Поиск малоинвазивных способов диагностики колоректального рака (КРР) является важнейшей задачей для выявления заболевания на ранней стадии и последующего успешного лечения. Плазма крови человека представляет основной тип биологического материала, используемого в клинике, однако сложный динамический диапазон циркулирующих в ней веществ затрудняет определение белков-маркеров КРР масс-спектрометрическим (МС) методом. Исследование протеома внеклеточных везикул (ВнВ), выделенных из плазмы крови человека, представляет собой привлекательный подход для обнаружения секретируемых тканями маркеров КРР. Мы провели панорамный масс-спектрометрический анализ образцов ВнВ, полученных из плазмы крови пациентов с КРР и здоровых добровольцев. В результате было идентифицировано 370 белков, зарегистрированных, как минимум, по двум пептидам. Относительный количественный анализ без использования стабильных изотопных меток позволил определить 55 белков, содержание которых различалось в образцах ВнВ, полученных из крови больных КРР, по сравнению со здоровым контролем. Среди белков ВнВ, выделенных из плазмы крови, оказались компоненты, вовлечённые в клеточную адгезию и сигнальный путь VEGFA–VEGFR2 (TLN1, HSPA8, VCL, MYH9 и другие), а также белки, экспрессирующиеся преимущественно тканями ЖКТ (полимерный рецептор иммуноглобулина, PIGR). Полученные с помощью панорамного протеомного профилирования данные позволят дополнить панель для направленного МС анализа ассоциированных с ВнВ белковых маркеров, разработанную ранее с использованием клеточных моделей КРР.
Загрузить PDF:
Ключевые слова: внеклеточные везикулы, плазма крови человека, панорамный масс-спектрометрический анализ, колоректальный рак
Дополнительные материалы:
Цитирование:
Соловьева Н.А., Новикова С.Е., Фарафонова Т.Е., Тихонова О.В., Згода В.Г., Арчаков А.И. (2024) Протеом внеклеточных везикул плазмы крови как источник биомаркеров колоректального рака. Биомедицинская химия, 70(5), 356-363.
Соловьева Н.А. и др. Протеом внеклеточных везикул плазмы крови как источник биомаркеров колоректального рака // Биомедицинская химия. - 2024. - Т. 70. -N 5. - С. 356-363.
Соловьева Н.А. и др., "Протеом внеклеточных везикул плазмы крови как источник биомаркеров колоректального рака." Биомедицинская химия 70.5 (2024): 356-363.
Соловьева, Н. А., Новикова, С. Е., Фарафонова, Т. Е., Тихонова, О. В., Згода, В. Г., Арчаков, А. И. (2024). Протеом внеклеточных везикул плазмы крови как источник биомаркеров колоректального рака. Биомедицинская химия, 70(5), 356-363.
Список литературы
World Health Organisation. Cancer statistic Retrieved May 15, 2024, from: https://www.who.int/ru/news-room/ fact-sheets/detail/colorectal-cancer. Scholar google search
Hauptman N., Glavač D. (2017) Colorectal cancer blood-based biomarkers. Gastroenterol. Res. Pract., 2017, 2195361. CrossRef Scholar google search
Meklin J., Syrjänen K., Eskelinen M. (2020) Colorectal cancer screening with traditional and new-generation fecal immunochemical tests: A critical review of fecal occult blood tests. Anticancer Res., 40(2), 575–581. CrossRef Scholar google search
Morarasu S., Haroon M., Morarasu B.C., Lal K., Eguare E. (2019) Colon biopsies: Benefit or burden? J. Med. Life, 12(2), 156–159. CrossRef Scholar google search
Harlid S., Gunter M.J., van Guelpen B. (2021) Risk-predictive and diagnostic biomarkers for colorectal cancer; A systematic review of studies using pre-diagnostic blood samples collected in prospective cohorts and screening settings. Cancers (Basel), 13(17), 4406. CrossRef Scholar google search
Ponomarenko E.A., Poverennaya E.V., Ilgisonis E.V., Pyatnitskiy M.A., Kopylov A.T., Zgoda V.G., Lisitsa A.V., Archakov A.I. (2016) The size of the human proteome: The width and depth. Int. J. Anal. Chem., 2016, 7436849. CrossRef Scholar google search
Anderson N.L., Anderson N.G. (2002) The human plasma proteome: History, character, and diagnostic prospects. Mol. Cell. Proteomics, 1(11), 845–867. CrossRef Scholar google search
Tu C., Rudnick P.A., Martinez M.Y., Cheek K.L., Stein S.E., Slebos R.J.C., Liebler D.C. (2010) Depletion of abundant plasma proteins and limitations of plasma proteomics. J. Proteome Res., 9(10), 4982–4991. CrossRef Scholar google search
Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics, 13(9), 2513–2526. CrossRef Scholar google search
Lachmann A., Torre D., Keenan A.B., Jagodnik K.M., Lee H.J., Wang L., Silverstein M.C., Ma'ayan A. (2018) Massive mining of publicly available RNA-seq data from human and mouse. Nat. Commun., 9(1), 1366. CrossRef Scholar google search
Palasca O., Santos A., Stolte C., Gorodkin J., Jensen L.J. (2018) TISSUES 2.0: An integrative web resource on mammalian tissue expression. Database (Oxford), 2018, bay028. CrossRef Scholar google search
Sherman B.T., Hao M., Qiu J., Jiao X., Baseler M.W., Lane H.C., Imamichi T., Chang W. (2022) DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res., 50(W1), W216-W221. CrossRef Scholar google search
Uhlén M., Fagerberg L., Hallström B.M., Lindskog C., Oksvold P., Mardinoglu A., Sivertsson Å., Kampf C., Sjöstedt E., Asplund A., Olsson I., Edlund K., Lundberg E., Navani S., Szigyarto C.A.-K., Odeberg J., Djureinovic D., Takanen J.O., Hober S., Alm T., Edqvist P.-H., Berling H., Tegel H., Mulder J., Rockberg J., Nilsson P., Schwenk J.M., Hamsten M., von Feilitzen K., Forsberg M., Persson L., Johansson F., Zwahlen M., von Heijne G., Nielsen J., Pontén F. (2015) Proteomics. Tissue-based map of the human proteome. Science, 347(6220), 1260419. CrossRef Scholar google search
Szklarczyk D., Kirsch R., Koutrouli M., Nastou K., Mehryary F., Hachilif R., Gable A.L., Fang T., Doncheva N.T., Pyysalo S., Bork P., Jensen L.J., von Mering C. (2023) The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res., 51(D1), D638–D646. CrossRef Scholar google search
Dakowicz D., Zajkowska M., Mroczko B. (2022) Relationship between VEGF family members, their receptors and cell death in the neoplastic transformation of colorectal cancer. Int. J. Mol. Sci., 23(6), 3375. CrossRef Scholar google search
Terme M., Tartour E., Taieb J. (2013) VEGFA/VEGFR2- targeted therapies prevent the VEGFA-induced proliferation of regulatory T cells in cancer. Oncoimmunology, 2(8), e25156. CrossRef Scholar google search
Liu Q., Cheng C., Huang J., Yan W., Wen Y., Liu Z., Zhou B., Guo S., Fang W. (2024) MYH9: A key protein involved in tumor progression and virus-related diseases. Biomed. Pharmacother., 171, 116118. CrossRef Scholar google search
Zhong Y., Long T., Gu C.-S., Tang J.-Y., Gao L.-F., Zhu J.-X., Hu Z.-Y., Wang X., Ma Y.-D., Ding Y.-Q., Li Z.-G., Wang X.-Y. (2021) MYH9-dependent polarization of ATG9B promotes colorectal cancer metastasis by accelerating focal adhesion assembly. Cell Death Differ., 28(12), 3251–3269. CrossRef Scholar google search
Soloveva N., Novikova S., Farafonova T., Tikhonova O., Zgoda V. (2023) Proteomic signature of extracellular vesicles associated with colorectal cancer. Molecules, 28(10), 4227. CrossRef Scholar google search
Vafaei S., Zanjani L.S., Shams Z.H., Naseri M. (2020) Low expression of Talin1 is associated with advanced pathological features in colorectal cancer patients. Sci. Rep., 10(1), 17786. CrossRef Scholar google search
Liu Y-Y., He X.-B. (2021) High expression of HSPA8 is a favorable prognostic factor in colon cancer. Res. Sq., DOI: 10.21203/rs.3.rs-1059713/v1. CrossRef Scholar google search
Li B., Ming H., Qin S., Zhou L., Huang Z., Jin P., Peng L., Luo M., Zhang T., Wang K., Liu R., Liou Y.-C., Nice E.C., Jiang J., Huang C. (2024) HSPA8 activates Wnt/β-catenin signaling to facilitate BRAF V600E colorectal cancer progression by CMA-mediated CAV1 degradation. Adv. Sci., 11(3), e2306535. CrossRef Scholar google search
Swain I.X., Kresak A.M. (2024) Proteins involved in focal cell adhesion and podosome formation are differentially expressed during colorectal tumorigenesis in AOM-treated rats. Cancers (Basel), 16(9), 1678. CrossRef Scholar google search
Zhang H., Yang W., Yan J., Zhou K., Wan B., Shi P., Chen Y., He S., Li D. (2018) Loss of profilin 2 contributes to enhanced epithelial-mesenchymal transition and metastasis of colorectal cancer. Int. J. Oncol., 53(3), 1118–1128. CrossRef Scholar google search
Liu Y., Hu Y., Deng L. (2022) The underlying roles of exosome-associated PIGR in fatty acid metabolism and immune signaling in colorectal cancer. J. Oncol., 2022, 4675683. CrossRef Scholar google search
Zhang D., Huang H., Zheng T., Zhang L., Cui B., Liu Y., Tan S., Zhao L., Tian T., Gao L., Fu Q., Cheng Z., Zhao Y. (2022) Corrigendum: Polymeric immunoglobulin receptor suppresses colorectal cancer through theAKT-FOXO3/4 axis by downregulating LAMB3 expression. Front. Oncol., 12, 1012871. CrossRef Scholar google search
Talaat I.M., Elemam N.M., Saber-Ayad M. (2022) Complement system: An immunotherapy target in colorectal cancer. Front. Immunol., 13, 810993. CrossRef Scholar google search
Zhu X.-L., Zhang L., Qi S.-X. (2024) Association of complement components with risk of colorectal cancer: A systematic review and meta-analysis. World J. Gastrointest. Oncol., 16(5), 2168–2180. CrossRef Scholar google search
Zhong B., Cheng B., Huang X., Xiao Q., Niu Z., Chen Y.-F., Yu Q., Wang W., Wu X.-J. (2021) Colorectal cancer-associated fibroblasts promote metastasis by up-regulating LRG1 through stromal IL-6/STAT3 signaling. Cell Death Dis., 13(1), 16. CrossRef Scholar google search