Ишемически-реперфузионное повреждение (ИРП) — совокупность процессов и событий, сопровождаемая нарушением кровоснабжения в ткани или органе с последующим восстановлением кровотока. Особо остро проблема ИРП стоит в хирургии и трансплантологии. Одна из стратегий снижения повреждения органов и тканей при трансплантации — регуляция внутриклеточных концентраций ионов. Поддержание концентрации ионов в клетке во время развития повреждения можно контролировать, воздействуя на потенциал-зависимые ионные каналы определёнными типами соединений. Мы предлагаем снижать ишемически-реперфузионное повреждение при помощи пептидных токсинов, тропных к кальциевым (омега-гексатоксин-Hv1a) и натриевым (мю-агатоксин-Aa1a) потенциал-зависимым ионным каналам. Токсины были получены с использованием твердофазного пептидного синтеза. Моделирование ИРП при действии токсинов проводили на культуре клеток эпителиального происхождения CHO-K1 при инкубации в условиях гипоксии и депривации питательных веществ с последующим восстановлением питательной среды. Уровень клеточной гибели, концентрации ионов кальция, натрия, калия и уровень pH фиксировали с использованием мультимодального планшетного ридера и флуоресцентных красителей. В итоге, оба токсина, несмотря на разный механизм действия, снижают развитие клеточной гибели CHO-K1 за счёт изменения концентраций ионов и поддержания уровня pH.
Юрова Е.В. и др. Пептидные токсины, нацеленные на ионные каналы, как цитопротекторные агенты при ишемически-реперфузионном повреждении эпителиальных клеток // Биомедицинская химия. - 2025. - Т. 71. -N 2. - С. 116-126.
Юрова Е.В. и др., "Пептидные токсины, нацеленные на ионные каналы, как цитопротекторные агенты при ишемически-реперфузионном повреждении эпителиальных клеток." Биомедицинская химия 71.2 (2025): 116-126.
Юрова, Е. В., Расторгуева, Е. В., Белобородов, Е. А., Сугак, Д. Е., Погодина, Е. С., Фомин, А. Н., Саенко, Ю. В. (2025). Пептидные токсины, нацеленные на ионные каналы, как цитопротекторные агенты при ишемически-реперфузионном повреждении эпителиальных клеток. Биомедицинская химия, 71(2), 116-126.
Список литературы
Teodoro J.S., da Silva R.T., Machado I.F., Panisello-Roselló A., Roselló-Catafau J., Rolo A.P., Palmeira C.M. (2022) Shaping of hepatic ischemia/reperfusion events: the crucial role of mitochondria. Cells, 11(4), 688. CrossRef Scholar google search
Dugbartey G.J. (2024) Cellular and molecular mechanisms of cell damage and cell death in ischemia-reperfusion injury in organ transplantation. Mol. Biol. Rep., 51(1), 473. CrossRef Scholar google search
Liu J., Man K. (2023) Mechanistic insight and clinical implications of ischemia/reperfusion injury post liver transplantation. Cell. Mol. Gastroenterol. Hepatol., 15(6), 1463–1474. CrossRef Scholar google search
Zhou M., Yu Y., Luo X., Wang J., Lan X., Liu P., Feng Y., Jian W. (2021) Myocardial ischemia-reperfusion injury: therapeutics from a mitochondria-centric perspective. Cardiology, 146(6), 781–792. CrossRef Scholar google search
Christie J.D., Kotloff R.M., Ahya V.N., Tino G., Pochettino A., Gaughan C., de Missie E., Kimmel S.E. (2005) The effect of primary graft dysfunction on survival after lung transplantation. Am. J. Respir. Crit. Care Med., 171(11), 1312–1316. CrossRef Scholar google search
Masior Ł., Grąt M. (2022) Primary nonfunction and early allograft dysfunction after liver transplantation. Digestive Diseases, 40(6), 766–776. CrossRef Scholar google search
Criner R.N., Clausen E., Cantu E. (2021) Primary graft dysfunction. Curr. Opin. Organ Transplant., 26(3), 321–327. CrossRef Scholar google search
Lasorsa F., Rutigliano M., Milella M., d'Amati A., Crocetto F., Pandolfo S.D., Barone B., Ferro M., Spilotros M., Battaglia M., Ditonno P., Lucarelli G. (2024) Ischemia-reperfusion injury in kidney transplantation: mechanisms and potential therapeutic targets. Int. J. Mol. Sci., 25(8), 4332. CrossRef Scholar google search
Nieuwenhuijs-Moeke G.J., Pischke S.E., Berger S.P., Sanders J.S.F., Pol R.A., Struys M.M.R.F., Ploeg R.J., Leuvenink H.G.D. (2020) Ischemia and reperfusion injury in kidney transplantation: relevant mechanisms in injury and repair. J. Clin. Med., 9(1), 253. CrossRef Scholar google search
Frank A., Bonney M., Bonney S., Weitzel L., Koeppen M., Eckle T. (2012) Myocardial ischemia reperfusion injury: from basic science to clinical bedside. Semin. Cardiothorac. Vasc. Anesth., 16(3), 123–132. CrossRef Scholar google search
Lin L., Wang X., Yu Z. (2016) Ischemia-reperfusion injury in the brain: mechanisms and potential therapeutic strategies. Biochem. Pharmacol. (Los Angeles), 5(4), 213. CrossRef Scholar google search
Piskorowski R., Haeberle H., Panditrao M.V., Lumpkin E.A. (2008) Voltage-activated ion channels and Ca(2+)-induced Ca(2+) release shape Ca(2+) signaling in Merkel cells. Pflugers Arch., 457(1), 197–209. CrossRef Scholar google search
Sontheimer H. (2008) An unexpected role for ion channels in brain tumor metastasis. Exp. Biol. Med. (Maywood), 233(7), 779–791. CrossRef Scholar google search
Stokes L., Gordon J., Grafton G. (2004) Non-voltage-gated L-type Ca2+ channels in human T cells: pharmacology and molecular characterization of the major alpha pore-forming and auxiliary beta-subunits. J. Biol. Chem., 279(19), 19566–19573. CrossRef Scholar google search
Badou A., Jha M.K., Matza D., Flavell R.A. (2013) Emerging roles of L-type voltage-gated and other calcium channels in T lymphocytes. Front. Immunol., 4, 243. CrossRef Scholar google search
Iurova E., Rastorgueva E., Beloborodov E., Pogodina E., Fomin A., Sugak D., Viktorov D., Tumozov I., Saenko Y. (2023) Protective effect of peptide calcium channel blocker omega-hexatoxin-Hv1a on epithelial cell during ischemia-reperfusion injury. Pharmaceuticals, 16(9), 1314. CrossRef Scholar google search
Amblard M., Fehrentz J.A., Martinez J., Subra G. (2006) Methods and protocols of modern solid phase peptide synthesis. Mol. Biotechnol., 33(3), 239–254. CrossRef Scholar google search
Moore S.J., Leung C.L., Norton H.K, Cochran J.R. (2013) Engineering agatoxin, a cystine-knot peptide from spider venom, as a molecular probe for in vivo tumor imaging. PLOS One, 8(4), e60498. CrossRef Scholar google search
Wenger R.H., Kurtcuoglu V., Scholz C.C., Marti H.H., Hoogewijs D. (2015) Frequently asked questions in hypoxia research. Hypoxia (Auckland), 3, 35–43. CrossRef Scholar google search
Gallardo Bolaños J.M., Miró Morán Á., Balao da Silva C.M., Morillo Rodríguez A., Plaza Dávila M., Aparicio I.M., Tapia J.A., Ortega Ferrusola C., Peña F.J. (2012) Autophagy and apoptosis have a role in the survival or death of stallion spermatozoa during conservation in refrigeration. PLOS One, 7(1), e30688. CrossRef Scholar google search
Fonteriz R.I., de la Fuente S., Moreno A., Lobatón C.D., Montero M., Alvarez J. (2010) Monitoring mitochondrial [Ca(2+)] dynamics with rhod-2, ratiometric pericam and aequorin. Cell Calcium, 48(1), 61–69. CrossRef Scholar google search
Tay B., Stewart T.A., Davis F.M., Deuis J.R., Vetter I. (2019) Development of a high-throughput fluorescent no-wash sodium influx assay. PLOS One, 14(3), e0213751. CrossRef Scholar google search
Camilli G., Bohm M., Piffer A.C., Lavenir R., Williams D.L., Neven B., Grateau G., Georgin-Lavialle S., Quintin J. (2020) β-Glucan-induced reprogramming of human macrophages inhibits NLRP3 inflammasome activation in cryopyrinopathies. J. Clin. Invest., 130(9), 4561–4573. CrossRef Scholar google search
Alvarez-Leefmans F.J., Herrera-Perez J.J., Marquez M.S., Blanco V.M. (2006) Simultaneous measurement of water volume and pH in single cells using BCECF and fluorescence imaging microscopy. Biophys. J., 90(2), 608–618. CrossRef Scholar google search
Ke N., Wang X., Xu X., Abassi Y.A. (2011) The xCELLigence system for real-time and label-free monitoring of cell viability. Methods Mol. Biol., 740, 33–43. CrossRef Scholar google search
Idziorek T., Estaquier J., de Bels F., Ameisen J.C. (1995) YOPRO-1 permits cytofluorometric analysis of programmed cell death (apoptosis) without interfering with cell viability. J. Immunol. Methods, 185(2), 249–258. CrossRef Scholar google search
Rieger A.M., Hall B.E., Luong L.T., Schang L.M., Barreda D.R. (2010) Conventional apoptosis assays using propidium iodide generate a significant number of false positives that prevent accurate assessment of cell death, J. Immunol. Methods, 358(1–2), 81–92. CrossRef Scholar google search
White B.C., Sullivan J.M., de Gracia D.J., O'Neil B.J., Neumar R.W., Grossman L.I., Rafols J.A., Krause G.S. (2000) Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J. Neurol. Sci., 179(S1–2), 1–33. CrossRef Scholar google search
Rush A.M., Cummins T.R., Waxman S.G. (2007) Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J. Physiol., 579(Pt 1), 1–14. CrossRef Scholar google search
Catterall W.A. (2012) Voltage-gated sodium channels at 60: structure, function and pathophysiology. J. Physiol., 590(11), 2577–2589. CrossRef Scholar google search
Kushner J., Ferrer X., Marx S.O. (2019) Roles and regulation of voltage-gated calcium channels in arrhythmias. J. Innov. Card. Rhythm Manag., 10(10), 3874–3880. CrossRef Scholar google search
Jagannathan S., Publicover S.J., Barratt C.L. (2002). Voltage-operated calcium channels in male germ cells. Reproduction, 123(2), 203–215. CrossRef Scholar google search
Pappalardo L.W., Samad O.A., Black J.A., Waxman S.G. (2014) Voltage-gated sodium channel Nav1.5 contributes to astrogliosis in an in vitro model of glial injury via reverse Na+/Ca2+ exchange, Glia, 62(7), 1162–1175. CrossRef Scholar google search
Chatelier A., Mercier A., Tremblier B., Thériault O., Moubarak M., Benamer N., Corbi P., Bois P., Chahine M., Faivre J.F. (2012) A distinct de novo expression of Nav1.5 sodium channels in human atrial fibroblasts differentiated into myofibroblasts. J. Physiol., 590(17), 4307–4319. CrossRef Scholar google search
Bringmann A., Wiedemann P. (2012) Muller glial cells in retinal disease. Ophthalmologica, 227(1), 1–19. CrossRef Scholar google search
Carrithers M.D., Dib-Hajj S., Carrithers L.M., Tokmoulina G., Pypaert M., Jonas E.A., Waxman S.G. (2007) Expression of the voltage-gated sodium channel Nav1.5 in the macrophage late endosome regulates endosomal acidification. J. Immunol., 178(12), 7822–7832. CrossRef Scholar google search
Leclerc C., Néant I., Webb S.E., Miller A.L., Moreau M. (2006) Calcium transients and calcium signalling during early neurogenesis in the amphibian embryo Xenopus laevis. Biochim. Biophys. Acta, 1763(11), 1184–1191. CrossRef Scholar google search
Moreau M., Néant I., Webb S.E., Miller A.L., Riou J.F., Leclerc C. (2016) Ca(2+) coding and decoding strategies for the specification of neural and renal precursor cells during development. Cell Calcium, 59(2–3), 75–83. CrossRef Scholar google search
Pelletier L., Savignac M. (2018) Involvement of ion channels in allergy. Curr. Opin. Immunol., 52, 60–67. CrossRef Scholar google search
Strauss O., Mergler S., Wiederholt M. (1997) Regulation of L-type calcium channels by protein tyrosine kinase and protein kinase C in cultured rat and human retinal pigment epithelial cells. FASEB J., 11(11), 859–867. CrossRef Scholar google search
Prevarskaya N., Ouadid-Ahidouch H., Skryma R., Shuba Y. (2014) Remodelling of Ca2+ transport in cancer: how it contributes to cancer hallmarks? Philos. Trans. R. Soc. Lond. B. Biol. Sci., 369(1638), 20130097. CrossRef Scholar google search
Verhiel S., Piatkowski de Grzymala A., van der Hulst R. (2015) Mechanism of action, efficacy, and adverse events of calcium antagonists in hypertrophic scars and keloids: a systematic review. Dermatol. Surg., 41(12), 1343–1350. CrossRef Scholar google search
Guauque-Olarte S., Messika-Zeitoun D., Droit A., Lamontagne M., Tremblay-Marchand J., Lavoie-Charland E., Gaudreault N., Arsenault B.J., Dubé M.P., Tardif J.C., Body S.C., Seidman J.G., Boileau C., Mathieu P., Pibarot P., Bossé Y. (2015) Calcium signaling pathway genes RUNX2 and CACNA1C are associated with calcific aortic valve disease. Circ. Cardiovasc. Genet., 8(6), 812–822. CrossRef Scholar google search
Eefting F., Rensing B., Wigman J., Pannekoek W.J., Liu W.M., Cramer M.J., Lips D.J., Doevendans P.A. (2004) Role of apoptosis in reperfusion injury. Cardiovasc. Res., 61(3), 414–426. CrossRef Scholar google search
McCully J.D., Wakiyama H., Hsieh Y.-J., Jones M., Levitsky S. (2004) Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury. Am. J. Physiol. Heart. Circ. Physiol., 286(5), H1923–H1935. CrossRef Scholar google search
Schäfer C., Ladilov Y., Inserte J., Schäfer M., Haffner S., Garcia-Dorado D., Piper H.M. (2001) Role of the reverse mode of the Na+/Ca2+ exchanger in reoxygenation-induced cardiomyocyte injury. Cardiovasc. Res., 51(2), 241–250. CrossRef Scholar google search
Sanada S., Komuro I., Kitakaze M. (2011) Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am. J. Physiol. Heart Circ. Physiol., 301(5), H1723–H1741. CrossRef Scholar google search
Toronyi E., Hamar J., Perner F., Szende B. (1999) Prevention of apoptosis reperfusion renal injury by calcium channel blockers. Exp. Toxicol. Pathol., 51(3), 209–212. CrossRef Scholar google search
Jia Z., Chen Q., Qin H. (2012) Ischemia-induced apoptosis of intestinal epithelial cells correlates with altered integrin distribution and disassembly of F-actin triggered by calcium overload. J. Biomed. Biotechnol., 2012, 617539. CrossRef Scholar google search
Jangholi E., Sharifi Z.N., Hoseinian M., Zarrindast M.-R., Rahimi H.R., Mowla A., Aryan H., Javidi M.A., Parsa Y., Ghaffarpasand F., Yadolla-Damavandi S., Arani H.Z., Shahi F., Movassaghi S. (2020) Verapamil inhibits mitochondria-induced reactive oxygen species and dependent apoptosis pathways in cerebral transient global ischemia/reperfusion. Oxid. Med. Cell. Longev., 2020, 1–12. CrossRef Scholar google search
Dusmez D., Cengiz B., Yumrutas O., Demir T., Oztuzcu S., Demiryurek S., Tutar E., Bayraktar R., Bulut A., Simsek H., Daglı S.N., Kılıc T., Bagcı C. (2014) Effect of verapamil and lidocaine on TRPM and NaV1.9 gene expressions in renal ischemia-reperfusion. Transplant. Proc., 46(1), 33–39. CrossRef Scholar google search
Kalia J., Milescu M., Salvatierra J., Wagner J., Klint J.K., King G.F., Olivera B.M., Bosmans F. (2015) From foe to friend: using animal toxins to investigate ion channel function. J. Mol. Biol., 427(1), 158–175. CrossRef Scholar google search
Tedford H.W., Gilles N., Ménez A., Doering C.J., Zamponi G.W., King G.F. (2004) Scanning mutagenesis of omega-atracotoxin-Hv1a reveals a spatially restricted epitope that confers selective activity against insect calcium channels. J. Biol. Chem., 279(42), 44133–44140. CrossRef Scholar google search
Lemasters J.J., Bond J.M., Chacon E., Harper I.S., Kaplan S.H., Ohata H., Trollinger D.R., Herman B., Cascio W.E. (1996) The pH paradox in ischemia-reperfusion injury to cardiac myocytes. EXS, 76, 99–114. CrossRef Scholar google search
Kamisli S., Basaran C., Batcioglu K., Oztanir M.N., Gul M., Satilmis B., Uyumlu A.B., Kayhan B., Genc M. (2019) Neuroprotective effects of the new Na channel blocker rs100642 in global ischemic brain injury. Arch. Med. Sci., 15(2), 467–474. CrossRef Scholar google search
Al-Mehdi A.B., Zhao G., Fisher A.B. (1998) ATP-independent membrane depolarization with ischemia in the oxygenventilated isolated rat lung. Am. J. Respir. Cell. Mol. Biol., 18(5), 653–661. Scholar google search