., Carter B.S., Chen C.C. (2013) MiR-21 in the extracellular vehicles (EVs) of cerebrospinal fluid (CSF): A platform for glioblastoma biomarker development. PLoS One, 8(10), e78115. CrossRef Scholar google search
Skog J., Wurdinger T., van Rijn S., Meijer D.H., Gainche L., Curry W.T., Carter B.S., Krichevsky A.M., Breakefield X.O. (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol., 10(12), 1470-1476. CrossRef Scholar google search
Drusco A., Fadda P., Nigita G., Fassan M., Bottoni A., Gardian M.P., Sacchi D., Calore F., Carosi M., Antenucci A., Casini B., Kelani H., Pescarmona E., di Leva G., Zanesi N., Berger M.S., Croce C.M. (2018) Circulating microRNAs predict survival of patients with tumors of glial origin. EBioMedicine., 30, 105-112. CrossRef Scholar google search
Zhong F., Huang T., Leng J. (2019) Serum miR-29b as a novel biomarker for glioblastoma diagnosis and prognosis. Int. J. Clin. Exp. Pathol., 12(11), 4106-4112. Scholar google search
Santangelo A., Imbrucè P., Gardenghi B., Belli L., Agushi R., Tamanini A., Munari S., Bossi A.M., Scambi I., Benati D., Mariotti R., di Gennaro G., Sbarbati A., Eccher A., Ricciardi G.K., Ciceri E.M., Sala F., Pinna G., Lippi G., Cabrini G., Dechecchi M.C. (2018) A microRNA signature from serum exosomes of patients with glioma as complementary diagnostic biomarker. J. Neurooncol., 136, 51-62. CrossRef Scholar google search
Pinet S., Bessette B., Vedrenne N., Lacroix A., Richard L., Jauberteau M.O., Battu S., Lalloué F. (2016) TrkB-containing exosomes promote the transfer of glioblastoma aggressiveness to YKL-40-inactivated glioblastoma cells. Oncotarget., 7(31), 50349-50364. CrossRef Scholar google search
Birkó Z., Nagy B., Klekner Á., Virga J. (2020) Novel molecular markers in glioblastoma-benefits of liquid biopsy. Int. J. Mol. Sci., 21(20), 7522. CrossRef Scholar google search
Hallal S., Ebrahim Khani S., Wei H., Lee M.Y.T., Sim H.W., Sy J., Shivalingam B., Buckland M.E., Alexander-Kaufman K.L. (2020) Deep sequencing of small RNAs from neurosurgical extracellular vesicles substantiates miR-486-3p as a circulating biomarker that distinguishes glioblastoma from lower-grade astrocytoma patients. Int. J. Mol. Sci., 21(14), 4954-4975. CrossRef Scholar google search
Sun K., Zheng X., Jin H., Yu F., Zhao W. (2022) Exosomes as CNS drug delivery tools and their applications. Pharmaceutics, 14(2252), 1-22. CrossRef Scholar google search
Katsuda T., Kosaka N., Ochiya T. (2014) The roles of extracellular vesicles in cancer biology: Toward the development of novel cancer biomarkers. Proteomics, 14(4-5), 412-425. CrossRef Scholar google search
Vader P., Breakefield X.O., Wood M.J. (2014) Extracellular vesicles: Emerging targets for cancer therapy. Trends Mol Med., 20(7), 385-393. CrossRef Scholar google search
Zhu Z., Zhai Y., Hao Y., Wang Q., Han F., Zheng W., Hong J., Cui L., Jin W., Ma S., Yang L., Cheng G. (2022) Specific anti-glioma targeted-delivery strategy of engineered small extracellular vesicles dual-functionalised by angiopep-2 and TAT peptides. J. Extracell. Vesicles, 11(8), e12255. CrossRef Scholar google search
Jia G., Han Y., An Y., Ding Y., He C., Wang X., Tang Q. (2018) NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials, 178, 302-316. CrossRef Scholar google search
Qian C., Wang Y., Ji Y., Chen D., Wang C., Zhang G., Wang Y. (2022) Neural stem cell-derived exosomes transfer miR-124-3p into cells to inhibit glioma growth by targeting FLOT2. Int. J. Oncol., 61(4), 115. CrossRef Scholar google search
Xu H., Zhao G., Zhang Y., Jiang H., Wang W., Zhao D., Hong J., Yu H., Qi L. (2019) Mesenchymal stem cell-derived exosomal microRNA-133b suppresses glioma progression via Wnt/β-catenin signaling pathway by targeting EZH2. Stem Cell Res. Ther., 10(1), 381. CrossRef Scholar google search
Yu L., Gui S., Liu Y., Qiu X., Zhang G., Zhang X., Pan J., Fan J., Qi S., Qiu B. (2019) Exosomes derived from microRNA-199a-overexpressing mesenchymal stem cells inhibit glioma progression by down-regulating AGAP2. Aging (Albany NY), 11(15), 5300-5318. CrossRef Scholar google search