Биосенсорные платформы для ДНК-диагностики на основе CRISPR/CAS-нуклеаз: на пути к детекции нуклеиновых кислот на уровне единичных молекул во внелабораторных условиях
1. Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича, Москва, Россия 2. Химический факультет Московского государственного университета им. М.В. Ломоносова, Москва, Россия
В последние годы наметился бурный рост исследований с использованием CRISPR/Cas-нуклеаз для разработки систем ДНК-диагностики во внелабораторных условиях (англ. point-of-need testing, PONT), началом развития которых послужила разработка в 2017–2018 гг. первых диагностических платформ, известных как DETECTR и SHERLOCK. В их основе лежит сочетание методов изотермической амплификации нуклеиновых кислот с селективной CRISPR/Cas-детекцией целевых ампликонов. Это позволяет значительно улучшить чувствительность и специфичность РОNТ, сопоставимых c (или даже превосходящими) чувствительностью и специфичностью полимеразной цепной реакции, являющейся “золотым стандартом” ДНК-диагностики. В обзоре рассмотрены современные подходы к сопряжению CRISPR/Cas-детекции с использованием нуклеаз Cas9, Cas12a, Cas12b, Cas13a, Cas14 и Cas3 с различными методами изотермической амплификации нуклеиновых кислот, с акцентом на работы, в которых достигнута чувствительность на уровне единичных молекул (субаттомолярных концентраций мишени). Коротко рассмотрены свойства CRISPR/Cas-нуклеаз, используемых для целей ДНК-диагностики, и особенности методов изотермической амплификации нуклеиновых кислот, применяемых сегодня при разработке диагностических биосенсорных платформ. Обсуждаются наиболее перспективные направления развития ДНК-диагностики с использованием CRISPR/Cas-нуклеаз.
Хмелёва С.А., Птицын К.Г., Курбатов Л.К., Тимошенко О.С., Супрун Е.В., Радько С.П., Лисица А.В. (2024) Биосенсорные платформы для ДНК-диагностики на основе CRISPR/CAS-нуклеаз: на пути к детекции нуклеиновых кислот на уровне единичных молекул во внелабораторных условиях. Биомедицинская химия, 70(5), 287-303.
Хмелёва С.А. и др. Биосенсорные платформы для ДНК-диагностики на основе CRISPR/CAS-нуклеаз: на пути к детекции нуклеиновых кислот на уровне единичных молекул во внелабораторных условиях // Биомедицинская химия. - 2024. - Т. 70. -N 5. - С. 287-303.
Хмелёва С.А. и др., "Биосенсорные платформы для ДНК-диагностики на основе CRISPR/CAS-нуклеаз: на пути к детекции нуклеиновых кислот на уровне единичных молекул во внелабораторных условиях." Биомедицинская химия 70.5 (2024): 287-303.
Хмелёва, С. А., Птицын, К. Г., Курбатов, Л. К., Тимошенко, О. С., Супрун, Е. В., Радько, С. П., Лисица, А. В. (2024). Биосенсорные платформы для ДНК-диагностики на основе CRISPR/CAS-нуклеаз: на пути к детекции нуклеиновых кислот на уровне единичных молекул во внелабораторных условиях. Биомедицинская химия, 70(5), 287-303.
Список литературы
Erdmann V.A., Jurga S., Barciszewski J. (2015) RNAand DNA diagnostics, Springer Cham, Switzerland, 359 p. CrossRef Scholar google search
Rolfs A., Schuller I., Finckh U., Weber-Rolfs I. (2011) PCR: Clinical diagnostics and research, Springer Berlin, Heidelberg, 386 p. Scholar google search
Nguyen P.Q.M., Wang M., Ann Maria N., Li A.Y., Tan H.Y., Xiong G.M., Tan M.-K.M., Bhagat A.A.S., Ong C.W.M., Lim C.T. (2022) Modular micro-PCR system for the onsite rapid diagnosis of COVID-19. Microsyst. Nanoeng., 8, 82. CrossRef Scholar google search
Zhao Y., Chen F., Li Q., Wang L., Fan C. (2015) Isothermal amplification of nucleic acids. Chem. Rev., 115(22), 12491–12545. CrossRef Scholar google search
Бодулев О.Л., Сахаров И.Ю. (2020) Изотермические методы амплификации нуклеиновых кислот и их применение в биоанализе. Биохимия, 85(2), 174–196. CrossRef Scholar google search
Abel G. (2015) Current status and future prospects of point-of-care testing around the globe. Expert Rev. Mol. Diagn., 15(7), 853–855. CrossRef Scholar google search
Fernandes R.S., de Oliveira Silva J., Gomes K.B., Azevedo R.B., Townsend D.M., de Paula Sabino A., Branco de Barros A.L. (2022) Recent advances in point of care testing for COVID-19 detection. Biomed. Pharmacother., 153, 113538. CrossRef Scholar google search
de Felice M., de Falco M., Zappi D., Antonacci A., Scognamiglio V. (2022) Isothermal amplification-assisted diagnostics for COVID-19. Biosens. Bioelectron., 205, 114101. CrossRef Scholar google search
Hu B., Guo H., Si H., Shi Z. (2024) Emergence of SARS and COVID-19 and preparedness for the next emerging disease X. Front. Med., 18(1), 1–18. CrossRef Scholar google search
Yang H., Ledesma-Amaro R., Gao H., Ren Y., Deng R. (2023) CRISPR-based biosensors for pathogenic biosafety. Biosens. Bioelectron., 228, 115189. CrossRef Scholar google search
Oliveira B.B., Veigas B., Baptista P.V. (2021) Isothermal amplification of nucleic acids: The race for the next “gold standard.” Front. Sens., 2, 752600. CrossRef Scholar google search
Lee Y., Oh Y., Lee S.H. (2024) Recent advances in genome engineering by CRISPR technology. BMB Reports, 57(1), 12–18. CrossRef Scholar google search
Westermann L., Neubauer B., Köttgen M. (2021) Nobel Prize 2020 in Chemistry honors CRISPR: A tool for rewriting the code of life. Eur. J. Physiol., 473(1), 1–2. CrossRef Scholar google search
Fapohunda F.O., Qiao S., Pan Y., Wang H., Liu Y., Chen Q., Lü P. (2022) CRISPR Cas system: A strategic approach in detection of nucleic acids. Microbiol. Res., 259, 127000. CrossRef Scholar google search
Gootenberg J.S., Abudayyeh O.O., Lee J.W., Essletzbichler P., Dy A.J., Joung J., Verdine V., Donghia N., Daringer N.M., Freije C.A., Myhrvold C., Bhattacharyya R.P., Livny J., Regev A., Koonin E.V., Hung D.T., Sabeti P.C., Collins J.J., Zhang F. (2017) Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 356(6336), 438–442. CrossRef Scholar google search
Chen J.S., Ma E., Harrington L.B., da Costa M., Tian X., Palefsky J.M., Doudna J.A. (2018) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 360(6387), 436–439. CrossRef Scholar google search
Li S.-Y., Cheng Q.-X., Liu J.-K., Nie X.-Q., Zhao G.-P., Wang J. (2018) CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res., 28(4), 491–493. CrossRef Scholar google search
Myhrvold C., Freije C.A., Gootenberg J.S., Abudayyeh O.O., Metsky H.C., Durbin A.F., Kellner M.J., Tan A.L., Paul L.M., Parham L.A., Garcia K.F., Barnes K.G., Chak B., Mondini A., Nogueira M.L., Isern S., Michael S.F., Lorenzana I., Yozwiak N.L., MacInnis B.L., Bosch I., Gehrke L., Zhang F., Sabeti P.C. (2018) Field-deployable viral diagnostics using CRISPR-Cas13. Science, 360(6387), 444–448. CrossRef Scholar google search
Ackerman C.M., Myhrvold C., Thakku S.G., Freije C.A., Metsky H.C., Yang D.K., Ye S.H., Boehm C.K., Kosoko-Thoroddsen T.-S.F., Kehe J., Nguyen T.G., Carter A., Kulesa A., Barnes J.R., Dugan V.G., Hung D.T., Blainey P.C., Sabeti P.C. (2020) Massively multiplexed nucleic acid detection with Cas13. Nature, 582(7811), 277–282. CrossRef Scholar google search
Koonin E.V., Makarova K.S. (2019) Origins and evolution of CRISPR-Cas systems. Philos. Trans. R. Soc. Lond. B Biol. Sci., 374(1772), 20180087. CrossRef Scholar google search
Chen J., Huang Y., Xiao B., Deng H., Gong K., Li K., Li L., Hao W. (2022) Development of a RPA-CRISPR-Cas12a assay for rapid, simple, and sensitive detection of Mycoplasma hominis. Front. Microbiol., 13, 842415. CrossRef Scholar google search
Курбатов Л.К., Радько С.П., Хмелева С.А., Птицын К.Г., Тимошенко О.С., Лисица А.В. (2024) Применение технологии DETECTR для селективной детекции бактериального фитопатогена Dickeya solani с использованием рекомбинантной CRISPR-нуклеазы Cas12a, полученной одностадийной хроматографической очисткой. Прикладная биохимия и микробиология, 60(1), 20–28. CrossRef Scholar google search
Курбатов Л.К., Радько С.П., Кравченко С.В., Киселёва О.И., Дурманов Н.Д., Лисица А.В. (2020) Одностадийная очистка CRISPR-нуклеазы Cas13a методом металл-хелатной хроматографии после гетерологичной экспрессии с сохранением коллатеральной рибонуклеазной активности. Прикладная биохимия и микробиология, 56(6), 587–594. CrossRef Scholar google search
Makarova K.S., Wolf Y.I., Alkhnbashi O.S., Costa F., Shah S.A., Saunders S.J., Barrangou R., Brouns S.J.J., Charpentier E., Haft D.H., Horvath P., Moineau S., Mojica F.J.M., Terns R.M., Terns M.P., White M.F., Yakunin A.F., Garrett R.A., van der Oost J., Backofen R., Koonin E.V. (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol., 13(11), 722–736. CrossRef Scholar google search
Chen J., Chen Y., Huang L., Lin X., Chen H., Xiang W., Liu L. (2024) Trans-nuclease activity of Cas9 activated by DNA or RNA target binding. Nat. Biotechnol., DOI: 10.1038/s41587-024-02255-7. CrossRef Scholar google search
Ding Y., Li H., Chen L.-L., Xie K. (2016) Recent advances in genome editing using CRISPR/Cas9. Front. Plant Sci., 7, 703. CrossRef Scholar google search
Hu J.H., Miller S.M., Geurts M.H., Tang W., Chen L., Sun N., Zeina C.M., Gao X., Rees H.A., Lin Z., Liu D.R. (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 556(7699), 57–63. CrossRef Scholar google search
Miller S.M., Wang T., Randolph P.B., Arbab M., Shen M.W., Huang T.P., Matuszek Z., Newby G.A., Rees H.A., Liu D.R. (2020) Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat. Biotechnol., 38(4), 471–481. CrossRef Scholar google search
Das A., Goswami H.N., Whyms C.T., Sridhara S., Li H. (2022) Structural principles of CRISPR-Cas enzymes used in nucleic acid detection. J. Struct. Biol., 214(1), 107838. CrossRef Scholar google search
Yamano T., Zetsche B., Ishitani R., Zhang F., Nishimasu H., Nureki O. (2017) Structural basis for the canonical and non-canonical PAM recognition by CRISPR-Cpf1. Mol. Cell, 67(4), 633-645.e3. CrossRef Scholar google search
Zhang J., Li Z., Guo C., Guan X., Avery L., Banach D., Liu C. (2024) Intrinsic RNA targeting triggers indiscriminate DNase activity of CRISPR-Cas12a. Angewandte Chemie International Edition, 63(20), e202403123. CrossRef Scholar google search
Makarova K.S., Wolf Y.I., Iranzo J., Shmakov S.A., Alkhnbashi O.S., Brouns S.J.J., Charpentier E., Cheng D., Haft D.H., Horvath P., Moineau S., Mojica F.J.M., Scott D., Shah S.A., Siksnys V., Terns M.P., Venclovas Č., White M.F., Yakunin A.F., Yan W., Zhang F., Garrett R.A., Backofen R., van der Oost J., Barrangou R., Koonin E.V. (2020) Evolutionary classification of CRISPR-Cas systems: A burst of class 2 and derived variants. Nat. Rev. Microbiol., 18(2), 67–83. CrossRef Scholar google search
Karvelis T., Bigelyte G., Young J.K., Hou Z., Zedaveinyte R., Budre K., Paulraj S., Djukanovic V., Gasior S., Silanskas A., Venclovas Č., Siksnys V. (2020) PAM recognition by miniature CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage. Nucleic Acids Res., 48(9), 5016–5023. CrossRef Scholar google search
Takeda S.N., Nakagawa R., Okazaki S., Hirano H., Kobayashi K., Kusakizako T., Nishizawa T., Yamashita K., Nishimasu H., Nureki O. (2021) Structure of the miniature type V-F CRISPR-Cas effector enzyme. Mol. Cell, 81(3), 558-570.e3. CrossRef Scholar google search
Yang H., Patel D.J. (2024) Structures, mechanisms and applications of RNA-centric CRISPR-Cas13. Nat. Chem. Biol., 20(6), 673–688. CrossRef Scholar google search
He L., St. John James M., Radovcic M., Ivancic-Bace I., Bolt E.L. (2020) Cas3 Protein — A review of a multi-tasking machine. Genes, 11(2), 208. CrossRef Scholar google search
Notomi T. (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res., 28(12), E63. CrossRef Scholar google search
Nagamine K., Hase T., Notomi T. (2002) Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes., 16(3), 223–229. CrossRef Scholar google search
Piepenburg O., Williams C.H., Stemple D.L., Armes N.A. (2006) DNA detection using recombination proteins. PLoS Biol., 4(7), e204. CrossRef Scholar google search
Walker G.T., Little M.C., Nadeau J.G., Shank D.D. (1992) Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc. Natl.Acad. Sci. USA, 89(1), 392–396. CrossRef Scholar google search
van Ness J., van Ness L.K., Galas D.J. (2003) Isothermal reactions for the amplification of oligonucleotides. Proc. Natl. Acad. Sci. USA, 100(8), 4504–4509. CrossRef Scholar google search
Mohsen M.G., Kool E.T. (2016) The discovery of rolling circle amplification and rolling circle transcription. Acc. Chem. Res., 49(11), 2540–2550. CrossRef Scholar google search
Pardee K., Green A.A., Takahashi M.K., Braff D., Lambert G., Lee J.W., Ferrante T., Ma D., Donghia N., Fan M., Daringer N.M., Bosch I., Dudley D.M., O’Connor D.H., Gehrke L., Collins J.J. (2016) Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell, 165(5), 1255–1266. CrossRef Scholar google search
Koksaldi I.C., Park D., Atilla A., Kang H., Kim J., Seker U.O.S. (2024) RNA-based sensor systems for affordable diagnostics in the age of pandemics. ACS Synth. Biol., 13(4), 1026–1037. CrossRef Scholar google search
Huang M., Zhou X., Wang H., Xing D. (2018) Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection. Anal. Chem., 90(3), 2193–2200. CrossRef Scholar google search
Zhou W., Hu L., Ying L., Zhao Z., Chu P.K., Yu X.-F. (2018) A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nat. Commun., 9(1), 5012. CrossRef Scholar google search
Mohd A., Phutela R., Kumar M., Ansari A.H., Rauthan R., Gulati S., Sharma N., Sinha D., Sharma S., Singh S., Acharya S., Sarkar S., Paul D., Kathpalia P., Aich M., Sehgal P., Ranjan G., Bhoyar R.C., Indian CoV2 Genomics and Genetic Epidemiology (IndiCovGEN) Consortium, Singhal K., Lad H., Patra P.K., Makharia G., Chandak G.R., Pesala B., Chakraborty D., Maiti S. (2021) Rapid and accurate nucleobase detection using FnCas9 and its application in COVID-19 diagnosis. Biosens. Bioelectron., 183, 113207. CrossRef Scholar google search
Курбатов Л.К., Птицын К.Г., Хмелева С.А., Радько С.П., Лисица А.В., Супрун В.Е. (2024) Рекомбиназная полимеразная и петлевая изотермическая амплификация в ДНК-диагностике инфекционных заболеваний. Журнал аналитической химии, 79(3), 210–228. CrossRef Scholar google search
Ai J.-W., Zhou X., Xu T., Yang M., Chen Y., He G.-Q., Pan N., Cai Y., Li Y., Wang X., Su H., Wang T., Zeng W., Zhang W.-H. (2019) CRISPR-based rapid and ultra-sensitive diagnostic test for Mycobacterium tuberculosis. Emerg. Microb. Infect., 8(1), 1361–1369. CrossRef Scholar google search
Wang B., Wang R., Wang D., Wu J., Li J., Wang J., Liu H., Wang Y. (2019) Cas12aVDet: A CRISPR/Cas12a-based platform for rapid and visual nucleic acid detection. Anal. Chem., 91(19), 12156–12161. CrossRef Scholar google search
Deng L., He X., Liu K., Li Y., Xia H., Qian H., Lu X., Mao X., Xiang Y. (2023) One-pot RPA-Cas12a assay for instant and visual detection of Burkholderia pseudomallei. Anal. Chim. Acta, 1252, 341059. CrossRef Scholar google search
Sy L., Sw O. (2022) Filtration-based LAMP-CRISPR/Cas12a system for the rapid, sensitive and visualized detection of Escherichia coli O157:H7. Talanta, 241, 123186. CrossRef Scholar google search
Hao J., Xie L., Yang T., Huo Z., Liu G., Liu Y., Xiong W., Zeng Z. (2023) Naked-eye on-site detection platform for Pasteurella multocida based on the CRISPR-Cas12a ystem coupled with recombinase polymerase amplification. Talanta, 255, 124220. CrossRef Scholar google search
Mukama O., Wu J., Li Z., Liang Q., Yi Z., Lu X., Liu Y., Liu Y., Hussain M., Makafe G.G., Liu J., Xu N., Zeng L. (2020) An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids. Biosens. Bioelectron., 159, 112143. CrossRef Scholar google search
Tang Y., Qi L., Liu Y., Guo L., Zhao R., Yang M., Du Y., Li B. (2022) CLIPON: A CRISPR-enabled strategy that turns commercial pregnancy test strips into general point-of-need test devices. Angewandte Chemie International Edition, 61(12), e202115907. CrossRef Scholar google search
Liu D., Zheng Y., Yang Y., Xu X., Kang H., Jiang Q., Yang M., Qu L., Liu J. (2022) Establishment and application of ERA-LFD method for rapid detection of feline calicivirus. Appl. Microbiol. Biotechnol., 106(4), 1651–1661. CrossRef Scholar google search
Sun Y., Yu L., Liu C., Ye S., Chen W., Li D., Huang W. (2021) One-tube SARS-CoV-2 detection platform based on RT-RPA and CRISPR/Cas12a. J. Transl. Med., 19(1), 74. CrossRef Scholar google search
Jiao J., Liu Y., Yang M., Zheng J., Liu C., Ye W., Song S., Bai T., Song C., Wang M., Shi J., Wan R., Zhang K., Hao P., Feng J., Zheng X. (2023) The engineered CRISPR-Mb2Cas12a variant enables sensitive and fast nucleic acid-based pathogens diagnostics in the field. Plant Biotechnol. J., 21(7), 1465–1478. CrossRef Scholar google search
Shao F., Park J.S., Zhao G., Hsieh K., Wang T.-H. (2023) Elucidating the role of CRISPR/Cas in single-step isothermal nucleic acid amplification testing assays. Anal. Chem., 95(7), 3873–3882. CrossRef Scholar google search
Lin M., Yue H., Tian T., Xiong E., Zhu D., Jiang Y., Zhou X. (2022) Glycerol additive boosts 100-fold sensitivity enhancement for one-pot RPA-CRISPR/Cas12a assay. Anal. Chem., 94(23), 8277–8284. CrossRef Scholar google search
Lin K., Guo J., Guo X., Li Q., Li X., Sun Z., Zhao Z., Weng J., Wu J., Zhang R., Li B. (2023) Fast and visual detection of nucleic acids using a one-step RPA-CRISPR detection (ORCD) system unrestricted by the PAM. Anal. Chim. Acta, 1248, 340938. CrossRef Scholar google search
Jiang T., Hu X., Lin C., Xia Z., Yang W., Zhu Y., Xu H., Tang H., Shen J. (2023) Rapid visualization of Clostridioides difficile toxins A and B by multiplex RPA combined with CRISPR-Cas12a. Front. Microbiol., 14, 1119395. CrossRef Scholar google search
Qing M., Chen S.L., Sun Z., Fan Y., Luo H.Q., Li N.B. (2021) Universal and programmable rolling circle amplification-CRISPR/Cas12a-mediated immobilization-free electrochemical biosensor. Anal. Chem., 93(20), 7499–7507. CrossRef Scholar google search
Li L., Li S., Wu N., Wu J., Wang G., Zhao G., Wang J. (2019) HOLMESv2: A CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth. Biol., 8(10), 2228–2237. CrossRef Scholar google search
Nguyen L.T., Macaluso N.C., Pizzano B.L.M., Cash M.N., Spacek J., Karasek J., Miller M.R., Lednicky J.A., Dinglasan R.R., Salemi M., Jain P.K. (2022) A thermostable Cas12b from Brevibacillus leverages one-pot discrimination of SARS-CoV-2 variants of concern. EBioMedicine, 77, 103926. CrossRef Scholar google search
Nguyen L.T., Rananaware S.R., Yang L.G., Macaluso N.C., Ocana-Ortiz J.E., Meister K.S., Pizzano B.L.M., Sandoval L.S.W., Hautamaki R.C., Fang Z.R., Joseph S.M., Shoemaker G.M., Carman D.R., Chang L., Rakestraw N.R., Zachary J.F., Guerra S., Perez A., Jain P.K. (2023) Engineering highly thermostable Cas12b via de novo structural analyses for one-pot detection of nucleic acids. Cell Rep. Med., 4(5), 101037. CrossRef Scholar google search
Xu H., Lin G., Chen R., Cai Z., Sun Y., Zhang X., Zhao B., Zeng Y., Liu J., Liu X. (2024) CRISPR/Cas12b assisted loop-mediated isothermal amplification for easy, rapid and sensitive quantification of chronic HBV DNA in one-pot. Anal. Chim. Acta, 1310, 342702. CrossRef Scholar google search
Chen Y., Zhang X., Hu G., Pan Y., Guan Y., Yang J., Chen H. (2024) A LAMP-CRISPR/Cas12b rapid detection platform for canine parvovirus detection. Anal. Methods, 16(32), 5519–5526. CrossRef Scholar google search
Chen X., Yuan W., Yang X., Shi Y., Zeng X., Huang J., Wang Y., Li S. (2023) Ultrasensitive and specific identification of monkeypox virus Congo Basin and West African strains using a CRISPR/Cas12b-based platform. Microbiol. Spectr., 11(2), e04035-22. CrossRef Scholar google search
Han X., Lu M., Zhang Y., Liu X., Zhang Q., Bai X., Man S., Zhao L., Ma L. (2024) A thermostable Cas12b-powered bioassay coupled with loop-mediated isothermal amplification in a customized “one-pot” vessel for visual, rapid, sensitive, and on-site detection of genetically modified crops. J. Agric. Food Chem., 72(19), 11195–11204. CrossRef Scholar google search
Teng F., Guo L., Cui T., Wang X.-G., Xu K., Gao Q., Zhou Q., Li W. (2019) CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biol., 20(1), 132. CrossRef Scholar google search
Aquino-Jarquin G. (2019) CRISPR-Cas14 is now part of the artillery for gene editing and molecular diagnostic. Nanomedicine, 18, 428–431. CrossRef Scholar google search
He J., Hu X., Weng X., Wang H., Yu J., Jiang T., Zou L., Zhou X., Lyu Z., Liu J., Zhou P., Xiao X., Zhen D., Deng Z. (2024) Efficient, specific and direct detection of double-stranded DNA targets using Cas12f1 nucleases and engineered guide RNAs. Biosens. Bioelectron., 260, 116428. CrossRef Scholar google search
Yoshimi K., Takeshita K., Yamayoshi S., Shibumura S., Yamauchi Y., Yamamoto M., Yotsuyanagi H., Kawaoka Y., Mashimo T. (2022) CRISPR-Cas3-based diagnostics for SARS-CoV-2 and influenza virus. iScience, 25(2), 103830. CrossRef Scholar google search
Gootenberg J.S., Abudayyeh O.O., Kellner M.J., Joung J., Collins J.J., Zhang F. (2018) Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science, 360(6387), 439–444. CrossRef Scholar google search
Wang H., Cheng Z., Luo R., Yang Q., Zeng Y., Yang Y., Chen Y., Li W., Liu X. (2024) RPA-CRISPR-Cas13a-assisted detection method of transmissible gastroenteritis virus. Front. Vet. Sci., 11, 1428591. CrossRef Scholar google search
Hou Y., Liu X., Wang Y., Guo L., Wu L., Xia W., Zhao Y., Xing W., Chen J., Chen C. (2024) Establishment and application of a rapid visualization method for detecting Vibrio parahaemolyticus nucleic acid. Infectious Medicine, 3(2), 100111. CrossRef Scholar google search
Chen S.-S., Yang Y.-L., Wang H.-Y., Guo T.-K., Azeem R.-M., Shi C.-W., Yang G.-L., Huang H.-B., Jiang Y.-L., Wang J.-Z., Cao X., Wang N., Zeng Y., Yang W.-T., Wang C.-F. (2024) CRISPR/Cas13a-based genome editing for establishing the detection method of H9N2 subtype avian influenza virus. Poultry Science, 103(10), 104068. CrossRef Scholar google search
Jung J.K., Dreyer K.S., Dray K.E., Muldoon J.J., George J., Shirman S., Cabezas M.D., d’Aquino A.E., Verosloff M.S., Seki K., Rybnicky G.A., Alam K.K., Bagheri N., Jewett M.C., Leonard J.N., Mangan N.M., Lucks J.B. (2024) Developing, characterizing and modeling CRISPR-based point-of-use pathogen diagnostics. bioRxiv [Preprint], 2024.07.03.601853. CrossRef Scholar google search
López-Valls M., Escalona-Noguero C., Rodríguez-Díaz C., Pardo D., Castellanos M., Milán-Rois P., Martínez-Garay C., Coloma R., Abreu M., Cantón R., Galán J.C., Miranda R., Somoza Á., Sot B. (2022) CASCADE: Naked eye-detection of SARS-CoV-2 using Cas13a and gold nanoparticles. Anal. Chim. Acta, 1205, 339749. CrossRef Scholar google search
Wang Y., Xue T., Wang M., Ledesma-Amaro R., Lu Y., Hu X., Zhang T., Yang M., Li Y., Xiang J., Deng R., Ying B., Li W. (2022) CRISPR-Cas13a cascade-based viral RNA assay for detecting SARS-CoV-2 and its mutations in clinical samples. Sens. Actuators B Chem., 362, 131765. CrossRef Scholar google search
Filonov G.S., Moon J.D., Svensen N., Jaffrey S.R. (2014) Broccoli: Rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J. Am. Chem. Soc., 136(46), 16299–16308. CrossRef Scholar google search