Проведён сравнительный анализ белков кератиноцитов НаСаТ в ответ на воздействие субтоксических доз (5 Дж/см² и 25 Дж/см²) ультрафиолетового излучения типа А (UVA). По двум и более уникальным пептидам было идентифицировано 930 белков. На долю белков, относительное содержание которых увеличивалось в кератиноцитах НаСаТ в ответ на облучение кумулятивной дозой 5 Дж/см² не менее, чем в 2 раза, пришлось более половины (54,5%) всех идентифицированных белков. Снижение относительного содержания отмечено всего для 4 белков. Облучение кератиноцитов кумулятивной дозой 25 Дж/см² привело к снижению доли белков (43,0%) с повышенным уровнем регуляции и увеличению количества белков (84) с пониженным уровнем регуляции. Среди белков, относительное содержание которых в кератиноцитах НаСаТ увеличивалось наиболее сильно, были белки, ассоциированные с процессом “клеточной подвижности” (GO: 0048870 — Cell motility), вовлечённые в процесс регуляции формы и размеров клеток, морфогенеза клеток и ремоделирования кожи.
Кисриева Ю.С., Саменкова Н.Ф., Болоченков Н.А., Русанов А.Л., Ромашин Д.Д., Соловьева Н.А., Карузина И.И., Лисица А.В., Петушкова Н.А. (2025) Изменение профиля белков клеточной подвижности в ответ на экспозицию UVA кератиноцитов HaCaT. Биомедицинская химия, 71(2), 146-157.
Кисриева Ю.С. и др. Изменение профиля белков клеточной подвижности в ответ на экспозицию UVA кератиноцитов HaCaT // Биомедицинская химия. - 2025. - Т. 71. -N 2. - С. 146-157.
Кисриева Ю.С. и др., "Изменение профиля белков клеточной подвижности в ответ на экспозицию UVA кератиноцитов HaCaT." Биомедицинская химия 71.2 (2025): 146-157.
Кисриева, Ю. С., Саменкова, Н. Ф., Болоченков, Н. А., Русанов, А. Л., Ромашин, Д. Д., Соловьева, Н. А., Карузина, И. И., Лисица, А. В., Петушкова, Н. А. (2025). Изменение профиля белков клеточной подвижности в ответ на экспозицию UVA кератиноцитов HaCaT. Биомедицинская химия, 71(2), 146-157.
Список литературы
Ramadan Q., Ting F.C. (2016) In vitro micro-physiological immune-competent model of the human skin. Lab. Chip, 16(10), 1899–1908. CrossRef Scholar google search
Muller H.K., Woods G.M. (2013) Ultraviolet radiation effects on the proteome of skin cells. Adv. Exp. Med. Biol., 990, 111–119. CrossRef Scholar google search
Adachi M., Gazel A., Pintucci G., Shuck A., Shifteh S., Ginsburg D., Rao L.S., Kaneko T., Freedberg I.M., Tamaki K., Blumenberg M. (2003) Specificity in stress response: epidermal keratinocytes exhibit specialized UV-responsive signal transduction pathways. DNA Cell Biol., 22(10), 665–677. CrossRef Scholar google search
York N.R., Jacobe H.T. (2010) UVA1 phototherapy: a review of mechanism and therapeutic application. Int. J. Dermatol., 49(6), 623-630. CrossRef Scholar google search
Barros N.M., Sbroglio L.L., Buffara M.O., Baka J.L.C.E.S., Pessoa A.S., Azulay-Abulafia L. (2021) Phototherapy. An. Bras. Dermatol., 96(4), 397–407. CrossRef Scholar google search
Valerio H.P., Ravagnani F.G., Yaya Candela A.P., Dias Carvalho da Costa B., Ronsein G.E., di Mascio P. (2022) Spatial proteomics reveals subcellular reorganization in human keratinocytes exposed to UVA light. iScience, 25(4), 104093. CrossRef Scholar google search
Marais T.L.D., Kluz T., Xu D., Zhang X., Gesumaria L., Matsui M.S., Costa M., Sun H. (2017) Transcription factors and stress response gene alterations in human keratinocytes following solar simulated ultra violet radiation. Sci. Rep., 7(1), 13622. CrossRef Scholar google search
Moreno N.C., de Souza T.A., Garcia C.C.M., Ruiz N.Q., Corradi C., Castro L.P., Munford V., Ienne S., Alexandrov L.B., Menck C.F.M. (2020) Whole-exome sequencing reveals the impact of UVA light mutagenesis in xeroderma pigmentosum variant human cells. Nucleic Acids Res., 48(4), 1941–1953. CrossRef Scholar google search
He Y.Y., Huang J.L., Sik R.H., Liu J., Waalkes M.P., Chignell C.F. (2004) Expression profiling of human keratinocyte response to ultraviolet A: implications in apoptosis. J. Invest. Dermatol., 122(2), 533–543. CrossRef Scholar google search
Edifizi D., Nolte H., Babu V., Castells-Roca L., Mueller M.M., Brodesser S., Krüger M., Schumacher B. (2017) Multilayered reprogramming in response to persistent DNA damage in C. elegans. Cell Rep., 20(9), 2026–2043. CrossRef Scholar google search
Elia A.E., Boardman A.P., Wang D.C., Huttlin E.L., Everley R.A., Dephoure N., Zhou C., Koren I., Gygi S.P., Elledge S.J. (2015) Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response. Mol. Cell, 59(5), 867–881. CrossRef Scholar google search
Zhou C., Elia A.E., Naylor M.L., Dephoure N., Ballif B.A., Goel G., Xu Q., Ng A., Chou D.M., Xavier R.J., Gygi S.P., Elledge S.J. (2016) Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks. Proc. Natl. Acad. Sci. USA, 113(26), 3667–3675. CrossRef Scholar google search
Thiery J.P., Acloque H., Huang R.Y.J., Nieto M.A. (2009) Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871–890. CrossRef Scholar google search
Victorelli S., Lagnado A., Halim J., Moore W., Talbot D., Barrett K., Chapman J., Birch J., Ogrodnik M., Meves A., Pawlikowski J.S., Jurk D., Adams P.D., van Heemst D., Beekman M., Slagboom P.E., Gunn D.A., Passos J.F. (2019) Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction. EMBO J., 38(23), e101982. CrossRef Scholar google search
Halliday G.M., Rana S. (2008) Waveband and dose dependency of sunlight-induced immunomodulation and cellular changes. Photochem. Photobiol., 84(1), 35–46. CrossRef Scholar google search
Копылов А.Т., Згода В.Г., Арчаков А.И. (2009) Количественный масс-спектрометрический анализ содержания белков в биологических пробах без использования изотопных меток. Биомедицинская химия, 55(2), 125–139. CrossRef Scholar google search
Кисриева Ю.С., Саменкова Н.Ф., Шкригунов Т.С., Ларина О.В., Русанов А.Л., Лузгина Н.Г., Казиева Л.Ш., Карузина И.И., Петушкова Н.А. (2023) Сравнительный анализ протеомного профиля кератиноцитов HaCaT с использованием 1DE-гель концентрирования. Biomedical Chemistry: Research and Methods, 6(2), e00180. CrossRef Scholar google search
Walker J.M. (1994) The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol. Biol., 32, 5–8. CrossRef Scholar google search
Mosmann T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65(1–2), 55–63. CrossRef Scholar google search
Shevchenko A., Tomas H., Havlis J., Olsen J.V., Mann M. (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc., 1(6), 2856–2860. CrossRef Scholar google search
Cox J., Neuhauser N., Michalski A., Scheltema R.A., Olsen J.V., Mann M. (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res., 10(4), 1794–1805. CrossRef Scholar google search
Cox J., Mann M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol., 26(12), 1367–1372. CrossRef Scholar google search
Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T., Harris M.A., Hill D.P., Issel-Tarver L., Kasarskis A., Lewis S., Matese J.C., Richardson J.E., Ringwald M., Rubin G.M., Sherlock G. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet., 25(1), 25–29. CrossRef Scholar google search
Mi H., Thomas P. (2009) PANTHER pathway: an ontologybased pathway database coupled with data analysis tools. Methods Mol. Biol., 563, 123–140. CrossRef Scholar google search
Fonseka P., Pathan M., Chitti S.V., Kang T., Mathivanan S. (2021) FunRich enables enrichment analysis of OMICs datasets. J. Mol. Biol., 433(11), 166747. CrossRef Scholar google search
Kisrieva Iu., Samenkova N., Bolochenkov N., Rusanov A., Romashin D., Solovyeva N., Karuzina I., Lisitsa A., Petushkova N. (2024) The effects of low-doses UVA irradiation on HaCaT keratinocytes, Mendeley Data, V1, DOI: 10.17632/hk66jsxzrr.1. Scholar google search
ГОСТ Р ИСО 10993-5-2009 (2010) Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 5. Исследования на цитотоксичность: методы in vitro. Scholar google search
Eden E., Navon R., Steinfeld I., Lipson D., Yakhini Z. (2009) GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics, 10, 48(2009). CrossRef Scholar google search
Dhabhar F.S. (2000) Acute stress enhances while chronic stress suppresses skin immunity. The role of stress hormones and leukocyte trafficking. Ann. NY Acad. Sci., 917, 876–893. CrossRef Scholar google search
Zhao Q., Chen Y., Qu L. (2023) Combined transcriptomic and proteomic analyses reveal the different responses to UVA and UVB radiation in human keratinocytes. Photochem. Photobiol., 99(1), 137–152. CrossRef Scholar google search
Szklarczyk D., Kirsch R., Koutrouli M., Nastou K., Mehryary F., Hachilif R., Gable A.L., Fang T., Doncheva N.T., Pyysalo S., Bork P., Jensen L.J., von Mering C. (2023) The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids. Res., 51(D1), D638–D646. CrossRef Scholar google search
Uhlén M., Fagerberg L., Hallström B.M., Lindskog C., Oksvold P., Mardinoglu A., Sivertsson Å., Kampf C., Sjöstedt E., Asplund A., Olsson I., Edlund K., Lundberg E., Navani S., Szigyarto C.A., Odeberg J., Djureinovic D., Takanen J.O., Hober S., Alm T., Edqvist P.H., Berling H., Tegel H., Mulder J., Rockberg J., Nilsson P., Schwenk J.M., Hamsten M., von Feilitzen K., Forsberg M., Persson L., Johansson F., Zwahlen M., von Heijne G., Nielsen J., Pontén F. (2015) Proteomics. Tissue-based map of the human proteome. Science, 347(6220), 6220. CrossRef Scholar google search
Sumi T., Matsumoto K., Nakamura T. (2001) Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J. Biol. Chem., 276(1), 670–676. CrossRef Scholar google search
Baudry M., Su W., Bi X. (2023) The Calpain Proteolytic System. In: Encyclopedia of Cell Biology (Bradshaw R.A., Hart G.W., Stahl P.D., eds.), Second Edition, Academic Press, pp. 852–864. CrossRef Scholar google search
Niculiţe C.M., Nechifor M.T., Urs A.O., Olariu L., Ceafalan L.C., Leabu M. (2018) Keratinocyte motility is affected by UVA radiation — a comparison between normal and dysplastic cells. Int. J. Mol. Sci., 19(6), 1700. CrossRef Scholar google search
Raftopoulou M., Hall A. (2004) Cell migration: Rho GTPases lead the way. Dev. Biol., 265(1), 23–32. CrossRef Scholar google search
Valerio H.P., Ravagnani F.G., Ronsein G.E., di Mascio P. (2021) A single dose of ultraviolet-A induces proteome remodeling and senescence in primary human keratinocytes. Sci. Rep., 11(1), 23355. CrossRef Scholar google search
Zrelski M.M., Hösele S., Kustermann M., Fichtinger P., Kah D., Athanasiou I., Esser P.R., Wagner A., Herzog R., Kratochwill K., Goldmann W.H., Kiritsi D., Winter L. (2024) Plectin deficiency in fibroblasts deranges intermediate filament and organelle morphology, migration, and adhesion. J. Invest. Dermatol., 144(3), 547–562. CrossRef Scholar google search
Yin M., Ma W., An L. (2017) Cortactin in cancer cell migration and invasion. Oncotarget, 8(50), 88232–88243. CrossRef Scholar google search
Wei J., Zhao Z.-X., Li Y., Zhou Z.-Q., You T.-G. (2014) Cortactin expression confers a more malignant phenotype to gastric cancer SGC-7901 cells. World J. Gastroenterol., 20(12), 3287–3300. CrossRef Scholar google search
Niu X., Shen Y., Wen Y., Mi X., Xie J., Zhang Y., Ding Z. (2024) KTN1 mediated unfolded protein response protects keratinocytes from ionizing radiation-induced DNA damage. J. Dermatol. Sci., 114(1), 24–33. CrossRef Scholar google search
Zehrer A., Pick R., Salvermoser M., Boda A., Miller M., Stark K., Weckbach L.T., Walzog B., Begandt D. (2018) A fundamental role of Myh9 for neutrophil migration in innate immunity. J. Immunol., 201(6), 1748–1764. CrossRef Scholar google search
Hoogenraad C.C., Wulf P., Schiefermeier N., Stepanova T., Galjart N., Small J.V., Grosveld F., de Zeeuw C.I., Akhmanova A. (2003) Bicaudal D induces selective dynein-mediated microtubule minus end-directed transport. EMBO J., 22(22), 6004–6015. CrossRef Scholar google search
Xu A., Hao J., Zhang Z., Tian T., Jiang S., Hao J., Liu C., Huang L., Xiao X., He D. (2010) 14-kDa phosphohistidine phosphatase and its role in human lung cancer cell migration and invasion. Lung Cancer, 67(1), 48–56. CrossRef Scholar google search
Nakatsukasa M., Kawasaki S., Yamasaki K., Fukuoka H., Matsuda A., Tsujikawa M., Tanioka H., Nagata-Takaoka M., Hamuro J., Kinoshita S. (2010) Tumor-associated calcium signal transducer 2 is required for the proper subcellular localization of claudin 1 and 7: implications in the pathogenesis of gelatinous drop-like corneal dystrophy. Am. J. Pathol., 177(3), 1344–1355. CrossRef Scholar google search
Grosse R., Copeland J.W., Newsome T.P., Way M., Treisman R. (2003) A role for VASP in RhoA-diaphanous signalling to actin dynamics and SRF activity. EMBO J., 22(12), 3050–3061. CrossRef Scholar google search
Takamura N., Yamaguchi Y. (2022) Involvement of caveolin-1 in skin diseases. Front Immunol., 13, 1035451. CrossRef Scholar google search
Pollard T.D., Borisy G.G. (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell, 112(4), 453–465. CrossRef Scholar google search
Golebiewski C., Gastaldi C., Vieu D.L., Mari B., Rezzonico R., Bernerd F., Marionnet C. (2023) Identification and functional validation of SRC and RAPGEF1 as new direct targets of miR-203, involved in regulation of epidermal homeostasis. Sci. Rep., 13(1), 14006. CrossRef Scholar google search
Prechova M., Adamova Z., Schweizer A.-L., Maninova M., Bauer A., Kah D., Meier-Menches S.M., Wiche G., Fabry B., Gregor M. (2022) Plectin-mediated cytoskeletal crosstalk controls cell tension and cohesion in epithelial sheets. J. Cell. Biol., 221(3), e202105146. CrossRef Scholar google search
Huang Y., Gui J., Myllymäki S.-M., Roy K., Tõnissoo T., Mikkola M.L., Shimmi O. (2022) Scribble and α-catenin cooperatively regulate epithelial homeostasis and growth. Front Cell Dev. Biol., 10, 912001. CrossRef Scholar google search