Сравнительный протеомный анализ почечной ткани нормотензивных (WKY) и гипертензивных (SHR) крыс выявил количественные и качественные изменения ряда белков. Специфичные для животных линии WKY (артериальное давление 110–120 мм рт. ст.) белки почек варьировали в диапазоне 13–16, специфичные для SHR (артериальное давление 180 мм рт. ст. и более) — в диапазоне 24–28, а общее число идентифицированных для обеих линий белков составило 972–975. При попарном сравнении всех возможных (SHR-WKY) вариантов идентифицированы 8 белков, специфичных только для нормотензивных животных, и 7 — только для гипертензивных. С учётом их биологической роли, отсутствие одних белков-ферментов у крыс-гипертоников (например, биливердинредуктаза А) снижает выработку молекул, проявляющих гипотензивные свойства, а появление других (бетаин-гомоцистеин S-метилтрансфераза 2, септин 2 и др.) может быть интерпретировано как компенсаторная реакция. На долю белков, относительное содержание которых менялось в почках не менее 2,5 раз, пришлось не более 5% всех идентифицированных белков. Среди белков, относительное содержание которых увеличивалось у гипертонических животных, наибольшую группу составляли белки, участвующие в процессах генерации энергии и углеводного обмена, а также антиоксидантные и защитные белки. В контексте развития гипертонии выявленные изменения, по-видимому, могут рассматриваться как компенсаторные. Среди белков, относительное содержание которых у крыс-гипертоников снизилось наиболее сильно, драматическое снижение ацил-КоA-синтетазы среднецепочечных жирных кислот (ACSM3), по-видимому, вносит важный вклад в развитие почечной патологии у этих животных.
Бунеева О.А. и др. Сравнительный протеомный анализ почечной ткани нормотензивных и гипертензивных крыс // Биомедицинская химия. - 2024. - Т. 70. -N 2. - С. 89-98.
Бунеева О.А. и др., "Сравнительный протеомный анализ почечной ткани нормотензивных и гипертензивных крыс." Биомедицинская химия 70.2 (2024): 89-98.
Бунеева, О. А., Федченко, В. И., Калошина, С. А., Завьялова, М. Г., Згода, В. Г., Медведев, А. Е. (2024). Сравнительный протеомный анализ почечной ткани нормотензивных и гипертензивных крыс. Биомедицинская химия, 70(2), 89-98.
Список литературы
Reckelhoff J.F., Iliescu R., Yanes L., Fortepiani L.A. (2006) Models of Hypertension. In: Aging in Handbook of Models for Human Aging, (Conn P.M., ed.), pp. 999-1009, Academic Press, London. CrossRef Scholar google search
Feld L.G., Cachero S., Liew J.B.V., Zamlauski-Tucker M., Noble B. (1990) Enalapril and renal injury in spontaneously hypertensive rats. Hypertension, 16, 544-554. CrossRef Scholar google search
Griffin K.A. (2017) Hypertensive kidney injury and the progression of chronic kidney disease. Hypertension, 70, 687-694. CrossRef Scholar google search
Dhande I.S., Cranford S.M., Zhu Y., Kneedler S.C., Hicks M.J., Wenderfer S.E., Braun M.C., Doris P.A. (2018) Susceptibility to hypertensive renal disease in the spontaneously hypertensive rat is influenced by 2 loci affecting blood pressure and immunoglobulin repertoire. Hypertension, 71, 700-708. CrossRef Scholar google search
Braun M.C., Herring S.M., Gokul N., Monita M., Bell R., Hicks M.J., Wenderfer S.E., Doris P.A. (2013) Hypertensive renal disease: Susceptibility and resistance in inbred hypertensive rat lines. Hypertension, 31, 2050-2059. CrossRef Scholar google search
Yu M., Wang X., Du Y., Chen H., Guo X., Xia L., Chen J. (2008) Comparative analysis of renal protein expression in spontaneously hypertensive rat. Clin. Exp. Hypertens., 30, 315-325. CrossRef Scholar google search
Sheehan D., Rainville L.-C., Tyther R., McDonagh B. (2012) Redox proteomics in study of kidney-associated hypertension: New insights to old diseases. Antiox. Redox Signal., 17, 1560-1570. CrossRef Scholar google search
Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248-254. CrossRef Scholar google search
Бунеева О.А., Капица И.Г., Казиева Л.Ш., Вавилов Н.Э., Згода В.Г., Медведев А.Е. (2023) Количественные изменения изатин-связывающих белков мозга у крыс с индуцированным ротеноном экспериментальным паркинсонизмом. Биомедицинская химия, 69(3), 188-192. CrossRef Scholar google search
Капица И.Г., Казиева Л.Ш., Вавилов Н.Э., Згода В.Г., Копылов А.Т., Медведев А.Е., Бунеева О.А. (2023) Особенности поведенческих реакций и профиля изатин-связывающих белков мозга у крыс с индуцированным ротеноном экспериментальным паркинсонизмом. Биомедицинская химия, 69(1), 46-54. CrossRef Scholar google search
Gao L., Xie J., Zhang H., Zheng H., Zheng W., Pang C., Cai Y., Deng B. (2023) Neuron-specific enolase in hypertension patients with acute ischemic stroke and its value forecasting long-term functional outcomes. BMC Geriatr., 23(1), 294. CrossRef Scholar google search
Butterworth M.B., Edinger R.S., Silvis M.R., Gallo L.I., Liang X., Apodaca G., Frizzell R.A., Johnson J.P. (2012) Rab11b regulates the trafficking and recycling of the epithelial sodium channel (ENaC). Am. J. Physiol. Renal Physiol., 302(5), 581-590. CrossRef Scholar google search
Chen Y.L., Zheng L.Q., Li T.J., Sun Z.Q., Hao Y., Wu B.G., Sun Y.X. (2021) Association between rs20456 and rs6930913 of kinesin-like family 6 and hypertension in a Chinese cohort. Int. J. Hypertens., 2021, 1061800. CrossRef Scholar google search
Stec D.E., Tiribelli C., Badmus O.O., Hinds T.D. Jr. (2022) Novel function for bilirubin as a metabolic signaling molecule: Implications for kidney diseases. Kidney360, 3(5), 945-953. CrossRef Scholar google search
Kawasaki T., Kaneko C., Nakanishi R., Moriyama Y., Nabekura T. (2022) Amiloride is a suitable fluorescent substrate for the study of the drug transporter human multidrug and toxin extrusion 1 (MATE1). Biochem. Biophys. Res. Commun., 592, 113-118. CrossRef Scholar google search
Liang J., Xia L., Oyang L., Lin J., Tan S., Yi P., Han Y., Luo X., Wang H., Tang L., Pan Q., Tian Y., Rao S., Su M., Shi Y., Cao D., Zhou Y., Liao Q. (2020) The functions and mechanisms of prefoldin complex and prefoldin-subunits. Cell Biosci., 10, 87. CrossRef Scholar google search
Chesnel F., Couturier A., Alusse A., Gagné J.P., Poirier G.G., Jean D., Boisvert F.M., Hascoet P., Paillard L., Arlot-Bonnemains Y., le Goff X. (2020) The prefoldin complex stabilizes the von Hippel-Lindau protein against aggregation and degradation. PLoS Genet., 16(11), 1009183. CrossRef Scholar google search
Zhang C., Peng J., Liu Z., Zhou Q. (2023) Kidney involvement in autoinflammatory diseases. Kidney Dis. (Basel), 9(3), 157-172. CrossRef Scholar google search
Yamazaki O., Hirohama D., Ishizawa K., Shibata S. (2020) Role of the ubiquitin proteasome system in the regulation of blood pressure: A review. Int. J. Mol. Sci., 21(15), 5358. CrossRef Scholar google search
Moore K., Moore R., Wang C., Norris R.A. (2020) Tugging at the heart strings: The septin cytoskeleton in heart development and disease. J. Cardiovasc. Dev. Dis., 7(1), 3. CrossRef Scholar google search
Zhu Y., Zhou J., Li C., Wang Q., Liu X., Ye L. (2018) Regulatory network analysis of hypertension and hypotension microarray data from mouse model. Clin. Exp. Hypertens., 40(7), 631-636. CrossRef Scholar google search
Bhattacharya S., Yin J., Winborn C.S., Zhang Q., Yue J., Chaum E. (2017) Prominin-1 is a novel regulator of autophagy in the human retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci., 58(4), 2366-2387. CrossRef Scholar google search
Karim B.O., Rhee K.J., Liu G., Yun K., Brant S.R. (2014) Prom1 function in development, intestinal inflammation, and intestinal tumorigenesis. Front. Oncol., 4, 323. CrossRef Scholar google search
Wang L., Zhao M., Liu W., Li X., Chu H., Bai Y., Sun Z., Gao C., Zheng L., Yang J. (2018) Association of betaine with blood pressure in dialysis patients. J. Clin. Hypertens. (Greenwich), 20(2), 388-393. CrossRef Scholar google search
Mogilnicka I., Jaworska K., Koper M., Maksymiuk K., Szudzik M., Radkiewicz M., Chabowski D., Ufnal M. (2024) Hypertensive rats show increased renal excretion and decreased tissue concentrations of glycine betaine, a protective osmolyte with diuretic properties. PLoS One, 19(1), 0294926. CrossRef Scholar google search
van Guldener C., Nanayakkara P.W.B., Stehouwer C.D.A. (2003) Homocysteine and blood pressure. Curr. Hypertens. Rep., 5(1), 26-31. CrossRef Scholar google search
Guo S.-J., Zhang P., Wu L.-Y., Zhang G.-N., Chen W.-D., Gao P.-J. (2016) Adenovirus-mediated overexpression of septin 2 attenuates α-smooth muscle actin expression and adventitial myofibroblast migration induced by angiotensin II. J. Vasc. Res., 53(5-6), 309-316. CrossRef Scholar google search
Nassereddine S., Habbal R., Kassogue Y., Kaltoum A.B.O., Farah K., Majda H., Rhizlane A.E., Nadifi S., Dehbi H. (2021) Analysis of the influence of glutathione S-transferase (GSTM1 and GSTT1) genes on the risk of essential hypertension. Ann. Hum. Biol., 48(7-8), 585-589. CrossRef Scholar google search
Mori M., Katayama K., Joh K., Ishikawa E., Dohi K. (2022) Type VI collagen-related nephropathy. Clin. Kidney J., 16(1), 195-196. CrossRef Scholar google search
Paulo N., Baptista P., Nogueira F., Pereira C., Cerqueira A., Rocha A. (2023) Lysozyme-induced nephropathy: A diagnosis not to forget. Cureus, 15(1), 34344. CrossRef Scholar google search
Yanagisawa H., Kido T., Yogosawa S., Sato O., Sakae K., Suka M. (2015) Inadequate intake of zinc exacerbates blood pressure and renal function via superoxide radical-induced oxidative stress. Biomedical Research Trace Elements, 26(3), 117-123. Scholar google search
Palm F., Nordquist L. (2011) Renal oxidative stress, oxygenation, and hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol., 301(5), R1229-R1241. CrossRef Scholar google search
Yiew N.K.H., Finck B.N. (2022) The mitochondrial pyruvate carrier at the crossroads of intermediary metabolism. Am. J. Physiol. Endocrinol. Metab., 323(1), 33-52. CrossRef Scholar google search
Vantourout P., Radojkovic C., Lichtenstein L., Pons V., Champagne E., Martinez L.O. (2010) Ecto-F1-ATPase: A moonlighting protein complex and an unexpected apoA-I receptor. World J. Gastroenterol., 16(47), 5925-5935. CrossRef Scholar google search
Huang S.L., Wen Y.I., Kupranycz D.B., Pang S.C., Schlager G., Hamet P., Tremblay J. (1988) Abnormality of calmodulin activity in hypertension. Evidence of the presence of an activator. J. Clin. Invest., 82(1), 276-281. CrossRef Scholar google search
Torella D., Ellison G.M., Torella M., Vicinanza C., Aquila I., Iaconetti C., Scalise M., Marino F., Henning B.J., Lewis F.C., Gareri C., Lascar N., Cuda G., Salvatore T., Nappi G., Indolfi C., Torella R., Cozzolino D., Sasso F.C. (2014) Carbonic anhydrase activation is associated with worsened pathological remodeling in human ischemic diabetic cardiomyopathy. J. Am. Heart Assoc., 3(2), 000434. CrossRef Scholar google search
Lee H., Abe Y., Lee I., Shrivastav S., Crusan A.P., Hüttemann M., Hopfer U., Felder R.A., Asico L.D., Armando I., Jose P.A., Kopp J.B. (2014) Increased mitochondrial activity in renal proximal tubule cells from young spontaneously hypertensive rats. Kidney Int., 85, 561-569. CrossRef Scholar google search
Iwai N., Katsuya T., Mannami T., Higaki J., Ogihara T., Kokame K., Ogata J., Baba S. (2002) Association between SAH, an acyl-CoA synthetase gene, and hypertriglyceridemia, obesity, and hypertension. Circulation., 105(1), 41-47. CrossRef Scholar google search
Li X.S., Wang Z., Cajka T., Buffa J.A., Nemet I., Hurd A.G., Gu X., Skye S.M., Roberts A.B., Wu Y., Li L., Shahen C.J., Wagner M.A., Hartiala J.A., Kerby R.L., Romano K.A., Han Y., Obeid S., Lüscher T.F., Allayee H., Rey F.E., di Donato J.A., Fiehn O., Tang W.H.W., Hazen S.L. (2018) Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk. JCI Insight, 3(6), 99096. CrossRef Scholar google search
Hemmingsen C. (2000) Regulation of renal calbindin-D28K. Pharmacol. Toxicol., 3, 5-30. Scholar google search
Hemmingsen C., Staun M., Lewin E., Egfjord M., Olgaard K. (1994) Calcium metabolic changes and calbindin-D in experimental hypertension. J. Hypertens., 12(8), 901-907. CrossRef Scholar google search
Delles C., Padmanabhan S., Lee W.K., Miller W.H., McBride M.W., McClure J.D., Brain N.J., Wallace C., Marçano A.C.B., Schmieder R.E., Brown M.J., Caulfield M.J., Munroe P.B., Farrall M., Webster J., Connell J.M., Dominiczak A.F. (2008) Glutathione S-transferase variants and hypertension. J. Hypertens., 26(7), 1343-1352. CrossRef Scholar google search
Delles C., McBride M.W., Graham D., Padmanabhan S., Dominiczak A.F. (2010) Genetics of hypertension: From experimental animals to humans. Biochim. Biophys. Acta, 1802(12), 1299-1308. CrossRef Scholar google search
El Hafidi M., Pérez I., Baños G. (2006) Is glycine effective against elevated blood pressure? Curr. Opin. Clin. Nutr. Metab. Care, 9(1), 26-31. CrossRef Scholar google search
Wang Z., Zhang J., Wang L., Li W., Chen L., Li J., Zhao D., Zhang H., Guo X. (2018) Glycine mitigates renal oxidative stress by suppressing Nox4 expression in rats with streptozotocin-induced diabetes. J. Pharmacol. Sci., 137(4), 387-394. CrossRef Scholar google search
Perco P., Ju W., Kerschbaum J., Leierer J., Menon R., Zhu C., Kretzler M., Mayer G., Rudnicki M.; Nephrotic Syndrome Study Network (NEPTUNE) (2019) Identification of dicarbonyl and L-xylulose reductase as a therapeutic target in human chronic kidney disease. JCI Insight, 4(12), 128120. CrossRef Scholar google search
Li Y., Pagano P.J. (2020) Does the mediterranean G6PD S188F polymorphism confer vascular protection? A novel rat model offering CRISPR insight into high fat-induced vascular dysfunction and hypertension. Hypertension, 76(2), 314-315. CrossRef Scholar google search
Rath V.L., Verdugo D., Hemmerich S. (2004) Sulfotransferase structural biology and inhibitor discovery. Drug Discov. Today, 9(23), 1003-1011. CrossRef Scholar google search
Singer S.S., Palmert M.R., Redman M.D., Leahy D.M., Feeser T.C., Lucarelli M.J., Volkwein L.S., Bruns M. (1988) Hepatic dopamine sulfotransferases in untreated rats and in rats subjected to endocrine or hypertension-related treatments. Hepatology, 8(6), 1511-1520. CrossRef Scholar google search
Nasrallah R., Hassouneh R., Hébert R.L. (2016) PGE2, kidney disease, and cardiovascular risk: Beyond hypertension and diabetes. J. Am. Soc. Nephrol., 27(3), 666-676. CrossRef Scholar google search
Rodriguez-Iturbe B., Lanaspa M.A., Johnson R.J. (2019) The role of autoimmune reactivity induced by heat shock protein 70 in the pathogenesis of essential hypertension. Br. J. Pharmacol., 176(12), 1829-1838. CrossRef Scholar google search
Jeyaraj S.C., Unger N.T., Chotani M.A. (2011) Rap1 GTPases: An emerging role in the cardiovasculature. Life Sci., 88(15-16), 645-652. CrossRef Scholar google search
Sacksteder K.A., Biery B.J., Morrell J.C., Goodman B.K., Geisbrecht B.V., Cox R.P., Gould S.J., Geraghty M.T. (2000) Identification of the alpha-aminoadipic semialdehyde synthase gene, which is defective in familial hyperlysinemia. Am. J. Hum. Genet., 66(6), 1736-1743. CrossRef Scholar google search
Xiao X., Li R., Cui B., Lv C., Zhang Y., Zheng J., Hui R., Wang Y. (2024) Liver ACSM3 deficiency mediates metabolic syndrome via a lauric acid-HNF4α-p38 MAPK axis. EMBO J., 43(4), 507-532. CrossRef Scholar google search
Scurt F.G., Ganz M.J., Herzog C., Bose K., Mertens P.R., Chatzikyrkou C. (2024) Association of metabolic syndrome and chronic kidney disease. Obes. Rev., 25(1), e13649. CrossRef Scholar google search