1. Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича, Москва, Россия 2. Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича, Москва, Россия; Федеральный научный центр исследований и разработки иммунобиологических препаратов им. М.П. Чумакова РАН, Москва, Россия 3. Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича, Москва, Россия; Российский национальный исследовательский медицинский университет им. Н.И. Пирогова, Москва, Россия 4. Федеральный научный центр исследований и разработки иммунобиологических препаратов им. М.П. Чумакова РАН, Москва, Россия
Традиционные противовирусные вакцины создаются с использованием химической инактивации вируса, чаще всего под действием формальдегида и β-пропиолактона. Данные подходы не оптимальны, поскольку негативно влияют на сохранность антигенных детерминант инактивированных частиц и требуют дополнительных стадий очистки. Наиболее перспективными для создания вакцин считают платформы на основе псевдовирусных частиц, то есть инактивированных вирусов, которые полностью сохранили наружную оболочку, при этом потеряв способность к размножению из-за разрушения генома. Облучение вирусов ускоренными электронами является оптимальным путём создания псевдовирусных частиц. В данной обзорной работе на примере вируса полиомиелита представлены основные алгоритмы, применимые для функциональной и структурной характеристики псевдовирусных частиц в процессе создания вакцинного препарата, а именно анализа степени разрушения генома и иммуногенности. Рассмотрена структура вируса полиомиелита и методы его инактивации. Для функциональной характеристики псевдовирусов предложены алгоритмы оценки остаточной инфекционности и иммуногенности. Подходы по анализу целостности генома, атомно-силовая и электронная микроскопия, поверхностно-плазмонный резонанс и биоэлектрохимические методы являются ключевыми для структурной характеристики псевдовирусных частиц. Применение описанных в настоящей работе алгоритмов, разработанных для вируса полиомиелита, позволит создать перспективные вакцины нового типа на основе псевдовирусных частиц и оперативно отвечать на вызовы при появлении новых вирусных инфекций.
Жданов Д.Д., Ивин Ю.Ю., Шишпарёнок А.Н., Краевский С.В., Канашенко С.Л., Агафонова Л.Е., Шумянцева В.В., Гнеденко О.В., Пиняева А.Н., Ковпак А.А., Ишмухаметов А.А., Арчаков А.И. (2023) Перспективы создания вакцинных препаратов нового типа на основе псевдовирусных частиц (на примере вакцины против полиомиелита). Биомедицинская химия, 69(5), 253-280.
Жданов Д.Д. и др. Перспективы создания вакцинных препаратов нового типа на основе псевдовирусных частиц (на примере вакцины против полиомиелита) // Биомедицинская химия. - 2023. - Т. 69. -N 5. - С. 253-280.
Жданов Д.Д. и др., "Перспективы создания вакцинных препаратов нового типа на основе псевдовирусных частиц (на примере вакцины против полиомиелита)." Биомедицинская химия 69.5 (2023): 253-280.
Жданов, Д. Д., Ивин, Ю. Ю., Шишпарёнок, А. Н., Краевский, С. В., Канашенко, С. Л., Агафонова, Л. Е., Шумянцева, В. В., Гнеденко, О. В., Пиняева, А. Н., Ковпак, А. А., Ишмухаметов, А. А., Арчаков, А. И. (2023). Перспективы создания вакцинных препаратов нового типа на основе псевдовирусных частиц (на примере вакцины против полиомиелита). Биомедицинская химия, 69(5), 253-280.
Список литературы
Hufsky F., Lamkiewicz K., Almeida A., Aouacheria A., Arighi C., Bateman A., Baumbach J., Beerenwinkel N., Brandt C., Cacciabue M., Chuguransky S., Drechsel O., Finn R.D., Fritz A., Fuchs S., Hattab G., Hauschild A.-C., Heider D., Hoffmann M., Hölzer M., Hoops S., Kaderali L., Kalvari I., von Kleist M., Kmiecinski R., Kühnert D., Lasso G., Libin P., List M., Löchel H.F., Martin M.J., Martin R., Matschinske J., McHardy A.C., Mendes P., Mistry J., Navratil V., Nawrocki E.P., O'Toole Á.N., Ontiveros-Palacios N., Petrov A.I., Rangel-Pineros G., Redaschi N., Reimering S., Reinert K., Reyes A., Richardson L., Robertson D.L., Sadegh S., Singer J.B., Theys K., Upton C., Welzel M., Williams L., Marz M. (2021) Computational strategies to combat COVID-19: Useful tools to accelerate SARS-CoV-2 and coronavirus research. Brief. Bioinform., 22(2), 642-663. CrossRef Scholar google search
Fougeroux C., Goksøyr L., Idorn M., Soroka V., Myeni S.K., Dagil R., Janitzek C.M., Sogaard M., Aves K.-L., Horsted E.W., Erdoğan S.M., Gustavsson T., Dorosz J., Clemmensen S., Fredsgaard L., Thrane S., Vidal-Calvo E.E., Khalifé P., Hulen T.M., Choudhary S., Theisen M., Singh S.K., Garcia-Senosiain A., van Oosten L., Pijlman G., Hierzberger B., Domeyer T., Nalewajek B.W., Strobøk A., Skrzypczak M., Andersson L.F., Buus S., Buus A.S., Christensen J.P., Dalebout T.J., Iversen K., Harritshoj L.H., Mordmuller B., Ullum H., Reinert L.S., de Jongh W.A., Kikkert M., Paludan S.R., Theander T.G., Nielsen M.A., Salanti A., Sander A.F. (2021) Capsid-like particles decorated with the SARS-CoV-2 receptor-binding domain elicit strong virus neutralization activity. Nat. Commun., 12(1), 324. CrossRef Scholar google search
Dong Y., Dai T., Wei Y., Zhang L., Zheng M., Zhou F. (2020) A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct. Target. Ther., 5(1), 237. CrossRef Scholar google search
Zhang B., Chao C.W., Tsybovsky Y., Abiona O.M., Hutchinson G.B., Moliva J.I., Olia A.S., Pegu A., Phung E., Stewart-Jones G.B.E., Verardi R., Wang L., Wang S., Werner A., Yang E.S., Yap C., Zhou T., Mascola J.R., Sullivan N.J., Graham B.S., Corbett K.S., Kwong P.D. (2020) A platform incorporating trimeric antigens into self-assembling nanoparticles reveals SARS-CoV-2-spike nanoparticles to elicit substantially higher neutralizing responses than spike alone. Sci. Rep., 10(1), 18149. CrossRef Scholar google search
Chen M., Zhang X.-E. (2021) Construction and applications of SARS-CoV-2 pseudoviruses: A mini review. Int. J. Biol. Sci., 17(6), 1574-1580. CrossRef Scholar google search
Geng Q., Tai W., Baxter V.K., Shi J., Wan Y., Zhang X., Montgomery S.A., Taft-Benz S.A., Anderson E.J., Knight A.C., Dinnon K.H., Leist S.R., Baric R.S., Shang J., Hong S.-W., Drelich A., Tseng C.-T.K., Jenkins M., Heise M., Du L., Li F. (2021) Novel virus-like nanoparticle vaccine effectively protects animal model from SARS-CoV-2 infection. PLOS Pathog., 17(9), e1009897. CrossRef Scholar google search
Xiang Q., Li L., Wu J., Tian M., Fu Y. (2022) Application of pseudovirus system in the development of vaccine, antiviral-drugs, and neutralizing antibodies. Microbiol. Res., 258, 126993. CrossRef Scholar google search
Jiang S.D., Pye D., Cox J.C. (1986) Inactivation of poliovirus with β-propiolactone. J. Biol. Stand., 14(2), 103-109. CrossRef Scholar google search
Wilton T., Dunn G., Eastwood D., Minor P.D., Martin J. (2014) Effect of formaldehyde inactivation on poliovirus. J.Virol., 88(20), 11955-11964. CrossRef Scholar google search
Fan C., Ye X., Ku Z., Kong L., Liu Q., Xu C., Cong Y., Huang Z. (2017) Beta-propiolactone inactivation of coxsackievirus A16 induces structural alteration and surface modification of viral capsids. J. Virol., 91(8), e00038-17. CrossRef Scholar google search
Fertey J., Thoma M., Beckmann J., Bayer L., Finkensieper J., Reißhauer S., Berneck B.S., Issmail L., Schönfelder J., Casado J.P., Poremba A., Rögner F.-H., Standfest B., Makert G.R., Walcher L., Kistenmacher A.-K., Fricke S., Grunwald T., Ulbert S. (2020) Automated application of low energy electron irradiation enables inactivation of pathogen- and cell-containing liquids in biomedical research and production facilities. Sci. Rep., 10(1), 12786. CrossRef Scholar google search
Avanzino B.C., Jue H., Miller C.M., Cheung E., Fuchs G., Fraser C.S. (2018) Molecular mechanism of poliovirus Sabin vaccine strain attenuation. J. Biol. Chem., 293(40), 15471-15482. CrossRef Scholar google search
Bandyopadhyay A.S., Garon J., Seib K., Orenstein W.A. (2015) Polio vaccination: Past, present and future. Future Microbiol., 10(5), 791-808. CrossRef Scholar google search
Quarleri J. (2023) Poliomyelitis is a current challenge: Long-term sequelae and circulating vaccine-derived poliovirus. GeroScience, 45(2), 707-717. CrossRef Scholar google search
Klapsa D., Wilton T., Zealand A., Bujaki E., Saxentoff E., Troman C., Shaw A.G., Tedcastle A., Majumdar M., Mate R., Akello J.O., Huseynov S., Zeb A., Zambon M., Bell A., Hagan J., Wade M.J., Ramsay M., Grassly N.C.,Saliba V., Martin J. (2022) Sustained detection of type 2 poliovirus in London sewage between February and July, 2022, by enhanced environmental surveillance. Lancet, 400, 1531-1538. CrossRef Scholar google search
Okemoto-Nakamura Y., Someya K., Yamaji T., Saito K., Takeda M., Hanada K. (2021) Poliovirus-nonsusceptible Vero cell line for the World Health Organization global action plan. Sci. Rep., 11(1), 6746. CrossRef Scholar google search
Bahar M.W., Porta C., Fox H., Macadam A.J., Fry E.E., Stuart D.I. (2021) Mammalian expression of virus-like particles as a proof of principle for next generation polio vaccines. NPJ vaccines, 6(1), 1-10. CrossRef Scholar google search
Hogle J.M. (2002) Poliovirus cell entry: Common structural themes in viral cell entry pathways. Annu. Rev. Microbiol., 56(1), 677-702. CrossRef Scholar google search
Lentz K.N., Smith A.D., Geisler S.C., Cox S., Buontempo P., Skelton A., deMartino J., Rozhon E., Schwartz J., Girijavallabhan V., O'Connell J., Arnold E. (1997) Structure of poliovirus type 2 Lansing complexed with antiviral agent SCH48973: Comparison of the structural and biological properties of the three poliovirus serotypes. Structure, 5(7), 961-978. CrossRef Scholar google search
He Y., Mueller S., Chipman P.R., Bator C.M., Peng X., Bowman V.D., Mukhopadhyay S., Wimmer E., Kuhn R.J., Rossmann M.G. (2003) Complexes of poliovirus serotypes with their common cellular receptor, CD155. J. Virol., 77(8), 4827-4835. CrossRef Scholar google search
Karunatilaka K.S., Filman D.J., Strauss M., Loparo J.J., Hogle J.M. (2021) Real-time imaging of polioviral RNA translocation across a membrane. MBio, 12(1), e03695-20. CrossRef Scholar google search
Лашкевич В.А. (2013) История создания в 1959 г. живой вакцины из аттенуированных штаммов А. Сэбина и идея искоренения полиомиелита. Вопросы вирусологии, 58(1), 4-10. Scholar google search
Piniaeva A., Ignatyev G., Kozlovskaya L., Ivin Y., Kovpak A., Ivanov A., Shishova A., Antonova L., Khapchaev Y., Feldblium I., Ivanova O., Siniugina A., Ishmukhametov A. (2021) Immunogenicity and safety of inactivated Sabin-strain polio vaccine “PoliovacSin”: Clinical trials phase I and II. Vaccines, 9(6), 565. CrossRef Scholar google search
Ivanov A.P., Klebleeva T.D., Ivanova O.E., Ipatova E.G., Gmyl L.V., Ishmuhametov A.A. (2016) Experimental approaches to the development of inactivated poliovirus vaccine based on Sabin strains. Epidemiol. Vaccine Prev., 15(4), 59-64. CrossRef Scholar google search
Ivanov A.P., Klebleyeva T.D., Malyshkina L.P., Ivanova O.E. (2019) Poliovirus-binding inhibition ELISA based on specific chicken egg yolk antibodies as an alternative to the neutralization test. J. Virol. Methods, 266, 7-10. CrossRef Scholar google search
Patterson E.I., Prince T., Anderson E.R., Casas-Sanchez A., Smith S.L., Cansado-Utrilla C., Solomon T., Griffiths M.J., Acosta-Serrano Á., Turtle L., Hughes G.L. (2020) Methods of inactivation of SARS-CoV-2 for downstream biological assays. J. Infect. Dis., 222(9), 1462-1467. CrossRef Scholar google search
Auerswald H., Yann S., Dul S., In S., Dussart P., Martin N.J., Karlsson E.A., Garcia-Rivera J.A. (2021) Assessment of inactivation procedures for SARS-CoV-2. J. Gen. Virol., 102(3), 001539. CrossRef Scholar google search
Delrue I., Verzele D., Madder A., Nauwynck H.J. (2012) Inactivated virus vaccines from chemistry to prophylaxis: Merits, risks and challenges. Expert Rev. Vaccines, 11(6), 695-719. CrossRef Scholar google search
Zhou S.S. (2022) Variability and Relative Order of Susceptibility of Non-Enveloped Viruses to Chemical Inactivation. In: Disinfection of Viruses (Nims W.R., Ljaz M.K., eds.), Intechopen, 184 p. CrossRef Scholar google search
Wigginton K.R., Pecson B.M., Sigstam T., Bosshard F., Kohn T. (2012) Virus inactivation mechanisms: Impact of disinfectants on virus function and structural integrity. Environ. Sci. Technol., 46(21), 12069-12078. CrossRef Scholar google search
Hossain F. (2022) Sources, enumerations and inactivation mechanisms of four emerging viruses in aqueous phase. J.Water Health, 20(2), 396-440. CrossRef Scholar google search
Salthammer T., Mentese S., Marutzky R. (2010) Formaldehyde in the indoor environment. Chem. Rev., 110(4), 2536-2572. CrossRef Scholar google search
Sabbaghi A., Miri S.M., Keshavarz M., Zargar M., Ghaemi A. (2019) Inactivation methods for whole influenza vaccine production. Rev. Med. Virol., 29(6), e2074. CrossRef Scholar google search
Kamps J.J.A.G., Hopkinson R.J., Schofield C.J., Claridge T.D.W. (2019) How formaldehyde reacts with amino acids. Commun. Chem., 2(1), 126. CrossRef Scholar google search
Abd-Elghaffar A.A., Rashed M.E., Ali A.E., Amin M.A. (2020) In-vitro inactivation of Sabin-polioviruses for development of safe and effective polio vaccine. Vaccines, 8(4), 601. CrossRef Scholar google search
Tobin G.J., Tobin J.K., Gaidamakova E.K., Wiggins T.J., Bushnell R. V., Lee W.-M., Matrosova V.Y., Dollery S.J., Meeks H.N., Kouiavskaia D., Chumakov K., Daly M.J. (2020) A novel gamma radiation-inactivated Sabin-based polio vaccine. PLoS One, 15(1), e0228006. CrossRef Scholar google search
Kim E., Han G.-Y., Nguyen H. (2017) An adenovirus-vectored influenza vaccine induces durable cross-protective hemagglutinin stalk antibody responses in mice. Viruses, 9(8), 234. CrossRef Scholar google search
Fertey J., Bayer L., Grunwald T., Pohl A., Beckmann J., Gotzmann G., Casado J., Schonfelder J., Rogner F.-H., Wetzel C., Thoma M., Bailer S., Hiller E., Rupp S., Ulbert S. (2016) Pathogens inactivated by low-energy-electron irradiation maintain antigenic properties and induce protective immune responses. Viruses, 8(11), 319. CrossRef Scholar google search
Budowsky E., Friedman E., Zheleznova N., Noskov F. (1991) Principles of selective inactivation of viral genome. VI. Inactivation of the infectivity of the influenza virus by the action of β-propiolactone. Vaccine, 9(6), 398-402. CrossRef Scholar google search
Perrin P., Morgeaux S. (1995) Inactivation of DNA by β-propiolactone. Biologicals, 23(3), 207-211. CrossRef Scholar google search
Uittenbogaard J.P., Zomer B., Hoogerhout P., Metz B. (2011) Reactions of β-propiolactone with nucleobase analogues, nucleosides, and peptides. J. Biol. Chem., 286(42), 36198-36214. CrossRef Scholar google search
Herrera-Rodriguez J., Signorazzi A., Holtrop M., de Vries-Idema J., Huckriede A. (2019) Inactivated or damaged? Comparing the effect of inactivation methods on influenza virions to optimize vaccine production. Vaccine, 37(12), 1630-1637. CrossRef Scholar google search
Yu S., Wei Y., Liang H., Ji W., Chang Z., Xie S., Wang Y., Li W., Liu Y., Wu H., Li J., Wang H., Yang X. (2022) Comparison of physical and biochemical characterizations of SARS-CoV-2 inactivated by different treatments. Viruses, 14(9), 1938. CrossRef Scholar google search
Савина Н.Н., Екимов А.А., Трухин В.П., Евтушенко А.Э., Жиренкина Е.Н., Синегубова Е.О., Слита А.В. (2021) Оценка методов инактивирования аденовируса птиц при производстве гриппозных вакцин. Медицина экстремальных ситуаций, №3, 84-89. CrossRef Scholar google search
Elveborg S., Monteil V., Mirazimi A. (2022) Methods of inactivation of highly pathogenic viruses for molecular, serology or vaccine development purposes. Pathogens, 11(2), 271. CrossRef Scholar google search
Miller R.L., Plagemann P.G.W. (1974) Effect of ultraviolet light on mengovirus: Formation of uracil dimers, instability and degradation of capsid, and covalent linkage of protein to viral RNA. J. Virol., 13(3), 729-739. CrossRef Scholar google search
Furuya Y., Regner M., Lobigs M., Koskinen A., Mullbacher A., Alsharifi M. (2010) Effect of inactivation method on the cross-protective immunity induced by whole “killed” influenza A viruses and commercial vaccine preparations. J. Gen. Virol., 91(6), 1450-1460. CrossRef Scholar google search
Grieb T., Forng R.-Y., Brown R., Owolabi T., Maddox E., Mcbain A., Drohan W.N., Mann D.M., Burgess W.H. (2002) Effective use of gamma irradiation for pathogen inactivation of monoclonal antibody preparations. Biologicals, 30(3), 207-216. CrossRef Scholar google search
Montagnon B.J., Nicolas A.J., Fanget B., Peyron L. (1981) Comparison of sensitivity of Vero cell line versus primary monkey kidney cells in the detection of residual live polio virus during and after inactivation. Dev. Biol. Stand., 47, 151-155. Scholar google search
Mendelsohn C.L., Wimmer E., Racaniello V.R. (1989) Cellular receptor for poliovirus: Molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell, 56(5), 855-865. CrossRef Scholar google search
Chapel C., Rocher-Hélion N., Mantel N., Imbert S., Deshaies E., Barban V., Sabouraud A., Barbe J.-P., Mallet L. (2018) Replacement of primary monkey kidney cells by L20B cell line in the test for effective inactivation of inactivated poliovirus vaccine. J. Virol. Methods, 256, 77-84. CrossRef Scholar google search
Kende M., Robbins M.L. (1965) Titration and neutralization of poliovirus in micro tissue culture under increased carbon dioxide. Appl. Microbiol., 13(6), 1026-1029. CrossRef Scholar google search
Poliomyelitis vaccine (inactivated) version 9.2, 2010. Retrieved October 12, 2023, from https://pdfsearches.com/european-pharmacopoeia-9-2. Scholar google search
Recommendations for the production and control of poliomyelitis vaccine (inactivated). Retrieved October 12, 2023, from https://www.who.int/publications/ m/item/recommendations-for-the-production-and-controlof- poliomyelitis-vaccine-(inactivated). Scholar google search
Beale A.J., Mason P.J. (1962) The measurement of the D-antigen in poliovirus preparations. J. Hygiene (London), 60(1), 113-121. CrossRef Scholar google search
Rezapkin G., Dragunsky E., Chumakov K. (2005) Improved ELISA test for determination of potency of inactivated poliovirus vaccine (IPV). Biologicals, 33(1), 17-27. CrossRef Scholar google search
Иванов А.П., Козлов В.Г., Клеблеева Т.Д., Иванова О.Е., Киктенко А.В. (2014) Система иммуноферментного анализа на основе специфических антител класса (IgY) из яичных желтков для количественного определения D-антигена в инактивированных полиовирусных вакцинах. Вопросы вирусологии, 59(6), 39-42. Scholar google search
Kouiavskaia D., Puligedda R.D., Dessain S.K., Chumakov K. (2020) Universal ELISA for quantification of D-antigen in inactivated poliovirus vaccines. J. Virol. Methods, 276, 113785. CrossRef Scholar google search
Wood D.J., Heath A.B., Sawyer L.A. (1995) A WHO collaborative study on assays of the antigenic content of inactivated poliovirus vaccines. Biologicals, 23(1), 83-94. CrossRef Scholar google search
Wilton T. (2016) Methods for the quality control of inactivated poliovirus vaccines. Methods Mol. Biol., 1387, 279-297. CrossRef Scholar google search
Zhdanov D.D., Plyasova A.A., Pokrovsky V.S., Pokrovskaya M.V., Alexandrova S.S., Gladilina Y.A., Sokolov N.N. (2020) Inhibition of nuclease activity by a splice-switching oligonucleotide targeting deoxyribonuclease 1 mRNA prevents apoptosis progression and prolong viability of normal human CD4(+) T-lymphocytes. Biochimie, 174, 34-43. CrossRef Scholar google search
Zhdanov D.D., Gladilina Y.A., Pokrovsky V.S., Grishin D.V., Grachev V.A., Orlova V.S., Pokrovskaya M.V., Alexandrova S.S., Plyasova A.A., Sokolov N.N. (2019) Endonuclease G modulates the alternative splicing of deoxyribonuclease 1 mRNA in human CD4+ T lymphocytes and prevents the progression of apoptosis. Biochimie, 157, 158-176. CrossRef Scholar google search
Burton J., Love H., Richards K., Burton C., Summers S., Pitman J., Easterbrook L., Davies K., Spencer P., Killip M., Cane P., Bruce C., Roberts A.D.G. (2021) The effect of heat-treatment on SARS-CoV-2 viability and detection. J. Virol. Methods, 290, 114087. CrossRef Scholar google search
Holden M.J., Wang L. (2008) Quantitative Real-Time PCR: Fluorescent Probe Options and Issues. In: Standardization and Quality Assurance in Fluorescence Measurements II (Resch-Genger U., ed.). Springer Series on Fluorescence, vol. 6. Springer, Berlin, Heidelberg, pp. 489-508. CrossRef Scholar google search
Park H., Jung W., Jang H., Namkoong K., Choi K.-Y. (2022) One-step RT-qPCR for viral RNA detection using digital analysis. Front. Bioeng. Biotechnol., 10, 837838. CrossRef Scholar google search
Wozniak A., Cerda A., Ibarra-Henriquez C., Sebastian V., Armijo G., Lamig L., Miranda C., Lagos M., Solari S., Guzmán A.M., Quiroga T., Hitschfeld S., Riveras E., Ferrés M., Gutiérrez R.A., García P. (2020) A simple RNA preparation method for SARS-CoV-2 detection by RT-qPCR. Sci. Rep., 10(1), 16608. CrossRef Scholar google search
de Oliveira Lopes G.A., Ferreira L.R., de Souza Trindade G., Fonseca A.A., dos Reis J.K.P. (2021) qPCR assay for the detection of pseudocowpox virus. Arch. Virol., 166(1), 243-247. CrossRef Scholar google search
Sabat J., Subhadra S., Rath S., Ho L.M., Kanungo S., Panda S., Mandal M.C., Dash S., Pati S., Turuk J. (2021) Yielding quality viral RNA by using two different chemistries: A comparative performance study. Biotechniques, 71(4), 510-515. CrossRef Scholar google search
Reichelt R. (2007) Scanning Electron Microscopy. In: Science of Microscopy (Hawkes P.W., Spence J.C.H., eds.), Springer, New York, NY, pp. 133-272. CrossRef Scholar google search
Singh A.K. (2016) Experimental Methodologies for the Characterization of Nanoparticles. In: Engineered Nanoparticles, Stanford University, pp. 125-170. CrossRef Scholar google search
Ulery B.D., Kumar D., Ramer-Tait A.E., Metzger D.W., Wannemuehler M.J., Narasimhan B. (2011) Design of a protective single-dose intranasal nanoparticle-based vaccine platform for respiratory infectious diseases. PLoS One, 6(3), e17642. CrossRef Scholar google search
Kipper M.J., Wilson J.H., Wannemuehler M.J., Narasimhan B. (2006) Single dose vaccine based on biodegradable polyanhydride microspheres can modulate immune response mechanism. J. Biomed. Mater. Res. Part A, 76A(4), 798-810. CrossRef Scholar google search
Ross K.A., Loyd H., Wu W., Huntimer L., Wannemuehler M.J., Carpenter S., Narasimhan B. (2014) Structural and antigenic stability of H5N1 hemagglutinin trimer upon release from polyanhydride nanoparticles. J. Biomed. Mater. Res. Part A, 102(11), 4161-4168. CrossRef Scholar google search
Ingvarsson P.T., Schmidt S.T., Christensen D., Larsen N.B., Hinrichs W.L.J., Andersen P., Rantanen J., Nielsen H.M., Yang M., Foged C. (2013) Designing CAF-adjuvanted dry powder vaccines: Spray drying preserves the adjuvant activity of CAF01. J. Control. Release, 167(3), 256-264. CrossRef Scholar google search
Vangala A., Kirby D., Rosenkrands I., Agger E.M., Andersen P., Perrie Y. (2010) A comparative study of cationic liposome and niosome-based adjuvant systems for protein subunit vaccines: Characterisation, environmental scanning electron microscopy and immunisation studies in mice. J. Pharm. Pharmacol., 58(6), 787-799. CrossRef Scholar google search
Lee J.T.Y., Chow K.L. (2012) SEM sample preparation for cells on 3D scaffolds by freeze-drying and HMDS. Scanning, 34(1), 12-25. CrossRef Scholar google search
Williams D.B., Carter C.B. (2009) The Transmission Electron Microscope. In: Transmission Electron Microscopy. Springer, Boston, MA, pp. 3-22. CrossRef Scholar google search
Newbury D.E., Joy D.C., Echlin P., Fiori C.E., Goldstein J.I. (1986) Cryomicroscopy. In: Advanced Scanning Electron Microscopy and X-Ray Microanalysis. Springer, Boston, MA, pp. 365-433. CrossRef Scholar google search
Callaway E. (2015) The revolution will not be crystallized: A new method sweeps through structural biology. Nature, 525(7568), 172-174. CrossRef Scholar google search
Rames M., Yu Y., Ren G. (2014) Optimized negative staining: A high-throughput protocol for examining small and asymmetric protein structure by electron microscopy. J. Vis. Exp., 2014(90), e51087. CrossRef Scholar google search
Taylor A.R., McCormick M.J. (1956) Electron microscopy of poliomyelitis virus. Yale J. Biol. Med., 28(6), 589-597. CrossRef Scholar google search
Dales S., Eggers H.J., Tamm I., Palade G.E. (1965) Electron microscopic study of the formation of poliovirus. Virology, 26(3), 379-389. CrossRef Scholar google search
Belnap D.M., McDermott B.M., Filman D.J., Cheng N., Trus B.L., Zuccola H.J., Racaniello V.R., Hogle J.M., Steven A.C. (2000) Three-dimensional structure of poliovirus receptor bound to poliovirus. Proc. Natl. Acad. Sci., 97(1), 73-78. CrossRef Scholar google search
Bubeck D., Filman D.J., Hogle J.M. (2005) Cryo-electron microscopy reconstruction of a poliovirus-receptormembrane complex. Nat. Struct. Mol. Biol., 12(7), 615-618. CrossRef Scholar google search
Rossignol E., Yang J., Bullitt E. (2015) The role of electron microscopy in studying the continuum of changes in membranous structures during poliovirus infection. Viruses, 7(10), 5305-5318. CrossRef Scholar google search
Binnig G., Quate C.F., Gerber C. (1986) Atomic force microscope. Phys. Rev. Lett., 56(9), 930-933. CrossRef Scholar google search
Loh S., Cheah W. (2017) Optical beam deflection based AFM with integrated hardware and software platform for an undergraduate engineering laboratory. Appl. Sci., 7(3), 226. CrossRef Scholar google search
Trent A., Ulery B.D., Black M.J., Barrett J.C., Liang S., Kostenko Y., David N.A., Tirrell M.V. (2015) Peptide amphiphile micelles self-adjuvant group A streptococcal vaccination. AAPS J., 17(2), 380-388. CrossRef Scholar google search
Akhmetova A.I., Yaminsky I.V. (2022) High resolution imaging of viruses: Scanning probe microscopy and related techniques. Methods, 197, 30-38. CrossRef Scholar google search
de Pablo P.J., Schaap I.A.T. (2019) Atomic force microscopy of viruses. Phys. Virol. Adv. Exp. Med. Biol., 1215, 159-179. CrossRef Scholar google search
Malkin A.J., Plomp M., McPherson A. (2005) Unraveling the architecture of viruses by high-resolution atomic force microscopy. Methods Mol. Biol., 292, 85-108. CrossRef Scholar google search
Kuznetsov Y.G., Malkin A.J., Lucas R.W., Plomp M., McPherson A. (2001) Imaging of viruses by atomic force microscopy. J. Gen. Virol., 82(9), 2025-2034. CrossRef Scholar google search
Liashkovich I., Hafezi W., Kuhn J.E., Oberleithner H., Kramer A., Shahin V. (2008) Exceptional mechanical and structural stability of HSV-1 unveiled with fluid atomic force microscopy. J. Cell Sci., 121(14), 2287-2292. CrossRef Scholar google search
Sae-Ueng U., Li D., Zuo X., Huffman J.B., Homa F.L., Rau D., Evilevitch A. (2014) Solid-to-fluid DNA transition inside HSV-1 capsid close to the temperature of infection. Nat. Chem. Biol., 10(10), 861-867. CrossRef Scholar google search
Dubrovin E.V., Voloshin A.G., Kraevsky S.V., Ignatyuk T.E., Abramchuk S.S., Yaminsky I.V., Ignatov S.G. (2008) Atomic force microscopy investigation of phage infection of bacteria. Langmuir, 24(22), 13068-13074. CrossRef Scholar google search
Dubrovin E.V., Popova A.V., Kraevskiy S.V., Ignatov S.G., Ignatyuk T.E., Yaminsky I.V., Volozhantsev N.V. (2012) Atomic force microscopy analysis of the Acinetobacter baumannii bacteriophage AP22 lytic cycle. PLoS One, 7(10), e47348. CrossRef Scholar google search
Alsteens D., Newton R., Schubert R., Martinez-Martin D., Delguste M., Roska B., Müller D.J. (2017) Nanomechanical mapping of first binding steps of a virus to animal cells. Nat. Nanotechnol., 12(2), 177-183. CrossRef Scholar google search
Nooraei S., Bahrulolum H., Hoseini Z.S., Katalani C., Hajizade A., Easton A.J., Ahmadian G. (2021) Virus-like particles: Preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnology, 19(1), 59. CrossRef Scholar google search
Oropesa R., Ramos J.R., Falcón V., Felipe A. (2013) Characterization of virus-like particles by atomic force microscopy in ambient conditions. Adv. Nat. Sci. Nanosci. Nanotechnol., 4(2), 025007. CrossRef Scholar google search
González-Domínguez I., Gutiérrez-Granados S., Cervera L., Gòdia F., Domingo N. (2016) Identification of HIV-1-based virus-like particles by multifrequency atomic force microscopy. Biophys. J., 111(6), 1173-1179. CrossRef Scholar google search
Яминский И.В., Большакова А.В., Логинов Б.А., Протасенко В.В., Суворов А.Л., Козодаев М.А., Волнин Д.С. (1999) Микроскопический контроль на содержание вируса полиомиелита. Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 7, 100-103. Scholar google search
Голутвин И.А. (2004) Сканирующая силовая спектроскопия наноструктурированных полимерных и биологических систем. Дис. канд. физ.-мат. наук, ФГУП Государственный научный центр Российской Федерации Институт теоретической и экспериментальной физики, Москва. Scholar google search
Yablokov E.O., Sushko T.A., Ershov P.V., Florinskaya A.V., Gnedenko O.V., Shkel T.V., Grabovec I.P., Strushkevich N.V., Kaluzhskiy L.A., Usanov S.A., Gilep A.A., Ivanov A.S. (2019) A large-scale comparative analysis of affinity, thermodynamics and functional characteristics of interactions of twelve cytochrome P450 isoforms and their redox partners. Biochimie, 162, 156-166. CrossRef Scholar google search
Gnedenko O.V., Mezentsev Y.V., Molnar A.A., Lisitsa A.V., Ivanov A.S., Archakov A.I. (2013) Highly sensitive detection of human cardiac myoglobin using a reverse sandwich immunoassay with a gold nanoparticle-enhanced surface plasmon resonance biosensor. Anal. Chim. Acta, 759, 105-109. CrossRef Scholar google search
Калужский Л.А., Ершов П.В., Курпединов К.С., Сонина Д.С., Яблоков Е.О., Шкель Т.В., Гайдукевич И.В., Сергеев Г.В., Усанов С.А., Иванов А.С. (2019) SPR анализ белок-белковых взаимодействий с участием цитохромов Р450 и цитохрома b5, встроенных в бислойную липидную мембрану. Биомедицинская химия, 65(5), 374-379. CrossRef Scholar google search
Ершов П.В., Калужский Л.А., Яблоков Е.О., Гнеденко О.В., Ковалевский А.А., Тумилович А.М., Гилеп А.А., Струшкевич Н.В., Иванов А.С. (2021) Применение SPR-биосенсора для анализа белок-белковых взаимодействий в водной среде и бислойной липидной мембране на примере P450scc (CYP11A1). Биологические мембраны: Журнал мембранной и клеточной биологии, 38(1), 71-80. CrossRef Scholar google search
Kaluzhskiy L., Ershov P., Yablokov E., Shkel T., Grabovec I., Mezentsev Y., Gnedenko O., Usanov S., Shabunya P., Fatykhava S., Popov A., Artyukov A., Styshova O., Gilep A., Strushkevich N., Ivanov A. (2021) Human lanosterol 14-alpha demethylase (CYP51A1) is a putative target for natural flavonoid luteolin 7,3′-disulfate. Molecules, 26(8), 2237. CrossRef Scholar google search
Yablokov E.O., Sushko T.A., Kaluzhskiy L.A., Kavaleuski A.A., Mezentsev Y.V., Ershov P.V., Gilep A.A., Ivanov А.S., Strushkevich N.V. (2021) Substrate-induced modulation of protein-protein interactions within human mitochondrial cytochrome P450-dependent system. J. Steroid Biochem. Mol. Biol., 208, 105793. CrossRef Scholar google search
Ershov P.V., Yablokov Е.O., Florinskaya A.V., Mezentsev Y.V., Kaluzhskiy L.А., Tumilovich A.M., Gilep А.А., Usanov S.A., Ivanov А.S. (2019) SPR-based study of affinity of cytochrome P450s / redox partners interactions modulated by steroidal substrates. J. Steroid Biochem. Mol. Biol., 187, 124-129. CrossRef Scholar google search
van der Merwe P.A. (2001) Surface Plasmon Resonance. In: Protein-Ligand Interactions: Hydrodynamics and Calorimetry (Harding S.E., Chowdry B.Z., eds.), Oxford University Press, New York, pp. 137-170. CrossRef Scholar google search
Иванов А.С. (2012) Исследование межмолекулярных взаимодействий с помощью оптических биосенсоров, работающих на эффекте поверхностного плазмонного резонанса. Современные технологии в медицине, 4, 142-153. Scholar google search
Yin X., Wang X., Zhang Z., Li Y., Lin Z., Pan H., Gu Y., Li S., Zhang J., Xia N., Zhao Q. (2020) Demonstration of real-time and accelerated stability of hepatitis E vaccine with a combination of different physicochemical and immunochemical methods. J. Pharm. Biomed. Anal., 177, 112880. CrossRef Scholar google search
Li Y., Huang X., Zhang Z., Li S., Zhang J., Xia N., Zhao Q. (2020) Prophylactic hepatitis E vaccines: Antigenic analysis and serological evaluation. Viruses, 12(1), 109. CrossRef Scholar google search
Lai Y.-C., Cheng Y.-W., Chao C.-H., Chang Y.-Y., Chen C.-D., Tsai W.-J., Wang S., Lin Y.-S., Chang C.-P., Chuang W.-J., Chen L.-Y., Wang Y.-R., Chang S.-Y., Huang W., Wang J.-R., Tseng C.-K., Lin C.-K., Chuang Y.-C., Yeh T.-M. (2022) Antigenic cross-reactivity between SARS-CoV-2 S1-RBD and its receptor ACE2. Front. Immunol., 13, 868724. CrossRef Scholar google search
Kumar P.K.R. (2020) Systematic screening of viral entry inhibitors using surface plasmon resonance. Methods Mol. Biol., 2089, 131-145. CrossRef Scholar google search
Ying T., Du L., Ju T.W., Prabakaran P., Lau C.C.Y., Lu L., Liu Q., Wang L., Feng Y., Wang Y., Zheng B.-J., Yuen K.-Y., Jiang S., Dimitrov D.S. (2014) Exceptionally potent neutralization of middle east respiratory syndrome coronavirus by human monoclonal antibodies. J. Virol., 88(14), 7796-7805. CrossRef Scholar google search
Rossi G., Real-Fernández F., Panza F., Barbetti F., Pratesi F., Rovero P., Migliorini P. (2014) Biosensor analysis of anti-citrullinated protein/peptide antibody affinity. Anal. Biochem., 465, 96-101. CrossRef Scholar google search
Okagawa T., Konnai S., Nishimori A., Maekawa N., Ikebuchi R., Goto S., Nakajima C., Kohara J., Ogasawara S., Kato Y., Suzuki Y., Murata S., Ohashi K. (2017) Anti-bovine programmed death-1 rat-bovine chimeric antibody for immunotherapy of bovine leukemia virus infection in cattle. Front. Immunol., 8, 650. CrossRef Scholar google search
Wong C.L., Chua M., Mittman H., Choo L.X., Lim H.Q., Olivo M. (2017) A phase-intensity surface plasmon resonance biosensor for avian influenza A (H5N1) detection. Sensors, 17(10), 2363. CrossRef Scholar google search
Dubs M.-C., Altschuh D., van Regenmortel M.H.V. (1992) Interaction between viruses and monoclonal antibodies studied by surface plasmon resonance. Immunol. Lett., 31(1), 59-64. CrossRef Scholar google search
Westdijk J., van der Maas L., ten Have R., Kersten G. (2016) Measuring poliovirus antigenicity by surface plasmon resonance. Application for potency indicating assays. Methods Mol. Biol., 1387, 299-323. CrossRef Scholar google search
Visentin J., Minder L., Lee J.-H., Taupin J.-L., di Primo C. (2016) Calibration free concentration analysis by surface plasmon resonance in a capture mode. Talanta, 148, 478-485. CrossRef Scholar google search
Sobhanie E., Salehnia F., Xu G., Hamidipanah Y., Arshian S., Firoozbakhtian A., Hosseini M., Ganjali M.R., Hanif S. (2022) Recent trends and advancements in electrochemiluminescence biosensors for human virus detection. Trends Anal. Chem., 157, 116727. CrossRef Scholar google search
Ribeiro B.V., Cordeiro T.A.R., Oliveira e Freitas G.R., Ferreira L.F., Franco D.L. (2020) Biosensors for the detection of respiratory viruses: A review. Talanta Open, 2, 100007. CrossRef Scholar google search
Traipop S., Jampasa S., Tangkijvanich P., Chuaypen N., Chailapakul O. (2023) Dual-label vertical flow-based electrochemical immunosensor for rapid and simultaneous detection of hepatitis B surface and e virus antigens. Sensors Actuators B Chem., 387, 133769. CrossRef Scholar google search
Martins G., Gogola J.L., Budni L.H., Janegitz B.C., Marcolino-Junior L.H., Bergamini M.F. (2021) 3D-printed electrode as a new platform for electrochemical immunosensors for virus detection. Anal. Chim. Acta, 1147, 30-37. CrossRef Scholar google search
Pividori M. (2000) Electrochemical genosensor design: Immobilisation of oligonucleotides onto transducer surfaces and detection methods. Biosens. Bioelectron., 15(5-6), 291-303. CrossRef Scholar google search
Rasheed P.A., Sandhyarani N. (2017) Carbon nanostructures as immobilization platform for DNA: A review on current progress in electrochemical DNA sensors. Biosens. Bioelectron., 97, 226-237. CrossRef Scholar google search
da Fonseca Alves R., Franco D.L., Cordeiro M.T., de Oliveira E.M., Fireman Dutra R.A., Sotomayor M.D.P.T. (2019) Novel electrochemical genosensor for Zika virus based on a poly-(3-amino-4-hydroxybenzoic acid)-modified pencil carbon graphite electrode. SensorsActuators B Chem., 296, 126681. CrossRef Scholar google search
Wang J., Cai X., Rivas G., Shiraishi H., Dontha N. (1997) Nucleic-acid immobilization, recognition and detection at chronopotentiometric DNA chips. Biosens. Bioelectron., 12(7), 587-599. CrossRef Scholar google search
Erdem A., Pividori M.I., del Valle M., Alegret S. (2004) Rigid carbon composites: A new transducing material for label-free electrochemical genosensing. J. Electroanal. Chem., 567(1), 29-37. CrossRef Scholar google search
Zhang Y., Wang J., Xu M. (2010) A sensitive DNA biosensor fabricated with gold nanoparticles/ploy (p-aminobenzoic acid)/carbon nanotubes modified electrode. Colloids Surfaces B Biointerfaces, 75(1), 179-185. CrossRef Scholar google search
Balasubramanian K., Burghard M. (2005) Chemically functionalized carbon nanotubes. Small, 1(2), 180-192. CrossRef Scholar google search
Saadati A., Hassanpour S., Hasanzadeh M., Shadjou N. (2020) Binding of pDNA with cDNA using hybridization strategy towards monitoring of Haemophilus influenza genome in human plasma samples. Int. J. Biol. Macromol., 150, 218-227. CrossRef Scholar google search
Marrazza G., Chianella I., Mascini M. (1999) Disposable DNA electrochemical sensor for hybridization detection. Biosens. Bioelectron., 14(1), 43-51. CrossRef Scholar google search
Riccardi C.S., Dahmouche K., Santilli C.V., da Costa P.I., Yamanaka H. (2006) Immobilization of streptavidin in sol-gel films: Application on the diagnosis of hepatitis C virus. Talanta, 70(3), 637-643. CrossRef Scholar google search
Dong S., Zhao R., Zhu J., Lu X., Li Y., Qiu S., Jia L., Jiao X., Song S., Fan C., Hao R., Song H. (2015) Electrochemical DNA biosensor based on a tetrahedral nanostructure probe for the detection of avian influenza A (H7N9) virus. ACS Appl. Mater. Interfaces, 7(16), 8834-8842. CrossRef Scholar google search
Sajid M., Nazal M.K., Mansha M., Alsharaa A., Jillani S.M.S., Basheer C. (2016) Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review. Trends Anal. Chem., 76, 15-29. CrossRef Scholar google search
Movilli J., Rozzi A., Ricciardi R., Corradini R., Huskens J. (2018) Control of probe density at DNA biosensor surfaces using poly(l-lysine) with appended reactive groups. Bioconjug. Chem., 29(12), 4110-4118. CrossRef Scholar google search
Idili A., Amodio A., Vidonis M., Feinberg-Somerson J., Castronovo M., Ricci F. (2014) Folding-upon-binding and signal-on electrochemical DNA sensor with high affinity and specificity. Anal. Chem., 86(18), 9013-9019. CrossRef Scholar google search
Farzin L., Sadjadi S., Shamsipur M., Sheibani S. (2020) Electrochemical genosensor based on carbon nanotube/ amine-ionic liquid functionalized reduced graphene oxide nanoplatform for detection of human papillomavirus (HPV16)-related head and neck cancer. J. Pharm. Biomed. Anal., 179, 112989. CrossRef Scholar google search
Manzano M., Viezzi S., Mazerat S., Marks R.S., Vidic J. (2018) Rapid and label-free electrochemical DNA biosensor for detecting hepatitis A virus. Biosens. Bioelectron., 100, 89-95. CrossRef Scholar google search
Carinelli S., Kühnemund M., Nilsson M., Pividori M.I. (2017) Yoctomole electrochemical genosensing of Ebola virus cDNA by rolling circle and circle to circle amplification. Biosens. Bioelectron., 93, 65-71. CrossRef Scholar google search
Ilkhani H., Farhad S. (2018) A novel electrochemical DNA biosensor for Ebola virus detection. Anal. Biochem., 557, 151-155. CrossRef Scholar google search
Ciftci S., Cánovas R., Neumann F., Paulraj T., Nilsson M., Crespo G.A., Madaboosi N. (2020) The sweet detection of rolling circle amplification: Glucose-based electrochemical genosensor for the detection of viral nucleic acid. Biosens. Bioelectron., 151, 112002. CrossRef Scholar google search
Alzate D., Cajigas S., Robledo S., Muskus C., Orozco J. (2020) Genosensors for differential detection of Zika virus. Talanta, 210, 120648. CrossRef Scholar google search
Bartosik M., Jirakova L., Anton M., Vojtesek B., Hrstka R. (2018) Genomagnetic LAMP-based electrochemical test for determination of high-risk HPV16 and HPV18 in clinical samples. Anal. Chim. Acta, 1042, 37-43. CrossRef Scholar google search
Ahangar L.E., Mehrgardi M.A. (2017) Amplified detection of hepatitis B virus using an electrochemical DNA biosensor on a nanoporous gold platform. Bioelectrochemistry, 117, 83-88. CrossRef Scholar google search
Srisomwat C., Teengam P., Chuaypen N., Tangkijvanich P., Vilaivan T., Chailapakul O. (2020) Pop-up paper electrochemical device for label-free hepatitis B virus DNA detection. Sensors Actuators B Chem., 316, 128077. CrossRef Scholar google search
Malhotra B.D., Ali M.A. (2018) Nanomaterials in Biosensors: Fundamentals and Applications. In: Nanomaterials for Biosensors, William Andrew Publishing, pp. 1-74. CrossRef Scholar google search
Zhao F., Cao L., Liang Y., Wu Z., Chen Z., Zeng R. (2017) Label-free amperometric immunosensor based on graphene oxide and ferrocene-chitosan nanocomposites for detection of hepatis B virus antigen. J. Biomed. Nanotechnol., 13(10), 1300-1308. CrossRef Scholar google search
Wei S., Xiao H., Cao L., Chen Z. (2020) A label-free immunosensor based on graphene oxide/Fe3O4/ Prussian blue nanocomposites for the electrochemical determination of HBsAg. Biosensors, 10(3), 24. CrossRef Scholar google search
Trindade E.K.G., Dutra R.F. (2018) A label-free and reagentless immunoelectrode for antibodies against hepatitis B core antigen (anti-HBc) detection. Colloids Surfaces B Biointerfaces, 172, 272-279. CrossRef Scholar google search
Gao Z., Li Y., Zhang X., Feng J., Kong L., Wang P., Chen Z., Dong Y., Wei Q. (2018) Ultrasensitive electrochemical immunosensor for quantitative detection of HBeAg using Au@Pd/MoS2@MWCNTs nanocomposite as enzyme-mimetic labels. Biosens. Bioelectron., 102, 189-195. CrossRef Scholar google search
Alizadeh N., Hallaj R., Salimi A. (2018) Dual amplified electrochemical immunosensor for hepatitis B virus surface antigen detection using hemin/G-quadruplex immobilized onto Fe3O4-AuNPs or (hemin-amino-rGO-Au) nanohybrid. Electroanalysis, 30(3), 402-414. CrossRef Scholar google search
Alizadeh N., Hallaj R., Salimi A. (2017) A highly sensitive electrochemical immunosensor for hepatitis B virus surface antigen detection based on Hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme-signal amplification. Biosens. Bioelectron., 94, 184-192. CrossRef Scholar google search
Li F., Li Y., Feng J., Gao Z., Lv H., Ren X., Wei Q. (2018) Facile synthesis of MoS2@Cu2O-Pt nanohybrid as enzyme-mimetic label for the detection of the hepatitis B surface antigen. Biosens. Bioelectron., 100, 512-518. CrossRef Scholar google search
Biasotto G., Costa J.P.C., Costa P.I., Zaghete M.A. (2019) ZnO nanorods-gold nanoparticle-based biosensor for detecting hepatitis C. Appl. Phys. A, 125(12), 821. CrossRef Scholar google search
Valipour A., Roushani M. (2017) Using silver nanoparticle and thiol graphene quantum dots nanocomposite as a substratum to load antibody for detection of hepatitis C virus core antigen: Electrochemical oxidation of riboflavin was used as redox probe. Biosens. Bioelectron., 89, 946-951. CrossRef Scholar google search
Valipour A., Roushani M. (2017) A glassy carbon immunoelectrode modified with vanadium oxide nanobelts for ultrasensitive voltammetric determination of the core antigen of hepatitis C virus. Microchim. Acta, 184(11), 4477-4483. CrossRef Scholar google search
Valipour A., Roushani M. (2017) TiO2 nanoparticles doped with Celestine Blue as a label in a sandwich immunoassay for the hepatitis C virus core antigen using a screen printed electrode. Microchim. Acta, 184(7), 2015-2022. CrossRef Scholar google search
Singh R., Hong S., Jang J. (2017) Label-free detection of influenza viruses using a reduced graphene oxide-based electrochemical immunosensor integrated with a microfluidic platform. Sci. Rep., 7(1), 42771. CrossRef Scholar google search
Huang J., Xie Z., Xie Z., Luo S., Xie L., Huang L., Fan Q., Zhang Y., Wang S., Zeng T. (2016) Silver nanoparticles coated graphene electrochemical sensor for the ultrasensitive analysis of avian influenza virus H7. Anal. Chim. Acta, 913, 121-127. CrossRef Scholar google search
Wu Z., Guo W.-J., Bai Y.-Y., Zhang L., Hu J., Pang D.-W., Zhang Z.-L. (2018) Digital single virus electrochemical enzyme-linked immunoassay for ultrasensitive H7N9 avian influenza virus counting. Anal. Chem., 90(3), 1683-1690. CrossRef Scholar google search
Sayhi M., Ouerghi O., Belgacem K., Arbi M., Tepeli Y., Ghram A., Anik Ü., Österlund L., Laouini D., Diouani M.F. (2018) Electrochemical detection of influenza virus H9N2 based on both immunomagnetic extraction and gold catalysis using an immobilization-free screen printed carbon microelectrode. Biosens. Bioelectron., 107, 170-177. CrossRef Scholar google search
Yang Z.-H., Zhuo Y., Yuan R., Chai Y.-Q. (2016) A nanohybrid of platinum nanoparticles-porous ZnO-hemin with electrocatalytic activity to construct an amplified immunosensor for detection of influenza. Biosens. Bioelectron., 78, 321-327. CrossRef Scholar google search
Darwish N.T., Alrawi A.H., Sekaran S.D., Alias Y., Khor S.M. (2016) Electrochemical immunosensor based on antibody-nanoparticle hybrid for specific detection of the Dengue virus NS1 biomarker. J. Electrochem. Soc., 163(3), B19-B25. CrossRef Scholar google search
Kim J.H., Cho C.H., Ryu M.Y., Kim J.-G., Lee S.-J., Park T.J., Park J.P. (2019) Development of peptide biosensor for the detection of dengue fever biomarker, nonstructural 1. PLoS One, 14(9), e0222144. CrossRef Scholar google search
Kanagavalli P., Veerapandian M. (2020) Opto-electrochemical functionality of Ru(II)-reinforced graphene oxide nanosheets for immunosensing of dengue virus non-structural 1 protein. Biosens. Bioelectron., 150, 111878. CrossRef Scholar google search
Faria A.M., Mazon T. (2019) Early diagnosis of Zika infection using a ZnO nanostructures-based rapid electrochemical biosensor. Talanta, 203, 153-160. CrossRef Scholar google search
Chin S.F., Lim L.S., Pang S.C., Sum M.S.H., Perera D. (2017) Carbon nanoparticle modified screen printed carbon electrode as a disposable electrochemical immunosensor strip for the detection of Japanese encephalitis virus. Microchim. Acta, 184(2), 491-497. CrossRef Scholar google search
Hien H.T., Giang H.T., Trung T., van Tuan C. (2017) Enhancement of biosensing performance using a polyaniline/multiwalled carbon nanotubes nanocomposite. J. Mater. Sci., 52(3), 1694-1703. CrossRef Scholar google search
Svalova T.S., Malysheva N.N., Bubekova A.K., Saigushkina A.A., Medvedeva M.V., Kozitsina A.N. (2020) Effect of the method for immobilizing receptor layer on the analytical characteristics of a label-free electrochemical immunosensor for the determination of measles antibodies. J. Anal. Chem., 75(2), 254-261. CrossRef Scholar google search
Tran L.T., Tran T.Q., Ho H.P., Chu X.T., Mai T.A. (2019) Simple label-free electrochemical immunosensor in a microchamber for detecting Newcastle disease virus. J. Nanomater., 2019, 1-9. CrossRef Scholar google search
Hou Y.-H., Wang J.-J., Jiang Y.-Z., Lv C., Xia L., Hong S.-L., Lin M., Lin Y., Zhang Z.-L., Pang D.-W. (2018) A colorimetric and electrochemical immunosensor for point-of-care detection of enterovirus 71. Biosens. Bioelectron., 99, 186-192. CrossRef Scholar google search
Walls A.C., Park Y.-J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281-292.e6. CrossRef Scholar google search
Seo G., Lee G., Kim M.J., Baek S.-H., Choi M., Ku K.B., Lee C.-S., Jun S., Park D., Kim H.G., Kim S.-J., Lee J.-O., Kim B.T., Park E.C., Kim S.I. (2020) Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano, 14(4), 5135-5142. CrossRef Scholar google search
Tamborelli A., Mujica M.L., Gallay P., Vaschetti V., Reartes D., Delpino R., Bravo L., Bollo S., Rodriguez M., Rubianes M.D., Dalmasso P., Rivas G. (2023) Biosensing strategies for the detection of SARS-CoV-2 nucleic acids. J. Pharm. Biomed. Anal., 232, 115370. CrossRef Scholar google search
Yakoh A., Pimpitak U., Rengpipat S., Hirankarn N., Chailapakul O., Chaiyo S. (2021) Paper-based electrochemical biosensor for diagnosing COVID-19: Detection of SARS-CoV-2 antibodies and antigen. Biosens. Bioelectron., 176, 112912. CrossRef Scholar google search
Agafonova L., Zhdanov D., Gladilina Y., Kanashenko S., Shumyantseva V. (2022) Apilot study on an electrochemical approach for assessing transient DNA transfection in eukaryotic cells. J. Electroanal. Chem., 920, 116635. CrossRef Scholar google search
Brabec V., Mornstein V. (1980) Electrochemical behaviour of proteins at graphite electrodes. I. Electrooxidation of proteins as a new probe of protein structure and reactions. Biochim. Biophys. Acta Protein Struct., 625(1), 43-50. CrossRef Scholar google search
Brabec V., Mornstein V. (1980) Electrochemical behaviour of proteins at graphite electrodes. Biophys. Chem., 12(2), 159-165. CrossRef Scholar google search
Shumyantseva V., Bulko T., Kuzikov A., Masamrekh R., Archakov A. (2018) Analysis of L-tyrosine based on electrocatalytic oxidative reactions via screen-printed electrodes modified with multi-walled carbon nanotubes and nanosized titanium oxide (TiO2). Amino Acids, 50(7), 823-829. CrossRef Scholar google search