Реналаза (RNLS) — недавно открытый белок, который играет важную роль в регуляции артериального давления, действуя внутри и снаружи клеток. Внутриклеточная RNLS — FAD-зависимая оксидоредуктаза, которая осуществляет окисление изомерных форм β-NAD(P)H. Внеклеточная реналаза, лишённая своего N-концевого пептида и кофактора FAD, проявляет различные защитные эффекты при помощи некаталитических механизмов. По данным ряда авторов, пептид RP220 (20-членный пептид, соответствующий аминокислотной последовательности RNLS 220–239) воспроизводит ряд некаталитических эффектов этого белка, действуя на рецепторные белки плазматической мембраны. Возможность взаимодействия этого пептида с внутриклеточными белками не изучена. С учётом известной роли RNLS как возможного антигипертензивного фактора, в данной работе осуществлено протеомное профилирование почек нормо- и гипертензивных крыс с использованием RP220 в качестве аффинного лиганда. Протеомная (полуколичественная) идентификация выявила изменения относительного содержания связавшихся с аффинным сорбентом около 200 индивидуальных белков почек гипертензивных крыс по сравнению с почками нормотензивных животных. При этом оказалось, что связавшиеся с RP220 белки, для которых обнаружено наиболее выраженное увеличение относительного содержания у гипертензивных животных по сравнению с нормотензивными, вовлечены в развитие сердечно-сосудистой патологии. Снижение связывания с RP220 белков почек гипертензивных животных отмечено для компонентов убиквитин-протеасомной системы, рибосом и цитоскелета.
Бунеева О.А., Федченко В.И., Калошина С.А., Завьялова М.Г., Згода В.Г., Медведев А.Е. (2024) Протеомное профилирование почек нормо- и гипертензивных крыс с использованием реналазного пептида RP220 в качестве аффинного лиганда. Биомедицинская химия, 70(3), 145-155.
Бунеева О.А. и др. Протеомное профилирование почек нормо- и гипертензивных крыс с использованием реналазного пептида RP220 в качестве аффинного лиганда // Биомедицинская химия. - 2024. - Т. 70. -N 3. - С. 145-155.
Бунеева О.А. и др., "Протеомное профилирование почек нормо- и гипертензивных крыс с использованием реналазного пептида RP220 в качестве аффинного лиганда." Биомедицинская химия 70.3 (2024): 145-155.
Бунеева, О. А., Федченко, В. И., Калошина, С. А., Завьялова, М. Г., Згода, В. Г., Медведев, А. Е. (2024). Протеомное профилирование почек нормо- и гипертензивных крыс с использованием реналазного пептида RP220 в качестве аффинного лиганда. Биомедицинская химия, 70(3), 145-155.
Список литературы
Xu J., Li G., Wang P., Velazquez H., Yao X., Li Y., Wu Y., Peixoto A., Crowley S., Desir G.V. (2005) Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J. Clin. Invest., 115(5), 1275–1280. CrossRef Scholar google search
Medvedev A.E., Veselovsky A.V., Fedchenko V.I. (2010) Renalase, a new secretory enzyme responsible for selective degradation of catecholamines: Achievements and unsolved problems. Biochemistry (Moscow), 75(8), 951–958. CrossRef Scholar google search
Baroni S., Milani M., Pandini V., Pavesi G., Horner D., Aliverti A. (2013) Is renalase a novel player in catecholaminergic signaling? The mystery of the catalytic activity of an intriguing new flavoenzyme. Curr. Pharm. Des., 19, 2540–2551. CrossRef Scholar google search
Desir G.V., Peixoto A.J. (2014) Renalase in hypertension and kidney disease. Nephrol. Dial. Transplant., 29(1), 22–28. CrossRef Scholar google search
Moran G.R. (2016) The catalytic function of renalase: A decade of phantoms. Biochim. Biophys. Acta, 1864(1), 177–186. CrossRef Scholar google search
Beaupre B.A., Hoag M.R., Roman J., Forsterling F.H., Moran G.R. (2015) Metabolic function for human renalase: Oxidation of isomeric forms of beta-NAD(P)H that are inhibitory to primary metabolism. Biochemistry, 54(3), 795–806. CrossRef Scholar google search
Wang Y., Safirstein R., Velazquez H., Guo X.J., Hollander L., Chang J., Chen T.M., Mu J.J., Desir G.V. (2017) Extracellular renalase protects cells and organs by outside-in signalling. J. Cell Mol. Med., 21(7), 1260–1265. CrossRef Scholar google search
Kolodecik T.R., Reed A.M., Date K., Shugrue C.A., Patel V., Chung S.L., Desir G.V., Gorelick F.S. (2017) The serum protein renalase reduces injury in experimental pancreatitis. J. Biol. Chem., 292(51), 21047–21059. CrossRef Scholar google search
Wang L., Velazquez H., Chang J., Safirstein R., Desir G.V. (2015) Identification of a receptor for extracellular renalase. PLoS One, 10, e0122932. CrossRef Scholar google search
Pointer T.C., Gorelick F.S., Desir G.V. (2021) Renalase: A multi-functional signaling molecule with roles in gastrointestinal disease. Cells, 10(8), 2006. CrossRef Scholar google search
Medvedev A., Kopylov A., Fedchenko V., Buneeva O. (2020) Is renalase ready to become a biomarker of ischemia? Int. J. Cardiol., 307, 179. CrossRef Scholar google search
Fedchenko V.I., Veselovsky A.V., Kopylov A.T., Kaloshina S.A., Medvedev A.E. (2022) Renalase may be cleaved in blood. Are blood chymotrypsin-like enzymes involved? Medical Hypotheses, 165, 110895. CrossRef Scholar google search
Федченко В.И., Морозевич Г.Е., Медведев А.Е. (2023) Влияние реналазных пептидов на жизнеспособность клеток HEPG2 и PC3. Биомедицинская химия, 69(3), 184–187. CrossRef Scholar google search
Potts L., Phillips C., Hwang M., Fulcher S., Choi H. (2019) Rescue of human corneal epithelial cells after alkaline insult using renalase derived peptide, RP-220. Int. J. Ophthalmol., 12(11), 1667–1673. CrossRef Scholar google search
Wang L., Qi C., Shao X., Li S., Lin Q., Zhang M.,Wu B., Shen J., Li Z., Ni Z. (2019) RP220, a renalase peptide, attenuates lupus nephritis by anti-inflammatory in MRL/lpr mice. Available at SSRN: https://ssrn.com/abstract=3311837 or http://dx.doi.org/10.2139/ssrn.3311837. CrossRef Scholar google search
Stojanovic D., Stojanovic M., Milenkovic J., Velickov A., Ignjatovic A., Milojkovic M. (2023) The multi-faceted nature of renalase for mitochondrial dysfunction improvement in cardiac disease. Cells, 12(12), 1607. CrossRef Scholar google search
Fedchenko V.I., Kopylov A.T., Buneeva O.A., Kaloshin A.A., Zgoda V.G., Medvedev A.E. (2018) Proteomic profiling data of HEK293 proteins bound to human recombinant renalases-1 and -2. Data Brief., 21, 1477–1482. CrossRef Scholar google search
Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254. CrossRef Scholar google search
Бунеева О.А., Копылов А.Т., Гнеденко О.В., Медведева М.В., Капица И.Г., Иванова Е.А., Иванов А.С., Медведев А.Е. (2021) Изменение митохондриального субпротеома Rpn13-связывающих белков мозга мыши под действием нейротоксина МФТП и нейропротектора изатина. Биомедицинская химия, 67(1), 51–65. CrossRef Scholar google search
Бунеева О.А., Капица И.Г., Казиева Л.Ш., Вавилов Н.Э., Згода В.Г., Медведев А.Е. (2023) Количественные изменения изатин-связывающих белков мозга у крыс с индуцированным ротеноном экспериментальным паркинсонизмом. Биомедицинская химия, 69(3), 188–192. CrossRef Scholar google search
Бунеева О.А., Капица И.Г., Згода В.Г., Медведев А.Е. (2023) Нейропротекторные эффекты изатина и афобазола сопровождаются увеличением уровня растворимого в Тритоне Х-100 альфа-синуклеина в мозге крыс с экспериментальным ротеноновым паркинсонизмом. Биомедицинская химия, 69(5), 290–299. CrossRef Scholar google search
Бунеева О.А., Федченко В.И., Калошина С.А., Завьялова М.Г., Згода В.Г., Медведев А.Е. (2024) Сравнительный протеомный анализ почечной ткани нормотензивных и гипертензивных крыс. Биомедицинская химия, 70(2), 89–98. CrossRef Scholar google search
Dakshinamurti K., Lal K.J., Ganguly P.K. (1998) Hypertension, calcium channel and pyridoxine (vitamin B6). Mol. Cell. Biochem., 188(1–2), 137–148. CrossRef Scholar google search
Tieu K., Perier C., Vila M., Caspersen C., Zhang H.P., Teismann P., Jackson-Lewis V., Stern D.M., Yan S.D., Przedborski S. (2004) L-3-hydroxyacyl-CoA dehydrogenase II protects in a model of Parkinson's disease. Ann. Neurol., 56(1), 51–60. CrossRef Scholar google search
Powell A.J., Read J.A., Banfield M.J., Gunn-Moore F., Yan S.D., Lustbader J., Stern A.R., Stern D.M., Brady R.L. (2000) Recognition of structurally diverse substrates by type II 3-hydroxyacyl-CoA dehydrogenase (HADH II)/ amyloid-beta binding alcohol dehydrogenase (ABAD). J. Mol. Biol., 303(2), 311–327. CrossRef Scholar google search
di Nicolantonio J.J., Lucan S.C., O'Keefe J.H. (2016) The evidence for saturated fat and for sugar related to coronary heart disease. Prog. Cardiovasc. Dis., 58(5), 464–472. CrossRef Scholar google search
di Nicolantonio J.J., Subramonian A.M., O'Keefe J.H. (2017) Added fructose as a principal driver of non-alcoholic fatty liver disease: A public health crisis. Open Heart, 4(2), 000631. CrossRef Scholar google search
Gómez-Baena G., Armstrong S.D., Halstead J.O., Prescott M., Roberts S.A., McLean L., Mudge J.M., Hurst J.L., Beynon R.J. (2019) Molecular complexity of the major urinary protein system of the Norway rat, Rattus norvegicus. Sci. Rep., 9(1), 10757. CrossRef Scholar google search
Sato M., Yanagisawa H., Nojima Y., Tamura J.,Wada O. (2002) Zn deficiency aggravates hypertension in spontaneously hypertensive rats: Possible role of Cu/Zn-superoxide dismutase. Clin. Exp. Hypertens., 24(5), 355–370. CrossRef Scholar google search
Yanagisawa H., Sato M., Nodera M., Wada O. (2004) Excessive zinc intake elevates systemic blood pressure levels in normotensive rats — potential role of superoxide-induced oxidative stress. J. Hypertens., 22(3), 543–550. CrossRef Scholar google search
Chakraborty S., Mandal J., Yang T., Cheng X., Yeo J.Y., McCarthy C.G., Wenceslau C.F., Koch L.G., Hill J.W., Vijay-Kumar M., Joe B. (2020) Metabolites and hypertension: Insights into hypertension as a metabolic disorder: 2019 Harriet Dustan Award. Hypertension, 75(6), 1386–1396. CrossRef Scholar google search
Liu S., Kormos B.L., Knafels J.D., Sahasrabudhe P.V., Rosado A., Sommese R.F., Reyes A.R., Ward J., Roth Flach R.J., Wang X., Buzon L.M., Reese M.R., Bhattacharya S.K., Omoto K., Filipski K.J. (2023) Structural studies identify angiotensin II receptor blocker-like compounds as branched-chain ketoacid dehydrogenase kinase inhibitors. J. Biol. Chem., 299(3), 102959. CrossRef Scholar google search
Quinonez S.C., Thoene J.G. (2014) Dihydrolipoamide dehydrogenase deficiency. In: GeneReviews® [Internet] (Adam M.P., Feldman J, Mirzaa G.M., Pagon R.A., Wallace S.E., Bean L.J.H., Gripp K.W., Amemiya A., eds), Seattle (WA), University of Washington, Seattle, 1993–2024. Scholar google search
Guerreiro J.R., Lameu C., Oliveira E.F., Klitzke C.F., Melo R.L., Linares E., Augusto O., Fox J.W., Lebrun I., Serrano S.M., Camargo A.C. (2009) Argininosuccinate synthetase is a functional target for a snake venom anti-hypertensive peptide: Role in arginine and nitric oxide production. J. Biol. Chem., 284(30), 20022–20033. CrossRef Scholar google search
Zheng X., Chen M., Li X., Yang P., Zhao X., Ouyang Y., Yang Z., Liang M., Hou E., Tian Z. (2019) Insufficient fumarase contributes to hypertension by an imbalance of redox metabolism in Dahl salt-sensitive rats. Hypertens. Res., 42(11), 1672–1682. CrossRef Scholar google search
Tian Z., Liu Y., Usa K., Mladinov D., Fang Y., Ding X., Greene A.S., Cowley A.W. Jr., Liang M. (2009) Novel role of fumarate metabolism in dahl-salt sensitive hypertension. Hypertension, 54(2), 255–260. CrossRef Scholar google search
Ganetzky R., Stojinski C. (2019) Mitochondrial short-chain enoyl-CoA hydratase 1 deficiency. In: GeneReviews® [Internet] (Adam M.P., Feldman J., Mirzaa G.M., Pagon R.A., Wallace S.E., Bean L.J.H., Gripp K.W., Amemiya A., eds.). Seattle (WA), University of Washington, Seattle, 1993–2024. Scholar google search
Bonnet S., Paulin R. (2019) Involvement of PFKFB3 in pulmonary arterial hypertension pathogenesis. Is it all about glycolysis? Am. J. Respir. Crit. Care Med., 200(5), 532–534. CrossRef Scholar google search
Kang J., Brajanovski N., Chan K.T., Xuan J., Pearson R.B., Sanij E. (2021) Ribosomal proteins and human diseases: Molecular mechanisms and targeted therapy. Signal Transduct. Target. Ther., 6(1), 323. CrossRef Scholar google search
Bhavsar R.B., Makley L.N., Tsonis P.A. (2010) The other lives of ribosomal proteins. Human Genomics, 4(5), 327–344. CrossRef Scholar google search
Calvier L., Herz J., Hansmann G. (2022) Interplay of low-density lipoprotein receptors, LRPs, and lipoproteins in pulmonary hypertension. JACC Basic Transl. Sci., 7(2), 164–180. CrossRef Scholar google search
Longoni M., Kantarci S., Donnai D., Pober B.R. (2008) Donnai-Barrow syndrome. In: GeneReviews® [Internet] (Adam M.P., Feldman J., Mirzaa G.M., Pagon R.A., Wallace S.E., Bean L.J.H., Gripp K.W., Amemiya A., eds.), Seattle (WA), University of Washington, Seattle, 1993–2024. Scholar google search
Sendra J., Llorente-Cortés V., Costales P., Huesca-Gómez C., Badimon L. (2008) Angiotensin II upregulates LDL receptorrelated protein (LRP1) expression in the vascular wall: A new pro-atherogenic mechanism of hypertension. Cardiovasc. Res., 78(3), 581–589. CrossRef Scholar google search
Wang L., Hou E., Wang Z., Sun N., He L., Chen L., Liang M., Tian Z. (2014) Analysis of metabolites in plasma reveals distinct metabolic features between Dahl salt-sensitive rats and consomic SS.13(BN) rats. Biochem. Biophys. Res. Commun., 450(1), 863–869. CrossRef Scholar google search
Martin-Lorenzo M., Martinez P.J., Baldan-Martin M., Ruiz-Hurtado G., Prado J.C., Segura J., de la Cuesta F., Barderas M.G., Vivanco F., Ruilope L.M., Alvarez-Llamas G. (2017) Citric acid metabolism in resistant hypertension: Underlying mechanisms and metabolic prediction of treatment response. Hypertension, 70(5), 1049–1056. CrossRef Scholar google search
Barawkar D.A., Meru A., Bandyopadhyay A., Banerjee A., Deshpande A.M., Athare C., Koduru C., Khose G., Gundu J., Mahajan K., Patil P., Kandalkar S.R., Niranjan S., Bhosale S., De S., Mukhopadhyay S., Chaudhary S., Koul S., Singh U., Chugh A., Palle V.P., Mookhtiar K.A., Vacca J., Chakravarty P.K., Nargund R.P., Wright S.D., Roy S., Graziano M.P., Singh S.B., Cully D., Cai T.Q. (2011) Potent and selective inhibitors of long chain l-2-hydroxy acid oxidase reduced blood pressure in DOCA salt-treated rats. ACS Med. Chem. Lett., 2(12), 919–923. CrossRef Scholar google search
Prasun P., LoPiccolo M.K., Ginevic I. (2022) Long-chain Hydroxyacyl-CoA dehydrogenase deficiency/ trifunctional protein deficiency. In: GeneReviews® [Internet] (Adam M.P., Feldman .J, Mirzaa G.M., Pagon R.A., Wallace S.E., Bean L.J.H., Gripp K.W., Amemiya A., eds.). Seattle (WA), University of Washington, Seattle, 1993–2024. Scholar google search
Meng C., Jin X., Xia L., Shen S.M., Wang X.L., Cai J., Chen G.Q., Wang L.S., Fang N.Y. (2009) Alterations of mitochondrial enzymes contribute to cardiac hypertrophy before hypertension development in spontaneously hypertensive rats. J. Proteome Res., 8(5), 2463–2475. CrossRef Scholar google search
Li G.H., Shi Y., Chen Y., Sun M., Sader S., Maekawa Y., Arab S., Dawood F., Chen M., de Couto G., Liu Y., Fukuoka M., Yang S., da Shi M., Kirshenbaum L.A., McCulloch C.A., Liu P. (2009) Gelsolin regulates cardiac remodeling after myocardial infarction through DNAse I-mediated apoptosis. Circ. Res., 104(7), 896–904. CrossRef Scholar google search
Jana S., Aujla P., Hu M., Kilic T., Zhabyeyev P., McCulloch C.A., Oudit G.Y., Kassiri Z. (2021) Gelsolin is an important mediator of Angiotensin II-induced activation of cardiac fibroblasts and fibrosis. FASEB J., 35(10), 21932. CrossRef Scholar google search
Lai Q., Liu F.M., Rao W.L., Yuan G.Y., Fan Z.Y., Zhang L., Fu F., Kou J.P., Yu B.Y., Li F. (2022) Aminoacylase-1 plays a key role in myocardial fibrosis and the therapeutic effects of 20(S)-ginsenoside Rg3 in mouse heart failure. Acta Pharmacol. Sin., 43(8), 2003–2015. CrossRef Scholar google search
Oliveira-Paula G.H., Pereira S.C., Tanus-Santos J.E., Lacchini R. (2019) Pharmacogenomics and hypertension: Current insights. Pharmgenomics Pers. Med., 12, 341–359. CrossRef Scholar google search
Kim Y.H., Hwang J.H., Noh J.R., Gang G.T., Kim D.H., Son H.Y., Kwak T.H., Shong M., Lee I.K., Lee C.H. (2011) Activation of NAD(P)H:quinone oxidoreductase ameliorates spontaneous hypertension in an animal model via modulation of eNOS activity. Cardiovasc. Res., 91(3), 519–527. CrossRef Scholar google search
Kim Y.H., Hwang J.H., Kim K.S., Noh J.R., Gang G.T., Seo Y., Nam K.H., Kwak T.H., Lee H.G., Lee C.H. (2015) NAD(P)H:quinone oxidoreductase 1 activation reduces blood pressure through regulation of endothelial nitric oxide synthase acetylation in spontaneously hypertensive rats. Am. J. Hypertens., 28(1), 50–57. CrossRef Scholar google search
Liao K.A., Rangarajan K.V., Bai X., Taylor J.M., Mack C.P. (2021) The actin depolymerizing factor destrin serves as a negative feedback inhibitor of smooth muscle cell differentiation. Am. J. Physiol. Heart Circ. Physiol., 321(5), 893–904. CrossRef Scholar google search
Stanczyk P.J., Tatekoshi Y., Shapiro J.S., Nayudu K., Chen Y., Zilber Z., Schipma M., de Jesus A., Mahmoodzadeh A., Akrami A., Chang H.C., Ardehali H. (2023) DNA damage and nuclear morphological changes in cardiac hypertrophy are mediated by SNRK through actin depolymerization. Circulation, 148(20), 1582–1592. CrossRef Scholar google search
Lee M.J., Stephenson D.A., Groves M.J., Sweeney M.G., Davis M.B., An S.F., Houlden H., Salih M.A., Timmerman V., de Jonghe P., Auer-Grumbach M., di Maria E., Scaravilli F., Wood N.W., Reilly M.M. (2003) Hereditary sensory neuropathy is caused by a mutation in the delta subunit of the cytosolic chaperonin-containing T-complexpeptide-1 (Cct4) gene. Hum. Mol. Genet., 12(15), 1917–1925. CrossRef Scholar google search
Jeong S.J., Park J.G., Oh G.T. (2021) Peroxiredoxins as potential targets for cardiovascular disease. Antioxidants (Basel), 10(8), 1244. CrossRef Scholar google search
Jiang L., Gong Y., Hu Y., You Y., Wang J., Zhang Z., Wei Z., Tang C. (2020) Peroxiredoxin-1 overexpression attenuates doxorubicininduced cardiotoxicity by inhibiting oxidative stress and cardiomyocyte apoptosis. Oxid. Med. Cell. Longev., 2020, 2405135. CrossRef Scholar google search
Martinez-Pinna R., Ramos-Mozo P., Madrigal-Matute J., Blanco-Colio L.M., Lopez J.A., Calvo E., Camafeita E., Lindholt J.S., Meilhac O., Delbosc S., Michel J.B., Vega de Ceniga M., Egido J., Martin-Ventura J.L. (2011) Identification of peroxiredoxin-1 as a novel biomarker of abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol., 31(4), 935–943. CrossRef Scholar google search
Zhou M., Guo J., Li S., Li A., Fang Z., Zhao M., Zhang M., Wang X. (2023) Effect of peroxiredoxin 1 on the regulation of trophoblast function by affecting autophagy and oxidative stress in preeclampsia. J. Assist. Reprod. Genet., 40(7), 1573–1587. CrossRef Scholar google search
Park J.-G., Yoo J.-Y., Jeong S.-J., Choi J.-H., Lee M.-R., Lee M.-N., Hwa Lee J., Kim H.C., Jo H., Yu D.-Y., Kang S.W., Rhee S.G., Lee M.-H., Oh G.T. (2011) Peroxiredoxin 2 deficiency exacerbates atherosclerosis in apolipoprotein Edeficient mice. Circ. Res., 109, 739–749. CrossRef Scholar google search
Moore K., Moore R., Wang C., Norris R.A. (2020) Tugging at the heart strings: The septin cytoskeleton in heart development and disease. J. Cardiovasc. Dev. Dis., 7(1), 3. CrossRef Scholar google search
Sutendra G., Dromparis P., Bonnet S., Haromy A., McMurtry M.S., Bleackley R.C., Michelakis E.D. (2011) Pyruvate dehydrogenase inhibition by the inflammatory cytokine TNFα contributes to the pathogenesis of pulmonary arterial hypertension. J. Mol. Med. (Berlin), 89(8), 771–783. CrossRef Scholar google search
Magyar C.E., Zhang Y., Holstein-Rathlou N.H., McDonough A.A. (2000) Proximal tubule Na transporter responses are the same during acute and chronic hypertension. Am. J. Physiol. Renal. Physiol., 279(2), 358–369. CrossRef Scholar google search
Kennedy H., Haack T.B., Hartill V., Mataković L., Baumgartner E.R., Potter H., Mackay R., Alston C.L., O'Sullivan S., McFarland R., Connolly G., Gannon C., King R., Mead S., Crozier I., Chan W., Florkowski C.M., Sage M., Höfken T., Alhaddad B., Kremer L.S., Kopajtich R., Feichtinger R.G., Sperl W., Rodenburg R.J., Minet J.C., Dobbie A., Strom T.M., Meitinger T., George P.M., Johnson C.A., Taylor R.W., Prokisch H., Doudney K., Mayr J.A. (2016) Sudden cardiac death due to deficiency of the mitochondrial inorganic pyrophosphatase PPA2. Am. J. Hum. Genet., 99(3), 674–682. CrossRef Scholar google search
Kim H.K., Mizuno M., Vongpatanasin W. (2019) Phosphate, the forgotten mineral in hypertension. Curr. Opin. Nephrol. Hypertens., 28(4), 345–351. CrossRef Scholar google search
Iovine B., Iannella M.L., Bevilacqua M.A. (2011) Damage-specific DNA binding protein 1 (DDB1): A protein with a wide range of functions. Int. J. Biochem. Cell Biol., 43(12), 1664–1667. CrossRef Scholar google search
Ranchoux B., Meloche J., Paulin R., Boucherat O., Provencher S., Bonnet S. (2016) DNA damage and pulmonary hypertension. Int. J. Mol. Sci., 17(6), 990. CrossRef Scholar google search
Liu R., Proud C.G. (2016) Eukaryotic elongation factor 2 kinase as a drug target in cancer, and in cardiovascular and neurodegenerative diseases. Acta Pharmacol. Sin., 37(3), 285–294. CrossRef Scholar google search
Pascal A., Gallaud E., Giet R., Benaud C. (2022) Annexin A2 and Ahnak control cortical NuMA-dynein localization and mitotic spindle orientation. J. Cell Sci., 135(9), 259344. CrossRef Scholar google search
Predmore J.M., Wang P., Davis F., Bartolone S., Westfall M.V., Dyke D.B., Pagani F., Powell S.R., Day S.M. (2010) Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies. Circulation, 121(8), 997–1004. CrossRef Scholar google search
Li Y., Bian M., Gu S., Wang X., Wen J., Lian N., Jiang M., Qi X. (2023) Investigation of the ubiquitin proteasome system in pulmonary arterial hypertension. Authorea, March 27. CrossRef Scholar google search
Drews O., Taegtmeyer H. (2014) Targeting the ubiquitinproteasome system in heart disease: the basis for new therapeutic strategies. Antioxid. Redox Signal., 21(17), 2322–2343. CrossRef Scholar google search
Malashicheva A., Perepelina K. (2021) Diversity of nuclear lamin A/C action as a key to tissue-specific regulation of cellular identity in health and disease. Front. Cell Dev. Biol., 9, 761469. CrossRef Scholar google search
Shi X., Jiang X., Chen C., Zhang Y., Sun X. (2022) The interconnections between the microtubules and mitochondrial networks in cardiocerebrovascular diseases: Implications for therapy. Pharmacol. Res., 184, 106452. CrossRef Scholar google search
Daugeron M.C., Kressler D., Linder P. (2001) Dbp9p, a putative ATP-dependent RNA helicase involved in 60S-ribosomal-subunit biogenesis, functionally interacts with Dbp6p. RNA, 7(9), 1317-1334. CrossRef Scholar google search
Meng L.B., Hu G.F., Shan M.J., Zhang Y.M., Yu Z.M., Liu Y.Q., Xu H.X., Wang L., Gong T., Liu D.P. (2021) Citrate synthase and OGDH as potential biomarkers of atherosclerosis under chronic stress. Oxid. Med. Cell. Longev., 2021, 9957908. CrossRef Scholar google search
Wang X., Chen C.F., Baker P.R., Chen P.L., Kaiser P., Huang L. (2007) Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry, 46, 3553-3565. CrossRef Scholar google search
Verma R., Chen S., Feldman R., Schieltz D., Yates J., Dohmen J., Deshaies R.J. (2000) Proteasomal proteomics: Identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell, 11, 3425–3439. CrossRef Scholar google search
Guerrero C., Milenkovic T., Przulj N., Kaiser P., Huang L. (2008) Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc. Natl. Acad. Sci. USA, 105, 13333–13338. CrossRef Scholar google search
Buneeva O.A., Kopylov A.T., Medvedev A.E. (2023) Proteasome interactome and its role in the mechanisms of brain plasticity. Biochemistry (Moscow), 88(3), 319–336. CrossRef Scholar google search
Meul T., Berschneider K., Schmitt S., Mayr C.H., Mattner L.F., Schiller H.B., Yazgili A.S., Wang X., Lukas C., Schlesser C., Prehn C., Adamski J., Graf E., Schwarzmayr T., Perocchi F., Kukat A., Trifunovic A., Kremer L., Prokisch H., Popper B., von Toerne C., Hauck S.M., Zischka H., Meiners S. (2020) Mitochondrial regulation of the 26S proteasome. Cell Rep., 32, 108059. CrossRef Scholar google search
Enenkel C., Kang R.W., Wilfling F., Ernst O.P. (2022) Intracellular localization of the proteasome in response to stress conditions. J. Biol. Chem., 298, 102083. CrossRef Scholar google search
Rousseau A., Bertolotti A. (2018) Regulation of proteasome assembly and activity in health and disease. Nat. Rev. Mol. Cell Biol., 19, 697–712. CrossRef Scholar google search