В клинических исследованиях пуринергический рецептор P2X3 рассматривается как молекулярная мишень для коррекции боли в спинальных сенсорных нейронах с использованием высокоселективных антагонистов на основе производных диаминопиримидина. В ЦНС P2X3 рецепторы участвуют в синаптической пластичности, лежащей в основе памяти и обучения. В настоящее время известны мощные и селективные аллостерические модуляторы рецепторов P2X3 и P2X2/3 — производные ряда диаминопиримидина. Среди них 5-(5-йод-2-изопропил-4-метоксифенокси)пиримидин-2,4-диамин (Ro-4 или AF-353), гефапиксант, которые имеют хороший фармакокинетический профиль и менее активны в отношении широкого спектра киназ, рецепторов и ионных каналов. Терапевтическое значение блокирования рецепторов P2X3 в нейронах ЦНС не изучалось, однако, судя по литературным данным, этот рецептор может стать новой мишенью при поиске противоэпилептических препаратов, а также препаратов, снижающих тревожность и стресс. Целью работы было изучить влияние антагониста Р2Х3 рецептора AF-353 (Ro-4) на биоэнергетический индекс здоровья (BHI) нейронов первичной смешанной культуры гиппокампа. В условиях блокады Р2Х3 рецептора в эмбриональной и постнатальных культурах нейронов гиппокампа мыши немитохондриальное дыхание увеличилось на 27,5% и 15,8% соответственно, потеря протонов — на 31,0% и 61,4%, а базальное дыхание снизилось на 89% и 39% по сравнению с контролем. Снижение BHI в постнатальной культуре составило 68% по сравнению с контролем. Полученные результаты указывают на влияние AF-353 на митохондриальное дыхание первичной смешанной культуры нейронов гиппокампа, что раскрывает потенциал Р2Х3 рецептора в качестве фармакологической мишени при гипоксических состояниях головного мозга.
Зеленцова А.С. и др. Блокатор Р2Х3 рецептора AF-353 (Ro-4) снижает биоэнергетический индекс первичной смешанной культуры нейронов гиппокампа // Биомедицинская химия. - 2025. - Т. 71. -N 2. - С. 137-145.
Зеленцова А.С. и др., "Блокатор Р2Х3 рецептора AF-353 (Ro-4) снижает биоэнергетический индекс первичной смешанной культуры нейронов гиппокампа." Биомедицинская химия 71.2 (2025): 137-145.
Зеленцова, А. С., Скоркина, М. Ю., Дейкин, А. В. (2025). Блокатор Р2Х3 рецептора AF-353 (Ro-4) снижает биоэнергетический индекс первичной смешанной культуры нейронов гиппокампа. Биомедицинская химия, 71(2), 137-145.
Список литературы
Burnstock G., Kennedy C. (1985) Is there a basis for distinguishing two types of P2-purinoceptor? Gen. Pharmacol., 16(5), 433–440. CrossRef Scholar google search
Köles L., Kató E., Hanuska A., Zádori Z.S., Al-Khrasani M., Zelles T., Rubini P., Illes P. (2016) Modulation of excitatory neurotransmission by neuronal/glial signalling molecules: interplay between purinergic and glutamatergic systems. Purinergic Signal., 12(1), 1–24. CrossRef Scholar google search
Brederson J.D., Jarvis M.F. (2008) Homomeric and heteromeric P2X3 receptors in peripheral sensory neurons. Curr. Opin. Investig. Drugs, 9(7), 716–725. Scholar google search
Burnstock G. (2017) Purinergic signalling: therapeutic developments. Front. Pharmacol., 8, 661. CrossRef Scholar google search
Burnstock G. (2015) Physiopathological roles of P2X receptors in the central nervous system. Curr. Med. Chem., 22(7), 819–844. CrossRef Scholar google search
Pedata F., Dettori I., Coppi E., Melani A., Fusco I., Corradetti R., Pugliese A.M. (2016) Purinergic signalling in brain ischemia. Neuropharmacology, 104, 105–130. CrossRef Scholar google search
Heine C., Heimrich B., Vogt J., Wegner A., Illes P., Franke H. (2006) P2 receptor-stimulation influences axonal outgrowth in the developing hippocampus in vitro. Neuroscience, 138(1), 303–311. CrossRef Scholar google search
Heine C. Sygnecka K. Franke H. (2016) Purines in neurite growth and astroglia activation. Neuropharmacology, 104, 255–271. CrossRef Scholar google search
Pankratov Y., Lalo U., Krishtal O.A., Verkhratsky A. (2009) P2X receptors and synaptic plasticity. Neuroscience, 158(1), 137–148. CrossRef Scholar google search
Séguéla P., Haghighi A., Soghomonian J.J., Cooper E. (1996) A novel neuronal P2x ATP receptor ion channel with widespread distribution in the brain. J. Neurosci., 16(2), 448–455. CrossRef Scholar google search
George J., Cunha R.A., Mulle C., Amédée T. (2016) Microglia-derived purines modulate mossy fiber synaptic transmission and plasticity through P2X4 and A1 receptors. Eur. J. Neurosci., 43(10), 1366–1378. CrossRef Scholar google search
Zhou X., Ma L.-M., Xiong Y., Huang H., Yuan J.-X., Li R.-H., Li J.-N., Chen Y.-M. (2016) Upregulated P2X3 receptor expression in patients with intractable temporal lobe epilepsy and in a rat model of epilepsy. Neurochem. Res., 41(6), 1263–1273. CrossRef Scholar google search
Wang Y., Mackes J., Chan S., Haughey N.J., Guo Z., Ouyang X., Furukawa K., Ingram D.K., Mattson M.P. (2006) Impaired long-term depression in P2X3 deficient mice is not associated with a spatial learning deficit. J. Neurochem., 99(5), 1425–1434. CrossRef Scholar google search
Carter D.S., Alam M., Cai H., Dillon M.P., Ford A.P.D.W., Gever J.R., Jahangir A., Lin C., Moore A.G., Wagner P.J., Zhai Y. (2009) Identification and SAR of novel diaminopyrimidines. Part 1: The discovery of RO-4, a dual P2X(3)/P2X(2/3) antagonist for the treatment of pain. Bioorg. Med. Chem. Lett., 19(6), 1628–1631. CrossRef Scholar google search
North R.A., Jarvis M.F. (2013) P2X receptors as drug targets. Mol. Pharmacol., 83(4), 759–769. CrossRef Scholar google search
Gever J.R., Soto R., Henningsen R.A., Martin R.S., Hackos D.H., Panicker S., Rubas W., Oglesby I.B., Dillon M.P., Milla M.E., Burnstock G., Ford A.P.D.W. (2010) AF-353, a novel, potent and orally bioavailable P2X3/P2X2/3 receptor antagonist. Br. J. Pharmacol., 160(6), 1387–1398. CrossRef Scholar google search
Ballini E., Virginio C., Medhurst S.J., Summerfield S.G., Aldegheri L., Buson A., Carignani C., Chen Y.H., Giacometti A., Lago I., Powell A.J., Jarolimek W. (2011) Characterization of three diaminopyrimidines as potent and selective antagonists of P2X3 and P2X2/3 receptors with in vivo efficacy in a pain model. Br. J. Pharmacol., 163(6), 1315–1325. CrossRef Scholar google search
Xia L.-P., Luo H., Ma Q., Xie Y.-K., Li W., Hu H., Xu Z.-Z. (2021) GPR151 in nociceptors modulates neuropathic pain via regulating P2X3 function and microglial activation. Brain, 144(11), 3405–3420. CrossRef Scholar google search
Зеленцова А.С., Борисова А.Ю., Шмигерова В.С., Скоркина М.Ю., Дейкин А.В. (2024) Митохондриальное дыхание первичной смешанной культуры нейронов гиппокампа на различных стадиях дифференцировки. Гены и клетки, 19(1), 201–210. CrossRef Scholar google search
Divakaruni A.S., Paradyse A., Ferrick D.A., Murphy A.N., Jastroch M. (2014) Analysis and interpretation of microplate-based oxygen consumption and pH data. Methods Enzymol., 547, 309–354. CrossRef Scholar google search
Zhang J., Yang H., Wu J., Zhang D., Wang Y., Zhai J. (2022) Recent progresses in novel in vitro models of primary neurons: a biomaterial perspective. Front. Bioeng. Biotechnol., 10, 953031. CrossRef Scholar google search
Florenzano F., Viscomi M.T., Mercaldo V., Longone P., Bernardi G., Bagni C., Molinari M., Carrive P. (2006) P2X2R purinergic receptor subunit mRNA and protein are expressed by all hypothalamic hypocretin/orexin neurons. J. Comp. Neurol., 498(1), 58–67. CrossRef Scholar google search
Chen C.C., Akopian A.N., Sivilotti L., Colquhoun D., Burnstock G., Wood J.N. (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature, 377(6548), 428–431. CrossRef Scholar google search
Lewis C., Neidhart S., Holy C., North R.A., Buell G., Surprenant A. (1995) Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature, 377(6548), 432–435. CrossRef Scholar google search
Rubio M.E., Soto F. (2001) Distinct localization of P2X receptors at excitatory postsynaptic specializations. J. Neurosci., 21(2), 641–653. CrossRef Scholar google search
Morán-Jiménez M.J., Matute C. (2000) Immunohistochemical localization of the P2Y(1) purinergic receptor in neurons and glial cells of the central nervous system. Brain Res. Mol. Brain Res., 78(1–2), 50–58. CrossRef Scholar google search
Communi D., Gonzalez N.S., Detheux M., Brézillon S., Lannoy V., Parmentier M., Boeynaems J.M. (2001) Identification of a novel human ADP receptor coupled to G(i). J. Biol. Chem., 276(44), 41479–41485. CrossRef Scholar google search
Laitinen J.T., Uri A., Raidaru G., Miettinen R. (2001) [(35)S]GTPgammaS autoradiography reveals a wide distribution of G(i/o)-linked ADP receptors in the nervous system: close similarities with the platelet P2Y(ADP) receptor. J. Neurochem., 77(2), 505–518. CrossRef Scholar google search
Rodrigues R.J., Almeida T., Díaz-Hernández M., Marques J.M., Franco R., Solsona C., Miras-Portugal M.T., Ciruela F., Cunha R.A. (2016) Presynaptic P2X1-3 and α3-containing nicotinic receptors assemble into functionally interacting ion channels in the rat hippocampus. Neuropharmacology, 105, 241–257. CrossRef Scholar google search
Lommen J., Detken J., Harr K., von Gall C., Ali A.A.H. (2021) Analysis of spatial and temporal distribution of purinergic P2 receptors in the mouse hippocampus. Int. J. Mol. Sci., 22(15), 8078. CrossRef Scholar google search
Cheung K.-K., Burnstock G. (2002) Localization of P2X3 receptors and coexpression with P2X2 receptors during rat embryonic neurogenesis. J. Comp. Neurol., 443(4), 368–382. CrossRef Scholar google search
Brewer G.J., Torricelli J.R. (2007) Isolation and culture of adult neurons and neurospheres. Nat. Protoc., 2(6), 1490–1498. CrossRef Scholar google search
Tomassoni-Ardori F., Hong Z., Fulgenzi G., Tessarollo L. (2020) Generation of functional mouse hippocampal neurons. Bio Protocols, 10(15), e3702. CrossRef Scholar google search
Brewer K.L., Yezierski R.P. (1998) Effects of adrenal medullary transplants on pain-related behaviors following excitotoxic spinal cord injury. Brain Res., 798(1–2), 83–92. CrossRef Scholar google search
Brewer L.D., Thibault O., Staton J., Thibault V., Rogers J.T., Garcia-Ramos G., Kraner S., Landfield P.W., Porter N.M. (2007) Increased vulnerability of hippocampal neurons with age in culture: temporal association with increases in NMDA receptor current, NR2A subunit expression and recruitment of L-type calcium channels. Brain Res., 1151, 20–31. CrossRef Scholar google search
Hill B.G., Benavides G.A., Lancaster J.R. Jr., Ballinger S., dell'Italia L., Jianhua Z., Darley-Usmar V.M. (2012) Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol. Chem., 393(12), 1485–1512. CrossRef Scholar google search
Dranka B.P., Hill B.G., Darley-Usmar V.M. (2010) Mitochondrial reserve capacity in endothelial cells: the impact of nitric oxide and reactive oxygen species. Free Radic. Biol. Med., 48(7), 905–914. CrossRef Scholar google search
Echtay K.S., Roussel D., St-Pierre J., Jekabsons M.B., Cadenas S., Stuart J.A., Harper J.A., Roebuck S.J., Morrison A., Pickering S., Clapham J.C., Brand M.D. (2002) Superoxide activates mitochondrial uncoupling proteins. Nature, 415(6867), 96–99. CrossRef Scholar google search
Brookes P.S. (2005) Mitochondrial H(+) leak and ROS generation: an odd couple. Free Radic. Biol. Med., 38(1), 12–23. CrossRef Scholar google search
Dranka B.P., Benavides G.A., Diers A.R., Giordano S., Zelickson B.R., Reily C., Zou L., Chatham J.C., Hill B.G., Zhang J., Landar A., Darley-Usmar V.M. (2011) Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radic. Biol. Med., 51(9), 1621–1635. CrossRef Scholar google search
Schneider L., Giordano S., Zelickson B.R., Johnson M.S., Benavides G.A., Ouyang X., Fineberg N., Darley-Usmar V.M., Zhang J. (2011) Differentiation of SH-SY5Y cells to a neuronal phenotype changes cellular bioenergetics and the response to oxidative stress. Free Radic. Biol. Med., 51(11), 2007–2017. CrossRef Scholar google search
Chacko B.K., Kramer P.A., Ravi S., Benavides G.A., Mitchell T., Dranka B.P., Ferrick D., Singal A.K., Ballinger S.W., Bailey S.M., Hardy R.W., Zhang J., Zhi D., Darley-Usmar V.M. (2014) The Bioenergetic Health Index: a new concept in mitochondrial translational research. Clin. Sci. (London), 127(6), 367–373. CrossRef Scholar google search
Liu Y., Shen X., Zhang Y., Zheng X., Cepeda C., Wang Y., Duan S., Tong X. (2023) Interactions of glial cells with neuronal synapses, from astrocytes to microglia and oligodendrocyte lineage cells. Glia, 71(6), 1383–1401. CrossRef Scholar google search
Cadenas S. (2018) Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim. Biophys. Acta Bioenerg., 1859(9), 940–950. CrossRef Scholar google search
Surin A.M., Khiroug S., Gorbacheva L.R., Khodorov B.I., Pinelis V.G., Khiroug L. (2013) Comparative analysis of cytosolic and mitochondrial ATP synthesis in embryonic and postnatal hippocampal neuronal cultures. Front. Mol. Neurosci., 5, 102. CrossRef Scholar google search
Zelentsova A.S., Shmigerova V.S., Stepenko Y.V., Skorkina M.Yu., Deikin A.V. (2024) Elastic properties of the cell surface and metabolic profile of an embryonic primary mixed culture of hippocampal neurons under conditions of P2X3 receptor blockade. J. Evol. Biochem. Phys., 60, 1846–1856. CrossRef Scholar google search
Rose J., Brian C., Pappa A., Panayiotidis M.I., Franco R. (2020) Mitochondrial metabolism in astrocytes regulates brain bioenergetics, neurotransmission and redox balance. Front. Neurosci., 14, 536682. CrossRef Scholar google search
Gong M., Ye S., Li W.X., Zhang J., Liu Y., Zhu J., Lv W., Zhang H., Wang J., Lu A., He K. (2020) Regulatory function of praja ring finger ubiquitin ligase 2 mediated by the P2rx3/P2rx7 axis in mouse hippocampal neuronal cells. Am. J. Physiol. Cell Physiol., 318(6), C1123–C1135. CrossRef Scholar google search