Идентификация белков-компонентов системы трансформации в клеточной линии иммортализованных кератиноцитов человека НаСаТ, подвергнутых воздействию поверхностно-активных веществ
Методом панорамной масс-спектрометрии проведена оценка изменений белкового профиля клеток HaCaT в ответ на воздействие поверхностно активных веществ (ПАВ) разной природы — додецилсульфата натрия (ПАВ анионного типа — АПАВ) и Тритона Х-100 (неионный ПАВ — НПАВ) в двух концентрациях — 12,5 мкг/мл (НПАВ 1) и 25,0 мкг/мл (НПАВ 2). Была зарегистрирована индукция орфанного CYP2S1 (I фаза биотрансформации) в ответ на воздействие НПАВ2. Среди белков II и III фаз биотрансформации, были идентифицированы глутатион-S-трансферазы (GSTs) и белки-транспортёры растворённых веществ (SLCs) соответственно, а также белки-антиоксиданты (пиридоксины PRDXs; каталаза, CAT; тиоредоксин, TXN). Таким образом, мы обнаружили белки всех трёх фаз детоксикации ксенобиотиков. Представленные результаты указывают на возможность использования иммортализованной клеточной линии кератиноцитов человека HaCaT в качестве модели эпидермиса кожи для оценки уровня индукции белков, участвующих в процессах биотрансформации токсикантов в коже человека in vitro.
Загрузить PDF:
Ключевые слова: иммобилизованные кератиноциты человека линии НаСаТ, поверхностно-активные вещества, Тритон Х-100, LC-MS/MS, цитохром Р450 2S1
Дополнительные материалы:
Цитирование:
Шкригунов Т.С., Вавилов Н.Э., Саменкова Н.Ф., Кисриева Ю.С., Русанов А.Л., Ромашин Д.Д., Карузина И.И., Лисица А.В., Петушкова Н.А. (2024) Идентификация белков-компонентов системы трансформации в клеточной линии иммортализованных кератиноцитов человека НаСаТ, подвергнутых воздействию поверхностно-активных веществ. Биомедицинская химия, 70(1), 61-68.
Шкригунов Т.С. и др. Идентификация белков-компонентов системы трансформации в клеточной линии иммортализованных кератиноцитов человека НаСаТ, подвергнутых воздействию поверхностно-активных веществ // Биомедицинская химия. - 2024. - Т. 70. -N 1. - С. 61-68.
Шкригунов Т.С. и др., "Идентификация белков-компонентов системы трансформации в клеточной линии иммортализованных кератиноцитов человека НаСаТ, подвергнутых воздействию поверхностно-активных веществ." Биомедицинская химия 70.1 (2024): 61-68.
Шкригунов, Т. С., Вавилов, Н. Э., Саменкова, Н. Ф., Кисриева, Ю. С., Русанов, А. Л., Ромашин, Д. Д., Карузина, И. И., Лисица, А. В., Петушкова, Н. А. (2024). Идентификация белков-компонентов системы трансформации в клеточной линии иммортализованных кератиноцитов человека НаСаТ, подвергнутых воздействию поверхностно-активных веществ. Биомедицинская химия, 70(1), 61-68.
Список литературы
Petushkova N.A., Rusanov A.L., Zgoda V.G., Pyatnitski M.A., Larina O.V., Nakhod K.V., Luzgina N.G., Lisitsa A.V. (2017) Proteome of the human HaCaT keratinocytes: Identification of the oxidative stress proteins after sodium dodecyl sulpfate exposur. Mol. Cell Biol., 51(5), 748-758. CrossRef Scholar google search
Shkrigunov T., Kisrieva Y., Samenkova N., Larina O., Zgoda V., Rusanov A., Romashin D., Luzgina N., Karuzina I., Lisitsa A., Petushkova N. (2022) Comparative proteoinformatics revealed the essentials of SDS impact on HaCaT keratinocytes. Sci. Rep., 12, 21437. CrossRef Scholar google search
Федоров И.И., Линева В.И., Тарасова И.А., Горшков М.В. (2020) Химическая протеомика на основе масс-спектрометрии в задачах поиска лекарственных мишеней. Биохимия, 87(9), 1232-1245. CrossRef Scholar google search
Oesch F., Fabian E., Oesch-Bartlomowicz B., Werner C., Landsiedel R. (2007) Drug-metabolizing enzymes in the skin of man, rat, and pig. Drug Metab. Rev., 39(4), 659-698. CrossRef Scholar google search
Svensson C.K. (2009) Biotransformation of drugs in human skin. Drug Metab. Dispos., 37(2), 247-253. CrossRef Scholar google search
Baron J.M., Höller D., Schiffer R., Frankenberg S., Neis M., Merk H.F., Jugert F.K. (2001) Expression of multiple cytochrome P450 enzymes and multidrug resistanceassociated transport proteins in human skin keratinocytes. J. Invest. Dermatol., 116(4), 541-548. CrossRef Scholar google search
Portugal-Cohen M., Cohen D., Kohen R., Oron M. (2023) Exploitation of alternative skin models from academia to industry: Proposed functional categories to answer needs and regulation demands. Front. Physiol., 14, 1215266. CrossRef Scholar google search
Ramadan Q., Ting F.C.W. (2016) In vitro micro-physiological immune-competent model of the human skin. Lab Chip, 16(10), 1899-1908. CrossRef Scholar google search
Shkrigunov T., Pogodin P., Zgoda V., Larina O., Kisrieva Y., Klimenko M., Latyshkevich O., Klimenko P., Lisitsa A., Petushkova N. (2022) Protocol for increasing the sensitivity of MS-based protein detection in human chorionic villi. Curr. Issues Mol. Biol., 44(5), 2069-2088. CrossRef Scholar google search
ProteoWizard Home Page. Retrieved May 22, 2023, from: https://proteowizard.sourceforge.io. Scholar google search
Vaudel M., Barsnes H., Berven F.S., Sickmann A., Martens L. (2011) SearchGUI: An open-source graphical user interface for simultaneous OMSSA and X!Tandem searches. Proteomics, 11(5), 996-999. CrossRef Scholar google search
Vaudel M., Burkhart J.M., Zahedi R.P., Oveland E., Berven F.S., Sickmann A., Martens L., Barsnes H. (2015) PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nat. Biotechnol., 33(1), 22-24. CrossRef Scholar google search
McIlwain S., Mathews M., Bereman M., Rubel E., MacCoss M., Noble W.S. (2012) Estimating relative abundances of proteins from shotgun proteomics data. BMC Bioinform., 13, 308. CrossRef Scholar google search
Human Proteome Project Mass Spectrometry Data Interpretation Guidelines Version 3.0.0. Retrieved February 20, 2024, from: https://hupo.org/resources/ Documents/HPPMSDataGuidelines_3.0.0.pdf. Scholar google search
du Plessis L., Skunca N., Dessimoz C. (2011) The what, where, how and why of gene ontology — a primer for bioinformaticians. Brief. Bioinformatics, 12(6), 723-735. CrossRef Scholar google search
Kümin A., Huber C., Rulicke T., Wolf E., Werner S. (2006) Peroxiredoxin 6 is a potent cytoprotective enzyme in the epidermis. Am. J. Pathol., 169(4), 1194-1205. CrossRef Scholar google search
Oesch F., Fabian E., Landsiedel R. (2018) Xenobioticametabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models. Arch. Toxicol., 92(8), 2411-2456. CrossRef Scholar google search
McNeilly A.D., Woods J.A., Ibbotson S.H., Wolf C.R., Smith G. (2011) Characterisation of a human keratinocyte HaCaT cell line model to study the regulation of cytochrome P450 CYP2S1. Drug Metab. Dispos., 40(2), 283-289. CrossRef Scholar google search
Zahn-Zabal M., Michel P., Gateau A., Nikitin F., Schaeffer M., Audot E., Gaudet P., Duek P., Teixeira D., Rech de Laval V., Samarasinghe K., Bairoch A., Lane L. (2020) The neXtProt knowledgebase in 2020: Data, tools and usability improvements. Nucleic Acids Res., 48(D1), D328-D334. CrossRef Scholar google search
Rivera S.P., Saarikoski S.T., Hankinson O. (2002) Identification of a novel dioxin-inducible cytochrome P450. Mol. Pharmacol., 61(2), 255-259. CrossRef Scholar google search
Smith G., Wolf C.R., Deeni Y.Y., Dawe R.S., Evans A.T., Comrie M.M., Ferguson J., Ibbotson S.H. (2003) Cutaneous expression of cytochrome P450 CYP2S1: Individuality in regulation by therapeutic agents for psoriasis and other skin diseases. Lancet, 361(9366), 1336-1343. CrossRef Scholar google search
Couto N., Newton J.R.A., Russo C., Karunakaran E., Achour B., Al-Majdoub Z.M., Sidaway J., Rostami-Hodjegan A., Clench M.R., Barber J. (2021) Label-free quantitative proteomics and substrate-based mass spectrometry imaging of xenobiotic metabolizing enzymes in ex vivo human skin and a human living skin equivalent model. Drug Metab. Dispos., 49(1), 39-52. CrossRef Scholar google search
Thum T., Erpenbeck V., Moeller J., Hohlfeld J.M., Krug N., Borlak J. (2006) Expression of xenobiotic metabolizing enzymes in different lung compartments of smokers and nonsmokers. Environ. Health Perspect., 114(11), 1655-1661. CrossRef Scholar google search
Fekry M.I., Xiao Y., Berg J.Z., Guengerich F.P. (2019) A role for the orphan human cytochrome P450 2S1 in polyunsaturated fatty acid ω-1 hydroxylation using an untargeted metabolomic approach. Drug Metab. Dispos., 47(11), 1325-1332. CrossRef Scholar google search