ДНК-полимеразы β обеспечивают репарацию повреждённой ДНК. В клетках злокачественных опухолей происходит изменение продукции и свойств этих ферментов, что сопровождается нарушением жизнеспособности опухолевых клеток. Анализ результатов исследований, опубликованных в российских и международных базах данных (Pubmed, Elsevier), касающихся структуры и свойств ДНК-полимераз β и их роли в росте и пролиферации клеток, показал, что в клетках ряда злокачественных опухолей имеет место гиперэкспрессия генов β-подобных ДНК-полимераз. Это в значительной мере обеспечивает поддержание их жизнеспособности и пролиферативной активности. Направленное ингибирование β-подобных ДНК-полимераз сопровождается возникновением антипролиферативного и противоопухолевого эффекта. В качестве перспективных противоопухолевых фармакофоров могут быть использованы соединения стабильного парамагнитного изотопа магния (25Mg2+) или других, обладающих некомпенсированным ядерным спином изотопов, дивалентных металлов (43Ca2+ и 67Zn2+), а также короткие одноцепочечные полидезоксирибонуклеотиды.
Давыдов В.В., Бухвостов А.А., Кузнецов Д.А. (2023) β-Подобные ДНК-полимеразы и перспективы их использования в качестве мишеней в химиотерапии опухолей. Биомедицинская химия, 69(3), 145-155.
Давыдов В.В. и др. β-Подобные ДНК-полимеразы и перспективы их использования в качестве мишеней в химиотерапии опухолей // Биомедицинская химия. - 2023. - Т. 69. -N 3. - С. 145-155.
Давыдов В.В. и др., "β-Подобные ДНК-полимеразы и перспективы их использования в качестве мишеней в химиотерапии опухолей." Биомедицинская химия 69.3 (2023): 145-155.
Давыдов, В. В., Бухвостов, А. А., Кузнецов, Д. А. (2023). β-Подобные ДНК-полимеразы и перспективы их использования в качестве мишеней в химиотерапии опухолей. Биомедицинская химия, 69(3), 145-155.
Список литературы
Beard W.A. (2020) DNA Polymerase β: Closing the gap between structure and function. DNA Repair, 93, 102910. CrossRef Scholar google search
Kuznetsova A.A., Fedorova O.S., Kuznetsov N.A. (2022) Structural and molecular kinetic features of activities of DNA polymerases. Int. J. Mol. Sci., 23(12), 6373. CrossRef Scholar google search
Бухвостов А.А., Орлов А.П., Шаталов А.О., Кузнецов Д.А. (2014) Уникальная бета-подобная ДНК-полимераза из хроматина клеток острого миелоидного лейкоза человека HL-60. Гены и клетки, 9(2), 46-52. Scholar google search
Srivastava A., Idriss H., Taha K., Lee S., Homouz D. (2022) Phosphorylation induced conformational transitions in DNA polymerase β. Front. Mol. Biosci., 9, 900771. CrossRef Scholar google search
He F., Yang X.P., Srivastava D.K., Wilson S.H. (2003) DNA polymerase beta gene expression: The promoter activator CREB-1 is upregulated in Chinese hamster ovary cells by DNA alkylating agent-induced stress. Biol. Chem., 384(1), 19-23. Scholar google search
Beard W.A., Wilson S.H. (2014) Structure and mechanism of DNA polymerase β. Biochemistry, 53(17), 2768-2780. CrossRef Scholar google search
Homouz D., Joyce-Tan K.H., Shamsir M.S., Moustafa I.M., Idriss H.T. (2018) Molecular dynamics simulations suggest changes in electrostatic interactions as a potential mechanism through which serine phosphorylation inhibits DNA polymerase β activity. J. Mol. Graph. Model., 84, 236-241. CrossRef Scholar google search
Sungchul J. (2012) Molecular Theory of a Living Cell. Springer, New York, 748 p. Scholar google search
Perera L., Freudenthal B.D., Beard W.A., Pedersen L.G., Wilson S.H. (2017) Revealing the role of the product metal in DNA polymerase β catalysis. Nucleic Acids Res., 45(5), 2736-2745. CrossRef Scholar google search
Gong S., Kirmizialtin S., Chang A., Mayfield J.E., Zhang Y.J., Johnson K.A. (2021) Kinetic and thermodynamic analysis defines roles for two metal ions in DNA polymerase specificity and catalysis. J. Biol. Chem., 296, 100184. CrossRef Scholar google search
Mentegari E., Kissova M., Bavagnoli L., Maga G., Crespan E. (2016) DNA polymerases λ and β: The double-edged swords of DNA repair. Genes, 7(9), 57. CrossRef Scholar google search
Wallace S.S., Murphy D.L., Sweasy J.B. (2012) Base excision repair and cancer. Cancer Lett., 327(1-2),73-89. CrossRef Scholar google search
Sweasy J.B., Lang T., di Maio D. (2006) Is base excision repair a tumor suppressor mechanism? Cell Cycle, 5(3), 250-259. CrossRef Scholar google search
Wang M., Long K., Li E. (2020) DNA polymerase beta modulates cancer progression via enhancing CDH13 expression by promoter demethylation. Oncogene, 39, 5507-5519. CrossRef Scholar google search
Nemec A.A., Donigan K.A., Murphy D.L., Jaeger J., Sweasy J.B. (2012) Colon cancer-associated DNA polymerase β variant induces genomic instability and cellular transformation. J. Biol. Chem., 287(28), 23840-23849. CrossRef Scholar google search
Бухвостов А.А., Павлов К.А., Ермаков К.В., Сидорук К.Н., Рыбакова И.В., Кузнецов Д.А., Румянцев С.А. (2018) Атипичная β-подобная ДНК-полимераза клеток ретинобластомы как мишень для спин-селективных ингибирующих цитостатиков. Журнал фундаментальной медицины и биологии, 2, 50-53. Scholar google search
Martin S., McCabe N., Mullarkey M., Gummins R., Burgess D.J., Nakabeppu Y. (2010) DNA polymerases as potential therapeutic targets in cancers. Cancer Cell, 17, 235-248. Scholar google search
Zheng H., Xue H., Li M., Zhao J.M., Dong Z.M., Zhao G.Q. (2013) DNA polymerase beta overexpression correlates with poor prognosis in esophageal cancer patients. Chinese Science Bulletin, 58, 3274-3279. Scholar google search
Starcevic D., Dalal S., Sweasy J.B. (2004) Is there a link between DNA polymerase β and cancer? Cell Cycle, 3(8), 998-1001. Scholar google search
Jaiswal A.S., Banerjee S., Aneja R., Sarkar F.H., Ostrov D.A., Narayah S. (2011) DNA polymerase β as a novel target for chemotherapeutic intervention of colorectal cancer. PLOS One, 6(2), e16691. CrossRef Scholar google search
Canitrol Y., Cazaux C., Frechet M., Bouayadi K., Lesca C., Bernard S. (1998) Overexpression of DNA polymerase β in cell results in a mutator phenotype and a decreased sensitivity to anticancer drugs. Proc. Natl. Acad. Sci. USA, 95(21), 12586-12590. Scholar google search
Zhao W., Wu M., Lai Y., Deng W., Liu Y., Zhang Z. (2013) Involvement of DNA polymerase в overexpression in the malignant transformation induced by benzo[a]pyrene. Toxicology, 309, 73-80. Scholar google search
Magrin L., Fanale D., Brando C., Fiorino A., Corsini L.R., Sciacchitano R., Filorizzo C., Dimino A., Bazan V. (2021) POLE, POLD1, and NTHL1: The last but not the least hereditary cancer-predisposing genes. Oncogene, 40(40), 5893-5901. CrossRef Scholar google search
Wang F., Zhao Q., Wang Y.-N., Jin Y., He M.-M., Liu Z.X., Xu R.-H. (2019) Evaluation of POLE and POLD1 mutations as biomarkers for immunotherapy outcomes across multiple cancer types. JAMA Oncology, 5(10), 1504-1506. CrossRef Scholar google search
Donigan K.A., Sun K.W., Nemec A.A., Murphy D.L., Cong X., Northrup V., Zelterman D., Sweasy J.B. (2012) Human polβ gene is mutated in high percentage of colorectal tumors. J. Biol. Chem., 287, 23830-23839. Scholar google search
Wu Q., Zhou S., Liu J., Tong H. (2021) Two polymorphic mutations in promoter region of DNA polymerase β in relatively higher percentage of thymic hyperplasia patients. Thorac. Cancer, 12(5), 588-592. CrossRef Scholar google search
Beard W.A., Wilson S.H. (2006) Structure and mechanism of DNA polymerase beta. Chem Rev., 106 (2), 361-382. Scholar google search
Стовбун С.В., Веденкин А.С., Зленко Д.В., Бухвостов А.А., Кузнецов Д.А. (2022) Олигомеризация β-подобных ДНК-полимераз в присутствии ионов Fe2+. Бюллетень экспериментальной биологии и медицины., 173(5), 578-581. CrossRef Scholar google search
Stovbun S., Ermakov K., Bukhvostov A., Vedenkin A., Kuznetsov D. (2019) A new DNA repair-related platform for pharmaceutical outlook in cancer therapies: Ultrashort single-stranded polynucleotides. Sci. Pharm., 87(4), 25-36. CrossRef Scholar google search
Bukhvostov A.A., Shatalov O.A., Orlov A.P., Kuznetsov D.A. (2013) An atypical DNA polymerase beta overexpressed in human AML/HL-60 malignant cells. J. Cancer Sci. Ther., 5(2), 94-99. Scholar google search
Bukhvostov A.A., Dvornikov A.S., Ermakov K.V., Kuznetsov D.A. (2019)Acritical study of retinoblastoma case: Shall we get a paramagnetic trend in chemotherapy? Curr. Trends Med. Med. Res., 1, 71-77. CrossRef Scholar google search
Chagovetz A.M., Sweasy J.B., Preston B.D. (1997) Increased activity and fidelity of DNA polymerase β on single nucleotide gapped DNA. J. Biol. Chem., 272(44), 27501-27504. Scholar google search
McLeod J.N., Rooney A., Schramm D.K (2020) Atypical catalytic properties in DNA polymerase β family. In: DNA Repair (Sharma K., Lemke A.J., eds), Perth Press: Perth, pp. 203-221. Scholar google search
Rosenbrough G.S., Maler K.D. (2018) mRNA Turnover in Malignancies. Ghent University Press: Ghent-Antwerp, 358 p. Scholar google search
Buchachenko A.L. (2009) Magnetic Isotope Effect in Chemistry and Biochemistry, Nova Science Publishers, New York, 149 p. Scholar google search
Buchachenko A., Bukhvostov A., Ermakov K., Kuznetsov D. (2019) Nuclear spin selectivity in enzymatic catalysis: A caution for applied biophysics. Arch. Biochem. Biophys., 667, 30-35. CrossRef Scholar google search
Buchachenko A. (2015) Magneto-Biology and Medicine. Nova Biomedical, NY, 236 p. Scholar google search
Wilson S.H., Beard W.A., Shock D.D. (2010) Base excision repair and design of small molecule inhibitors of human DNA polymerase β. Cell Mol. Life Sci., 67(21), 3633-3647. CrossRef Scholar google search
Yuhas S.C., Laverty D.J., Lee H., Majumdar A., Greenberg M.M. (2021) Selective inhibition of DNA polymerase β by a covalent inhibitor. J. Am. Chem. Soc., 143(21), 8099-8107. CrossRef Scholar google search
Barakat K.H., Gajewski M.M., Tuszynski J.A. (2012) DNA polymerase beta (polβ) inhibitors: A comprehensive overview. Drug Discov. Today, 17(15-16), 913-920. CrossRef Scholar google search
Barakat K.H., Gajewski M.M., Tuszynski J.A. (2012) DNA repair inhibitors: the next major step to improve cancer therapy. Curr. Top Med. Chem., 12(12), 1376-1390. CrossRef Scholar google search
Arian D., Hedayati M., Zhou H., Bilis Z., Chen K., de Weese T.L., Greenberg M.M. (2014) Irreversible inhibition of DNA polymerase β by small-molecule mimics of a DNA lesion. J. Am. Chem. Soc., 136(8), 3176-3183. CrossRef Scholar google search
Paul R., Banerjee S., Greenberg M.M. (2017) Synergistic effects of an irreversible DNA polymerase inhibitor and DNA damaging agents on HeLa cells. ACS Chem. Biol., 12(6), 1576-1583. CrossRef Scholar google search
Gujarathi S., Zafar M.K., Liu X., Eoff R.L., Zheng G.A. (2020) Facile semisynthesis and evaluation of garcinoic acid and its analogs for the inhibition of human DNA polymerase β. Molecules, 25(24), 5847. CrossRef Scholar google search
Stovbun S.V., Ermakov K.V., Bukhvostov A.A., Vedenkin A.S., Kuznetsov D.A. (2019) ssDna derivatives: A promising pharmacophore family to upgrade. Drug Discovery, 13, 95-106. Scholar google search
Kuznetsov D.A., Buchachenko A.L. (2018) Nuclear magnetic ions of magnesium, calcium, and zink as a powerful and universal means for killing cancer cells. Rus. J. Phys. Chem. B, 12(4), 690-694. CrossRef Scholar google search
Shatalov O.A., Grigoryev M.E., Bukhvostov A.A., Kuznetsov D.A. (2013) A nuclear spin selective control over the DNA repair key enzyme might renovate the cancer-fight paradigm. DNA polymerase beta to engage with a magnetic isotope effect. J. Adv. Chem., 4, 554-562. CrossRef Scholar google search
Sabo J., Mirossay L., Horovcak L., Sarissky M., Mirossay A., Mojzis J. (2002) Effects of static magnetic field on human leukemic cell line HL-60. Bioelectrochemistry, 56, 227-231. CrossRef Scholar google search
Bukhvostov A.A., Dvornikov A.S., Ermakov K.V., Kurapov P.B., Kuznetsov D.A. (2017) Retinoblastoma: Magnetic isotope effects might make a difference in the current anti-cancer research strategy. Acta. Medica, 60, 93-96. CrossRef Scholar google search
Bukhvostov A.A., Dvornikov A.S., Ermakov K.V., Kuznetsov D.A. (2017) Retinoblastoma case: Shall we get a paramagnetic trend in chemotherapy? Arch. Cancer Res., 5(4), 158-162. Scholar google search
Svistunov A.A., Napolov Y.K., Bukhvostov A.A., Shatalov O.A., Alyautdin R.N., Kuznetsov D.A. (2013) The mitochondria free iron content to limit an isotope effect of 25Mg2+ in ATP synthesis: A caution. Cell Biochem. Biophys., 66, 417-419. Scholar google search
Stovbun S.V., Zlenko D.V., Bukhvostov A.A., Vedenkin A.A., Skoblin A.A., Kuznetsov D.A., Buchachenko A.L. (2013) Magnetic field and nuclear spin influence on the DNA synthesis rate. Sci. Rep., 13, 465. CrossRef Scholar google search
Ermakov K.V., Bukhvostov A.A., Vedenkin A.S., Stovbun S.V., Dvornikov A.S., Semenova A.V., Kuznetsov D.A. (2019) The unique single-stranded cfDNA species in retinoblastoma patents blood plasma: Beyond new HPLC technology. Biomark. J., 5(3), 1-8. Scholar google search
Stovbun S.V., Vedenkin A.S., Bukhvostov A.A., Koroleva L.S., Silnikov V.N., Kuznetsov D.A. (2020) L, D-Polydeoxyribonucleotides to provide an essential inhibitory effect on DNA polymerase β of human myeloid leukemia HL60 cells. Biochem. Biophys. Report, 24, 1-4. CrossRef Scholar google search
Орлова М.А., Николаев А.Л., Трофимова Т.П., Орлов А.П., Северин А.В., Калмыков С.Н. (2018) Наночастицы на основе гидроксиапатита и порфиринфуллерена для диагностического и терапевтического применения парамагнитных ионов и радионуклидов. Вестник РГМУ, 6, 94-102. CrossRef Scholar google search
Moussa F. (2017) Fullerene derivatives for biological applications. In: Nanobiomaterials (Narayan R., ed.). Elsevier, Amsterdam, London, Montpellier, pp. 113-136. Scholar google search
Kuznetsov D.A., Roumiantsev S.A., Fallahi M., Amirshahi N., Makarov A.V., Kardashova K.S. (2010) A tumor selective chemotherapy. Can this be managed by algorithm based on the non-Markovian population dynamics? J. Med. Med. Sci., 1(1), 1-9. Scholar google search
Berthault J.S., Lipsky G.T., Randall S.L. (2022) The rara avis: Non-abundant enzymes in DNA repair. In: Frontiers in DNA Research (Qassimi M.S., Niemer J.A., eds). Research Triangle Park Publ., Inc., Durham-Raleigh NC, pp. 164-179. Scholar google search
Pitot L., Zoller K., Charsky D. (2022) Catalytic properties of chromatin fractions. Purification, enzyme detection and measurement. In: Separation Techniques in Chromatin Studies (Schramm K., Boehm A., eds.). CAMAQ Manuals, Zurich, Mainz-Montpellier, pp. 56-74. Scholar google search
Yagel G., Katz T., Valed S., Jablonski A., Menar K. (2021) Spin-positive bivalent metal isotopes in experimental therapy of solid cancers. II. Targeting the DNA repair key enzymes. Bulletin of the Bar Ilan University School of Medicine, 7, L561-L582. Scholar google search
Sarkar S., Rezayat M., Mazaffarian R., Boushehri H., Amirshahi N. (2017) The tissue specific marks of cyclohexyl(C60)porphirine related pharmacokinetics. A Caution. In: Proceedings of the 2nd Panasean Congress on Pharmacology and Toxicology (Beitollahi N., Ramsey C., eds.). Tehran, Amir Kabir University Publ., Tehran-Lahore, pp. 216-228. Scholar google search
Lyu J., Wang S., Balius T.E., Singh I., Levit A., Moroz Y.S., O’Meara M.J. (2019) Ultra-large library docking for discovering new chemotypes. Nature, 566, 224-229. Scholar google search
Mouliere F., Chandrananda D., Piskorz A.M., Moore E.K., Morris J., Ahlborn L.B., Rosenfeld N. (2018) Enhanced detection of circulating tumor DNA by fragment size analysis. Science Transl. Med., 10, 117-129. Scholar google search
Squadrito F., Bitto A., Irrera N., Pizzino G., Pallio G., Minutoli L., Altavilla D. (2017) Pharmacological activity and clinical use of PDRN (polydeoxyribonucleotides). Front. Pharmacol., 8, 224-233. Scholar google search
Ansari A.S., Santerre P.J., Uludag H. (2017) Biomaterials for polynucleotide delivery to anchorage-independent cells. J. Mater. Chem. B, 5(35), 7238-7261. Scholar google search
Stovbun S.V., Vedenkin A.S., Mikhaleva M.G., Zlenko D.V., Voronina L.I., Bukhvostov A.A., Kuznetsov D.A. (2022) Transport of oligonucleotides into HL60 cells using nanocellulose. Rus. J. Phys. Chem. B, 16, 1147-1150. CrossRef Scholar google search
Sieliwanowicz B., Bielka S.J., Anders A. (2022) Malignant Tracks in DNA Repair. MUV Verlag, Wien, 318 p. Scholar google search