В работе анализируется набор уравнений, адекватно предсказывающий величину IC50 для ингибиторов главной протеазы SARS-CoV-2. Обучающая выборка получена с использованием фильтрации по независимым от предсказания целевой величины критериев. В её состав вошло 76 соединений, тестовая выборка составила 9 соединений. В качестве независимых переменных использовали величины энергетических вкладов, полученных при расчёте методом MMGBSA изменения свободной энергии комплекса, и ряд характеристик физико-химических свойств ингибиторов. Достаточно использовать всего 7 независимых переменных без потери качества предсказания (Q2 = 0,79; R2предсказания = 0,89). Максимальная ошибка при этом не превышает 0,92 единицы lg(IC50) при полном диапазоне наблюдаемых величин от 1,26 до 4,95.
Загрузить PDF:
Ключевые слова: SARS-CoV-2, главная протеаза, конкурентные ингибиторы, QSAR
Дополнительные материалы:
Цитирование:
Иванова Я.О., Воронина А.И., Скворцов В.С. (2022) Предсказание ингибирования главной протеазы SARS-CoV-2 c учётом фильтрации данных о положении лигандов. Биомедицинская химия, 68(6), 444-458.
Иванова Я.О. и др. Предсказание ингибирования главной протеазы SARS-CoV-2 c учётом фильтрации данных о положении лигандов // Биомедицинская химия. - 2022. - Т. 68. -N 6. - С. 444-458.
Иванова Я.О. и др., "Предсказание ингибирования главной протеазы SARS-CoV-2 c учётом фильтрации данных о положении лигандов." Биомедицинская химия 68.6 (2022): 444-458.
Иванова, Я. О., Воронина, А. И., Скворцов, В. С. (2022). Предсказание ингибирования главной протеазы SARS-CoV-2 c учётом фильтрации данных о положении лигандов. Биомедицинская химия, 68(6), 444-458.
Список литературы
Shereen M.A., Khan S., Kazmi A., Bashir N., Siddique R. (2020) COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. J. Adv. Res., 24, 91-98. CrossRef Scholar google search
Hartenian E., Nandakumar D., Lari A., Ly M., Tucker J.M., Glaunsinger B.A. (2020) The molecular virology of coronaviruses. J. Biol. Chem., 295(37), 12910-12934. CrossRef Scholar google search
Weiss S.R., Navas-Martin S. (2005) Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol. Mol. Biol. Rev., 69(4), 635-664. CrossRef Scholar google search
Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y., Li, B., Huang C.-L., Chen H.-D., Chen J., Luo Y., Guo H., Jiang R.-D., Liu M.-Q., Chen Y., Shen X.-R., Wang X., Shi Z.-L. (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270-273. CrossRef Scholar google search
Muhammed Y., Yusuf Nadabo A., Pius M., Sani B., Usman J., Anka Garba N., Mohammed Sani J., Opeyemi Olayanju B., Zeal Bala S., Garba Abdullahi M., Sambo M. (2021) SARS-CoV-2 spike protein and RNA dependent RNA polymerase as targets for drug and vaccine development: A review. Biosafety Health, 3(5), 249-263. CrossRef Scholar google search
Ugurel O.M., Mutlu O., Sariyer E., Kocer S., Ugurel E., Inci T.G., Ata O., Turgut-Balik D. (2020) Evaluation of the potency of FDA-approved drugs on wild type and mutant SARS-CoV-2 helicase (NSP13). Int. J. Biol. Macromol., 163, 1687-1696. CrossRef Scholar google search
Xu Y., Chen K., Pan J., Lei Y., Zhang D., Fang L., Tang J., Chen X., Ma Y., Zheng Y., Zhang B., Zhou Y., Zhan J., Xu W. (2021) Repurposing clinically approved drugs for COVID-19 treatment targeting SARS-CoV-2 papain-like protease. Int. J. Biol. Macromol., 188, 137-146. CrossRef Scholar google search
Ullrich S., Nitsche C. (2020) The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett., 30(17), 127377. CrossRef Scholar google search
Xiong M., Su H., Zhao W., Xie H., Shao Q., Xu Y. (2021) What coronavirus 3C-like protease tells us: From structure, substrate selectivity, to inhibitor design. Med. Res. Rev., 41(4), 1965-1998. CrossRef Scholar google search
la Monica G., Bono A., Lauria A., Martorana A. (2022) Targeting SARS-CoV-2 main protease for treatment of COVID-19: Covalent inhibitors structure-activity relationship insights and evolution perspectives. J. Med. Chem., 65(19), 12500-12534. CrossRef Scholar google search
Ramos-Guzmán C.A., Ruiz-Pernía J.J., Tuñón I. (2021) Computational simulations on the binding and reactivity of a nitrile inhibitor of the SARS-CoV-2 main protease. Chemical Commun., 57(72), 9096-9099. CrossRef Scholar google search
Mondal D., Warshel A. (2020) Exploring the mechanism of covalent inhibition: Simulating the binding free energy of α-ketoamide inhibitors of the main protease of SARS-CoV-2. Biochemistry, 59(48), 4601-4608. CrossRef Scholar google search
Aljoundi A., Bjij I., El Rashedy A., Soliman M.E. (2020) Covalent versus non-covalent enzyme inhibition: Which route should we take? A justification of the good and bad from molecular modelling perspective. Protein J., 39(2), 97-105. CrossRef Scholar google search
Sepehri B., Kohnehpoushi M., Ghavami R. (2021) High predictive QSAR models for predicting the SARS coronavirus main protease inhibition activity of ketone-based covalent inhibitors. J. Iranian Chem. Soc., 19(5), 1865-1876. CrossRef Scholar google search
Macchiagodena M., Pagliai M., Procacci P. (2020) Identification of potential binders of the main protease 3CLpro of the COVID-19 via structure-based ligand design and molecular modeling. Chem. Phys. Lett., 750, 137489. CrossRef Scholar google search
Toropov A.A., Toropova A.P., Veselinović A.M., Leszczynska D., Leszczynski J. (2020) SARS-CoV Mpro inhibitory activity of aromatic disulfide compounds: QSAR model. J. Biomol. Struct. Dyn., 40(2), 780-786. CrossRef Scholar google search
Ghaleb A., Aouidate A., Ayouchia H.B., Aarjane M., Anane H., Stiriba S.-E. (2020) In silico molecular investigations of pyridine N-oxide compounds as potential inhibitors of SARS-CoV-2: 3D QSAR, molecular docking modeling, and ADMET screening. J. Biomol. Struct. Dyn., 40(1), 143-153. CrossRef Scholar google search
Tsai K.-C., Chen S.-Y., Liang P.-H., Lu I.-L., Mahindroo N., Hsieh H.-P., Chao Y.-S., Liu L., Liu D., Lien W., Lin T.-H., Wu S.-Y. (2006) Discovery of a novel family of SARS-CoV protease inhibitors by virtual screening and 3D-QSAR studies. J. Med. Chem., 49(12), 3485-3495. CrossRef Scholar google search
Gentile D., Patamia V., Scala A., Sciortino M.T., Piperno A., Rescifina A. (2020) Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: A virtual screening and molecular modeling study. Marine Drugs, 18(4), 225. CrossRef Scholar google search
Gao K., Wang R., Chen J., Tepe J. J., Huang F., Wei G.-W. (2021) Perspectives on SARS-CoV-2 main protease inhibitors. J. Med. Chem., 64(23), 16922-16955. CrossRef Scholar google search
Nandi S., Kumar M., Saxena A.K. (2022) QSAR of SARS-CoV-2 main protease inhibitors utilizing theoretical molecular descriptors. Research Square (online first), DOI: 10.21203/rs.3.rs-1526870/v1. CrossRef Scholar google search
Kneller D.W., Li H., Galanie S., Phillips G., Labbé A., Weiss K.L., Zhang Q., Arnould M.A., Clyde A., Ma H., Ramanathan A., Jonsson C.B., Head M.S., Coates L., Louis J.M., Bonnesen P.V., Kovalevsky A. (2021) Structural, electronic, and electrostatic determinants for inhibitor binding to subsites S1 and S2 in SARS-CoV-2 main protease. J. Med. Chem., 64(23), 17366-17383. CrossRef Scholar google search
Turlington M., Chun A., Tomar S., Eggler A., Grum-Tokars V., Jacobs J., Daniels J.S., Dawson E., Saldanha A., Chase P., Baez-Santos Y.M., Lindsley C.W., Hodder P., Mesecar A.D., Stauffer S.R. (2013) Discovery of n-(benzo[1,2,3]triazol-1-yl)- n-(benzyl)acetamido)phenyl) carboxamides as severe acute respiratory syndrome coronavirus (SARS-COV) 3CLpro inhibitors: Identification of ML300 and noncovalent nanomolar inhibitors with an induced-fit binding. Bioorg. Med. Chem. Lett., 23(22), 6172-6177. CrossRef Scholar google search
Mesecar A.D. (2020) A taxonomically-driven approach to development of potent, broad-spectrum inhibitors of coronavirus main protease including SARS-CoV-2 (COVID-19). Scholar google search
Lockbaum G.J., Reyes A.C., Lee J.M., Tilvawala R., Nalivaika E.A., Ali A., Kurt Yilmaz N., Thompson P.R., Schiffer C.A. (2021) Crystal structure of SARS-CoV-2 main protease in complex with the non-covalent inhibitor ML188. Viruses, 13(2), 174. CrossRef Scholar google search
Zhang C.-H., Stone E.A., Deshmukh M., Ippolito J.A., Ghahremanpour M.M., Tirado-Rives J., Spasov K.A., Zhang S., Takeo Y., Kudalkar S.N., Liang Z., Isaacs F., Lindenbach B., Miller S.J., Anderson K.S., Jorgensen W.L. (2021) Potent noncovalent inhibitors of the main protease of SARS-CoV-2 from molecular sculpting of the drug Perampanel guided by free energy perturbation calculations. ACS Central Science, 7(3), 467-475. CrossRef Scholar google search
Su H., Yao S., Zhao W., Li M., Liu J., Shang W., Xie H., Ke C., Hu H., Gao M., Yu K., Liu H., Shen J., Tang W., Zhang L., Xiao G., Ni L., Wang D., Zuo J., Xu Y. (2020) Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol. Sinica, 41(9), 1167-1177. CrossRef Scholar google search
Rossetti G.G., Ossorio M.A., Rempel S., Kratzel A., Dionellis V.S., Barriot S., Tropia L., Gorgulla C., Arthanari H., Thiel V., Mohr P., Gamboni R., Halazonetis T.D. (2022) Non-covalent SARS-CoV-2 Mpro inhibitors developed from in silico screen hits. Sci. Rep., 12(1), 2505. CrossRef Scholar google search
Han S.H., Goins C.M., Arya T., Shin W.-J., Maw J., Hooper A., Sonawane D.P., Porter M.R., Bannister B.E., Crouch R.D., Lindsey A.A., Lakatos G., Martinez S.R., Alvarado J., Akers W.S., Wang N.S., Jung J.U., Macdonald J.D., Stauffer S.R. (2021) Structure-based optimization of ML300-derived, noncovalent inhibitors targeting the severe acute respiratory syndrome coronavirus 3CL protease (SARS-CoV-2 3CLpro). J. Med. Chem., 65(4), 2880-2904. CrossRef Scholar google search
Glaser J., Sedova A., Galanie S., Kneller D.W., Davidson R.B., Maradzike E., del Galdo S., Labbé A., Hsu D.J., Agarwal R., Bykov D., Tharrington A., Parks J.M., Smith D.M., Daidone I., Coates L., Kovalevsky A., Smith J.C. (2022) Hit expansion of a noncovalent SARS-CoV-2 main protease inhibitor. ACS Pharmacol. Transl. Sci., 5(4), 255-265. CrossRef Scholar google search
Lu I.-L., Mahindroo N., Liang P.-H., Peng Y.-H., Kuo C.-J., Tsai K.-C., Hsieh H.-P., Chao Y.-S., Wu S.-Y. (2006) Structure-based drug design and structural biology study of novel nonpeptide inhibitors of severe acute respiratory syndrome coronavirus main protease. J. Med. Chem., 49(17), 5154-5161. CrossRef Scholar google search
Cantrelle F.X., Boll E., Brier L., Moschidi D., Belouzard S., Landry V., Leroux F., Dewitte F., Landrieu I., Dubuisson J., Deprez B., Charton J., Hanoulle X. (2021) NMR spectroscopy of the main protease of SARS-CoV-2 and fragment-based screening identify three protein hotspots and an antiviral fragment. Angewandte Chemie International Edition, 60(48), 25428-25435. CrossRef Scholar google search
Luttens A., Gullberg H., Abdurakhmanov E., Vo D.D., Akaberi D., Talibov V.O., Nekhotiaeva N., Vangeel L., de Jonghe S., Jochmans D., Krambrich J., Tas A., Lundgren B., Gravenfors Y., Craig A.J., Atilaw Y., Sandström A., Moodie L.W., Lundkvist E., Carlsson J. (2022) Ultralarge virtual screening identifies SARS-CoV-2 main protease inhibitors with broad-spectrum activity against coronaviruses. J. Am. Chem. Soc., 144(7), 2905-2920. CrossRef Scholar google search
Deshmukh M.G., Ippolito J.A., Zhang C.-H., Stone E.A., Reilly R.A., Miller S.J., Jorgensen W.L., Anderson K.S. (2021) Structure-guided design of a perampanel-derived pharmacophore targeting the SARS-CoV-2 main protease. Structure, 29(8). CrossRef Scholar google search
Ma C., Xia Z., Sacco M.D., Hu Y., Townsend J.A., Meng X., Choza J., Tan H., Jang J., Gongora M.V., Zhang X., Zhang F., Xiang Y., Marty M. T., Chen Y., Wang J. (2021) Discovery of di- and trihaloacetamides as covalent SARS-CoV-2 main protease inhibitors with high target specificity. J. Am. Chem. Soc., 143(49), 20697-20709. CrossRef Scholar google search
Gao S., Sylvester K., Song L., Claff T., Jing L., Woodson M., Weiße R.H., Cheng Y., Schäkel L., Petry M., Gütschow M., Schiedel A.C., Sträter N., Kang D., Xu S., Toth K., Tavis J., Tollefson A.E., Müller C.E., Zhan P. (2022) Discovery and crystallographic studies of trisubstituted piperazine derivatives as non-covalent SARS-CoV-2 main protease inhibitors with high target specificity and low toxicity. J. Med. Chem., 65(19), 13343-13364. CrossRef Scholar google search
Zhang C.-H., Spasov K.A., Reilly R.A., Hollander K., Stone E.A., Ippolito J.A., Liosi M.-E., Deshmukh M.G., Tirado-Rives J., Zhang S., Liang Z., Miller S.J., Isaacs F., Lindenbach B.D., Anderson K.S., Jorgensen W.L. (2021) Optimization of triarylpyridinone inhibitors of the main protease of SARS-CoV-2 to low-nanomolar antiviral potency. ACS Med. Chem. Lett., 12(8), 1325-1332. CrossRef Scholar google search
Mangiavacchi F., Botwina P., Menichetti E., Bagnoli L., Rosati O., Marini F., Fonseca S.F., Abenante L., Alves D., Dabrowska A., Kula-Pacurar A., Ortega-Alarcon D., Jimenez-Alesanco A., Ceballos-Laita L., Vega S., Rizzuti B., Abian O., Lenardão E.J., Velazquez-Campoy A., Santi C. (2021) Seleno-functionalization of quercetin improves the non-covalent inhibition of mpro and its antiviral activity in cells against SARS-CoV-2. Int. J. Mol. Sci., 22(13), 7048. CrossRef Scholar google search
Hou N., Shuai L., Zhang L., Xie X., Tang K., Zhu Y., Yu Y., Zhang W., Tan Q., Zhong G., Wen Z., Wang C., He X., Huo H., Gao H., Xu Y., Xue J., Peng C., Zou J., Hu Q. (2022) Development of highly potent non-covalent inhibitors of SARS-CoV-2 3CLpro. BioRxiv (online first), DOI: 10.1101/2022.08.10.503531. CrossRef Scholar google search
Gentile F., Fernandez M., Ban F., Ton A.-T., Mslati H., Perez C.F., Leblanc E., Yaacoub J.C., Gleave J., Stern A., Wong B., Jean F., Strynadka N., Cherkasov A. (2021) Automated discovery of noncovalent inhibitors of SARS-CoV-2 main protease by consensus deep docking of 40 billion small molecules. Chemical Science, 12(48), 15960-15974. CrossRef Scholar google search
Lee J.-Y., Kuo C.-J., Shin J.S., Jung E., Liang P.-H., Jung Y.-S. (2021) Identification of non-covalent 3C-like protease inhibitors against severe acute respiratory syndrome coronavirus-2 via virtual screening of a Korean compound library. Bioorg. Med. Chem. Lett., 42, 128067. CrossRef Scholar google search
Herlah B., Hoivik A., Jamљek L., Valjavec K., Yamamoto N., Hoshino T., Kranjc K., Perdih A. (2022) Design, synthesis and evaluation of fused bicyclo[2.2.2]octene as a potential core scaffold for the non-covalent inhibitors of SARS-CoV-2 3CLpro main protease. Pharmaceuticals, 15(5), 539. CrossRef Scholar google search
Wu Q., Yan S., Wang Y., Li M., Xiao Y., Li Y. (2022) Discovery of 4′-O-methylscutellarein as a potent SARS-CoV-2 main protease inhibitor. Biochem. Biophys. Res. Commun., 604, 76-82. CrossRef Scholar google search
Zhang J.-W., Xiong Y., Wang F., Zhang F.-M., Yang X., Lin G.-Q., Tian P., Ge G., Gao D. (2022) Discovery of 9,10-dihydrophenanthrene derivatives as SARS-CoV-2 3CLpro inhibitors for treating COVID-19. Eur. J. Med. Chem., 228, 114030. CrossRef Scholar google search
Xiong Y., Zhu G.-H., Wang H.-N., Hu Q., Chen L.-L., Guan X.-Q., Li H.-L., Chen H.-Z., Tang H., Ge G.-B. (2021) Discovery of naturally occurring inhibitors against SARS-CoV-2 3CLpro from Ginkgo biloba leaves via large-scale screening. Fitoterapia, 152, 104909. CrossRef Scholar google search
Alhadrami H.A., Sayed A.M., Sharif A.M., Azhar E.I., Rateb M.E. (2021) Olive-derived triterpenes suppress SARS CoV-2 main protease: A promising scaffold for future therapeutics. Molecules, 26(9), 2654. CrossRef Scholar google search
Guo S., Xie H., Lei Y., Liu B., Zhang L., Xu Y., Zuo Z. (2021) Discovery of novel inhibitors against main protease (Mpro) of SARS-CoV-2 via virtual screening and biochemical evaluation. Bioorg. Chem., 110, 104767. CrossRef Scholar google search
Kim J.H., Park Y.-I., Hur M., Park W.T., Moon Y.-H., Koo S.C., Yun-Chan H., Lee I. S., Park J. (2022) The inhibitory activity of methoxyl flavonoids derived from Inula britannica flowers on SARS-CoV-2 3CLpro. Int. J. Biol. Macromol., 222, 2098-2104. CrossRef Scholar google search
Zhang Y., Gao H., Hu X., Wang Q., Zhong F., Zhou X., Lin C., Yang Y., Wei J., Du W., Huang H., Zhou H., He W., Zhang H., Zhang Y., McCormick P. J., Fu J., Wang D., Fu Y., Li J. (2022) Structure-based discovery and structural basis of a novel broad-spectrum natural product against the main protease of coronavirus. J. Virology, 96(1), e01253-21. CrossRef Scholar google search
Schrodinger (Schrodinger, LLC, New York, NY). Retrieved September 02, 2022 from https://www.schrodinger.com/. Scholar google search
Halgren T.A., Murphy R.B., Friesner R.A., Beard H.S., Frye L.L., Pollard W.T., Banks J.L. (2004) Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 47(7), 1750-1759. CrossRef Scholar google search
Harder E., Damm W., Maple J., Wu C., Reboul M., Xiang J.Y., Wang L., Lupyan D., Dahlgren M.K., Knight J.L., Kaus J.W., Cerutti D.S., Krilov G., Jorgensen W.L., Abel R., Friesner R.A. (2015) OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput., 12(1), 281-296. CrossRef Scholar google search