Суммированы аргументы, обосновывающие связь ряда заболеваний с альтерацией (перерождением) кишечного микробиома. Приведены основные установленные метаболиты микробного происхождения, которые являются средством коммуникации между микробиомом и организмом хозяина: короткоцепочечные жирные кислоты, желчные кислоты, амины, аминокислоты и их метаболиты. Особое внимание уделено метаболомным исследованиям микробиома при хронических болезнях почек, в частности, иммуноглобулин А-нефропатии. Обоснована правомерность концепции микробиома крови, ранее считавшейся исключительно стерильной средой у здорового человека. Отмечена ключевая роль метагеномных методов для характеристики как состава, так и потенциальных физиологических эффектов микробных сообществ. Проанализированы преимущества и ограничения метаболомного анализа сыворотки/плазмы крови и фекалий. Ввиду того, что потенциал клинических исследований взаимного влияния микробиом–метаболом ограничен генетическими и внешними факторами, сохраняют актуальность доклинические исследования с использованием как безмикробных моделей, так и моделей, основанных на воздействии антибиотиков. В обзоре рассмотрены проблемы и перспективы метаболомики при исследовании характера и механизмов взаимного влияния микробиома и метаболома.
Савельева Е.И., Шачнева М.Д. (2025) Проблемы и перспективы метаболомных исследований при альтерации кишечного микробиома. Биомедицинская химия, 71(3), 195-208.
Савельева Е.И. и др. Проблемы и перспективы метаболомных исследований при альтерации кишечного микробиома // Биомедицинская химия. - 2025. - Т. 71. -N 3. - С. 195-208.
Савельева Е.И. и др., "Проблемы и перспективы метаболомных исследований при альтерации кишечного микробиома." Биомедицинская химия 71.3 (2025): 195-208.
Савельева, Е. И., Шачнева, М. Д. (2025). Проблемы и перспективы метаболомных исследований при альтерации кишечного микробиома. Биомедицинская химия, 71(3), 195-208.
Список литературы
Jiang D., Yang Y., Han X., Li Q., Jiao J., Ma Y., Chao L. (2025) Gut microbiota combined with metabolome dissects fluorene-9-bisphenol exposure-induced male reproductive toxicity. Environ. Pollut., 364(Pt 1), 125339. CrossRef Scholar google search
Cumbo F., Joshi J., Thurnher D., Maniakas A. (2025) The role of the microbiome in head and neck cancer. Front. Oncol., 15, 1545067. CrossRef Scholar google search
Xu Q., Wang W., Li Y., Liu Y., Liu Y. (2025) The oral-gut microbiota axis: a link in cardiometabolic diseases. NPJ Biofilms Microbiomes, 11, 11. CrossRef Scholar google search
Liu Y., Yan D., Chen R., Zhang Y., Wang C., Qian G. (2025) Recent insights and advances in gut microbiota’s influence on host antiviral immunity. Front. Microbiol., 16, 1536778. CrossRef Scholar google search
Yang Y. (2024) The Microbiota and Diseases: a new platform for the cutting-edge research findings and new advances in microbiota and diseases. Microbiota Diseases, 1, DOI: 10.54844/md.2024.0745. CrossRef Scholar google search
Jiang Y., Wang Y., Che L., Yang S., Zhang X., Lin, Y., Shi Y., Zou N., Wang S., Zhang Y., Zhao Z., Li S.C. (2024) GutMetaNet: an integrated database for exploring horizontal gene transfer and functional redundancy in the human gut microbiome. Nucleic Acids Res., 53(D1), D772–D782. CrossRef Scholar google search
Mehrabadi S. (2024) Assessment of microbiome signature for predicting prognosis of gastrointestinal cancers. Curr. Cancer Ther. Rev., 21, e15733947333326. CrossRef Scholar google search
Jauregui-Amezaga A., Smet A. (2024) The microbiome in inflammatory bowel disease. J. Clin. Med., 13(16), 4622. CrossRef Scholar google search
Aldars-García L., Chaparro M., Gisbert J.P. (2021) Systematic review: the gut microbiome and its potential clinical application in inflammatory bowel disease. Microorganisms, 9(5), 977. CrossRef Scholar google search
Ning L., Zhou Y.-L., Sun H., Zhang Y., Shen C., Wang Z., Xuan B., Zhao Y., Ma Y., Yan Y., Tong T., Huang X., Hu M., Zhu X., Ding J., Zhang Y., Cui Z., Fang J.-Y., Chen H., Hong J. (2023) Microbiome and metabolome features in inflammatory bowel disease via multi-omics integration analyses across cohorts. Nat. Commun., 14(1), 7135. CrossRef Scholar google search
Cheng Y., Ling Z., Li L. (2020) The intestinal microbiota and colorectal cancer. Front. Immunol., 11, 615056. CrossRef Scholar google search
Jemimah S., Chabib C.M.M., Hadjileontiadis L., Al Shehhi A. (2023) Gut microbiome dysbiosis in Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis. PLOS One, 18(5), e0285346. CrossRef Scholar google search
Sampson T.R., Debelius J.W., Thron T., Janssen S., Shastri G.G., Ilhan Z.E., Challis C., Schretter C.E., Rocha S., Gradinaru V., Chesselet M.F., Keshavarzian A., Shannon K.M., Krajmalnik-Brown R., Wittung-Stafshede P., Knight R., Mazmanian S.K. (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell, 167(6), 1469–1480. CrossRef Scholar google search
Dodiya H.B., Forsyth C.B., Voigt R.M., Engen P.A., Patel J., Shaikh M., Green S.J., Naqib A., Roy A., Kordower J.H., Pahan K., Shannon K.M., Keshavarzian A. (2020) Chronic stress-induced gut dysfunction exacerbates Parkinson's disease phenotype and pathology in a rotenone-induced mouse model of Parkinson's disease. Neurobiol. Dis., 135, 104352. CrossRef Scholar google search
Cabral G.F., Schaan A.P., Cavalcante G.C., Sena-dos-Santos C., de Souza T.P., de Souza Port’s N.M., dos Santos Pinheiro J.A., Ribeiro-dos-Santos Â., Vidal A.F. (2021) Nuclear and mitochondrial genome, epigenome and gut microbiome: emerging molecular biomarkers for Parkinson's disease. Int. J. Mol. Sci., 22(18), 9839. CrossRef Scholar google search
Scheperjans F., Aho V., Pereira P.A.B., Koskinen K., Paulin L., Pekkonen E., Haapaniemi E., Kaakkola S., Eerola-Rautio J., Pohja M., Kinnunen E., Murros K., Auvinen P. (2015) Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov. Disord., 30(3), 350–358. CrossRef Scholar google search
Qian Y., Yang X., Xu S., Huang P., Li B., Du J., He Y., Su B., Xu L.-M., Wang L., Huang R., Chen S., Xiao Q. (2020) Gut metagenomics-derived genes as potential biomarkers of Parkinson's disease. Brain, 143(8), 2474–2489. CrossRef Scholar google search
Boertien J.M., Pereira P.A.B., Aho V.T.E., Scheperjans F. (2019) Increasing comparability and utility of gut microbiome studies in Parkinson's disease: a systematic review. J. Parkinsons Dis., 9(s2), S297–S312. CrossRef Scholar google search
Kennedy E.A., King K.Y., Baldridge M.T. (2018) Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. Front. Physiol., 9, 1534. CrossRef Scholar google search
Johnson K.V.A., Burnet P.W.J. (2020) Opposing effects of antibiotics and germ-free status on neuropeptide systems involved in social behaviour and pain regulation. BMC Neurosci., 21, 32. CrossRef Scholar google search
Flinn H., Marshall A., Holcomb M., Cruz L., Soriano S., Treangen T.J., Villapol S. (2024) Antibiotic treatment induces microbiome dysbiosis and reduction of neuroinflammation following traumatic brain injury in mice. Res. Sq., DOI: 10.21203/rs.3.rs-4475195/v1. CrossRef Scholar google search
Stabb E.V. (2006) Faculty opinions recommendation of obesity alters gut microbial ecology. [dataset]. In faculty opinions – post-publication peer review of the biomedical literature. Faculty Opinions Ltd. CrossRef Scholar google search
Vasudha M., Gayathri D. (2024) β-Galactosidase producing Lactiplantibacillus spp in intestinal microbiome mouse diarrhea model and metagenomic analyses. Microbe, 5, 100173. CrossRef Scholar google search
Delgado-Ocaña S., Cuesta S. (2024) From microbes to mind: germ-free models in neuropsychiatric research. mBio, 15(10), e0207524. CrossRef Scholar google search
Каргальцева Н.М., Миронов А.Ю., Борисова О.Ю., Кочеровец В.И., Карпова Е.И., Данищук О.И., Козырева М.В. (2024) Микробиом крови клинически здорового человека — миф или реальность? Клиническая лабораторная диагностика, 69(4), 142–149. CrossRef Scholar google search
Tsafarova B., Hodzhev Y., Yordanov G., Tolchkov V., Kalfin R., Panaiotov S. (2023) Morphology of blood microbiota in healthy individuals assessed by light and electron microscopy. Front. Cell. Infect. Microbiol., 12, 1091341. CrossRef Scholar google search
d’Aquila P., Giacconi R., Malavolta M., Piacenza F., Bürkle A., Villanueva M.M., Dollé M.E.T., Jansen E., Grune T., Gonos E.S., Franceschi C., Capri M., Grubeck-Loebenstein B., Sikora E., Toussaint O., Debacq-Chainiaux F., Hervonen A., Hurme M., Slagboom P.E., Schön C., Bernhardt J., Breusing N., Passarino G., Provinciali M., Bellizzi D. (2021) Microbiome in blood samples from the general population recruited in the MARK-AGE project: a pilot study. Front. Microbiol., 12, 707515. CrossRef Scholar google search
Tan C.C.S., Ko K.K.K., Chen H., Liu J., Loh M., Chia M., Nagarajan N. (2023) No evidence for a common blood microbiome based on a population study of 9,770 healthy humans. Nat. Microbiol., 8(5), 973–985. CrossRef Scholar google search
Sciarra F., Franceschini E., Campolo F., Venneri M.A. (2023) The diagnostic potential of the human blood microbiome: are we dreaming or awake? Int. J. Mol. Sci., 24(13), 10422. CrossRef Scholar google search
Amar J., Lange C., Payros G., Garret C., Chabo C., Lantieri O., Courtney M., Marre M., Charles M.A., Balkau B., Burcelin R. (2013) Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general population: the D.E.S.I.R. study. PLOS One, 8(1), e54461. CrossRef Scholar google search
Shah N.B., Allegretti A.S., Nigwekar S.U., Kalim S., Zhao S., Lelouvier B., Servant F., Serena G., Thadhani R.I., Raj D.S., Fasano A. (2019) Blood microbiome profile in CKD: a pilot study. Clin. J. Am. Soc. Nephrol., 14(5), 692–701. CrossRef Scholar google search
Pan W., Kang Y. (2017) Gut microbiota and chronic kidney disease: implications for novel mechanistic insights and therapeutic strategies. Int. Urol. Nephrol., 50(2), 289–299. CrossRef Scholar google search
Mair R.D., Sirich T.L. (2019) Blood microbiome in CKD: should we care? Clin. J. Am. Soc. Nephrol., 14(5), 648–649. CrossRef Scholar google search
Hajishengallis G., Darveau R.P., Curtis M.A. (2012) The keystone-pathogen hypothesis. Nat. Rev. Microbiol., 10(10), 717–725. CrossRef Scholar google search
Sears C.L., Pardoll D.M. (2011) Perspective: alpha-bugs, their microbial partners, and the link to colon cancer. J. Infect. Dis., 203(3), 306-311. CrossRef Scholar google search
Wu S., Rhee K.-J., Albesiano E., Rabizadeh S., Wu X., Yen H.-R., Huso D.L., Brancati F.L., Wick E., McAllister F., Housseau F., Pardoll D.M., Sears C.L. (2009) A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med., 15(9), 1016–1022. CrossRef Scholar google search
Brenner H., Chen C. (2018) The colorectal cancer epidemic: challenges and opportunities for primary, secondary and tertiary prevention. Br. J. Cancer, 119(7), 785–792. CrossRef Scholar google search
Avril M., de Paolo R.W. (2021) “Driver-passenger” bacteria and their metabolites in the pathogenesis of colorectal cancer. Gut Microbes, 13(1), 1941710. CrossRef Scholar google search
Veziant J., Villéger R., Barnich N., Bonnet M. (2021) Gut microbiota as potential biomarker and/or therapeutic target to improve the management of cancer: focus on colibactin-producing Escherichia coli in colorectal cancer. Cancers, 13(9), 2215. CrossRef Scholar google search
Jochum L., Stecher B. (2020) Label or concept — what is a pathobiont? Trends Microbiol., 28(10), 789–792. CrossRef Scholar google search
Zhang B., Xiao L., Lyu L., Zhao F., Miao M. (2024) Exploring the landscape of symbiotic diversity and distribution in unicellular ciliated protists. Microbiome, 12, 96. CrossRef Scholar google search
Wikoff W.R., Anfora A.T., Liu J., Schultz P.G., Lesley S.A., Peters E.C., Siuzdak G. (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA, 106(10), 3698–3703. CrossRef Scholar google search
Zhou L., Yu D., Zheng S., Ouyang R., Wang Y., Xu G. (2021) Gut microbiota-related metabolome analysis based on chromatography-mass spectrometry. Trends Anal. Chem., 143, 116375. CrossRef Scholar google search
Савельева Е.И. (2021) Сферы применения биоаналитической хромато-масс-спектрометрии. Журнал аналитической химии, 76(10), 937–951. CrossRef Scholar google search
Hong Y., Zhang C., Shen K., Dong X., Chen B. (2024) Genetically predicted plasma metabolites mediate the causal relationship between gut microbiota and primary immune thrombocytopenia (ITP). Front. Microbiol., 15, 1447729. CrossRef Scholar google search
Xiao W., Su J., Gao X., Yang H., Weng R., Ni W., Gu Y. (2024) Correction: the microbiota-gut-brain axis participates in chronic cerebral hypoperfusion by disrupting the metabolism of short-chain fatty acids. Microbiome, 12, 100. CrossRef Scholar google search
Zhang D., Jian Y.-P., Zhang Y.-N., Li Y., Gu L.-T., Sun H.-H., Liu M.-D., Zhou H.-L., Wang Y.-S., Xu Z.-X. (2023) Short-chain fatty acids in diseases. Cell Commun. Signal, 21, 212. CrossRef Scholar google search
Wang Y., Chen X., Huws S.A., Xu G., Li J., Ren J., Xu J., Guan L.L., Yao J., Wu S. (2024) Ileal microbial microbiome and its secondary bile acids modulate susceptibility to nonalcoholic steatohepatitis in dairy goats. Microbiome, 12, 247. CrossRef Scholar google search
Chang X., Zhang Y., Chen X., Li S., Mei H., Xiao H., Ma X., Liu Z., Li R. (2024) Gut microbiome and serum amino acid metabolome alterations in autism spectrum disorder. Sci. Rep., 14, 4037. CrossRef Scholar google search
Wang J., Zhou C., Lu L., Wang S., Zhang Q., Liu Z. (2024) Differentiated metabolomic profiling reveals plasma amino acid signatures for primary glomerular disease. Amino Acids, 56, 46. CrossRef Scholar google search
Guo Z.-S., Lu M., Liu D., Zhou C.-Y., Liu Z., Zhang Q. (2024) Identification of amino acids metabolomic profiling in human plasma distinguishes lupus nephritis from systemic lupus erythematosus. Amino Acids, 56, 56. CrossRef Scholar google search
Yang C., Shi Z., Bao L., Xu X., Jiang D., You L. (2024) Targeted metabolomic analysis of serum amino acids in heart failure patients. Amino Acids, 56, 22. CrossRef Scholar google search
Ferreiro A.L., Choi J.H., Ryou J., Newcomer E.P., Thompson R., Bollinger R.M., Hall-Moore C., Ndao I.M., Sax L., Benzinger T.L.S., Stark S.L., Holtzman D.M., Fagan A.M., Schindler S.E., Cruchaga C., Butt O.H., Morris J.C., Tarr P.I., Ances B.M., Dantas G. (2023) Gut microbiome composition may be an indicator of preclinical Alzheimer’s disease. Sci. Transl. Med., 15(700), eabo2984. CrossRef Scholar google search
Nemet I., Saha P.P., Gupta N., Zhu W., Romano K.A., Skye S.M., Cajka T., Mohan M.L., Li L., Wu Y., Funabashi M., Ramer-Tait A.E., Naga Prasad S.V., Fiehn O., Rey F.E., Tang W.H.W., Fischbach M.A., di Donato J.A., Hazen S.L. (2020) A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell, 180(5), 862–877.e22. CrossRef Scholar google search
Longo S., Menghini R., Federici M. (2023) Gut Microbiota and Type 2 Diabetes Mellitus. In: Gut Microbiome, Microbial Metabolites and Cardiometabolic Risk (Federici M., Menghini R., eds) Endocrinology, Springer, Cham, pp. 1–31. CrossRef Scholar google search
Rysz J., Franczyk B., Ławiński J., Olszewski R., Ciałkowska-Rysz A., Gluba-Brzózka A. (2021) The impact of CKD on uremic toxins and gut microbiota. Toxins, 13(4), 252. CrossRef Scholar google search
Du W., Jiang S., Yin S., Wang R., Zhang C., Yin B.-C., Li J., Li L., Qi N., Zhou Y., Ye B.-C. (2024) The microbiota-dependent tryptophan metabolite alleviates high-fat diet-induced insulin resistance through the hepatic AhR/TSC2/mTORC1 axis. Proc. Natl. Acad. Sci. USA, 121(35), e2400385121. CrossRef Scholar google search
Miyamoto K., Sujino T., Kanai T. (2024) The tryptophan metabolic pathway of the microbiome and host cells in health and disease. Int. Immunol., 36(12), 601–616. CrossRef Scholar google search
Pan M., Qian C., Huo S., Wu Y., Zhao X., Ying Y., Wang B., Yang H., Yeerken A., Wang T., Fu M., Wang L., Wei Y., Zhao Y., Shao C., Wang H., Zhao C. (2025) Gut-derived lactic acid enhances tryptophan to 5-hydroxytryptamine in regulation of anxiety via Akkermansia muciniphila. Gut Microbes, 17(1), 2447834. CrossRef Scholar google search
Wang X., Yang S., Li S., Zhao L., Hao Y., Qin J., Zhang L., Zhang C., Bian W., Zuo L., Gao X., Zhu B., Lei X.G., Gu Z., Cui W., Xu X., Li Z., Zhu B., Li Y., Chen S., Guo H., Zhang H., Sun J., Zhang M., Hui Y., Zhang X., Liu X., Sun B., Wang L., Qiu Q., Zhang Y., Li X., Liu W., Xue R., Wu H., Shao D., Li J., Zhou Y., Li S., Yang R., Pedersen O.B., Yu Z., Ehrlich S.D., Ren F. (2020) Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut, 69(12), 2131–2142. CrossRef Scholar google search
Алюшина Т.И., Савельева Е.И., Добронравов В.А. (2024) Совместное определение девяти уремических токсинов и холина в сыворотке крови методом высокоэффективной жидкостной хроматографии с тандемным масс-спектрометрическим детектированием. Журнал аналитической химии, 79(8), 900–909. CrossRef Scholar google search
Li J., Cao Y., Lu R., Li H., Pang Y., Fu H., Fang G., Chen Q., Liu B., Wu J., Zhou Y., Zhou J. (2021) Integrated fecal microbiome and serum metabolomics analysis reveals abnormal changes in rats with immunoglobulin A nephropathy and the intervention effect of Zhen Wu Tang. Front. Pharmacol., 11, 606689. CrossRef Scholar google search
Cernaro V., Calabrese V., Loddo S., Corsaro R., Macaione V., Ferlazzo V.T., Cigala R.M., Crea F., de Stefano C., Gembillo G., Romeo A., Longhitano E., Santoro D., Buemi M., Benvenga S. (2022) Indole-3-acetic acid correlates with monocyte-to-high-density lipoprotein (HDL) ratio (MHR) in chronic kidney disease patients. Int. Urol. Nephrol., 54(9), 2355–2364. CrossRef Scholar google search
Chen J., Wu K., Cao W., Shao J., Huang M. (2023) Association between monocyte to high-density lipoprotein cholesterol ratio and multi-vessel coronary artery disease: a cross-sectional study. Lipids Health Dis., 22(1), 121. CrossRef Scholar google search
Zhang D., Li Y., Liang M., Liang Y., Tian J., He Q., Yang B., Jin J., Zhu W. (2022) LC-MS/MS based metabolomics and proteomics reveal candidate biomarkers and molecular mechanism of early IgA nephropathy. Clin. Proteomics, 19, 51. CrossRef Scholar google search
Jeon Y.H., Lee S., Kim D.W., Kim S., Bae S.S., Han M., Seong E.Y., Song S.H. (2023) Serum and urine metabolomic biomarkers for predicting prognosis in patients with immunoglobulin A nephropathy. Kidney Res. Clin. Pract., 42(5), 591–605. CrossRef Scholar google search
Савельева Е.И., Алюшина Т.И., Шачнева М.Д., Добронравов В.А. (2024) Метаболическое профилирование сыворотки крови пациентов с иммуноглобулин А нефропатией методом высокоэффективной жидкостной хроматографии – тандемной масс-спектрометрии высокого разрешения. Клиническая лабораторная диагностика, 69(8), 369–376. CrossRef Scholar google search
Park S., Lee J., Yang S.H., Lee H., Kim J.Y., Park M., Kim K.H., Moon J.J., Cho S., Lee S., Kim Y., Lee H., Lee J.P., Jeong C.W., Kwak C., Joo K.W., Lim C.S., Kim Y.S., Hwang G.-S., Kim D.K. (2021) Comprehensive metabolomic profiling in early IgA nephropathy patients reveals urine glycine as a prognostic biomarker. J. Cell. Mol. Med., 25(11), 5177–5190. CrossRef Scholar google search
Fu X., Luo Z.-X., Yin H.-H., Liu Y.-N., Du X.-G., Cheng W., Liu J.-Y. (2024) Metabolomics study reveals blood biomarkers for early diagnosis of chronic kidney disease and IgA nephropathy: a retrospective cross-sectional study. Clin. Chim. Acta, 555, 117815. CrossRef Scholar google search
Gill S.R., Pop M., Deboy R.T., Eckburg P.B., Turnbaugh P.J., Samuel B.S., Gordon J.I., Relman D.A., Fraser-Liggett C.M., Nelson K.E. (2006) Metagenomic analysis of the human distal gut microbiome. Science, 312(5778), 1355–1359. CrossRef Scholar google search
Feng J., Tang S., Yang X., Zhang M., Li Z., Zhang S., Han Y., Li Y., Monnier P.P., Yu G., Zheng P., Zhang C., Xu K., Qin X. (2025) Landscapes of gut microbiome and blood metabolomic signatures in relapsing remitting multiple sclerosis. Sci. China Life Sci., 68(4), 1042–1056. CrossRef Scholar google search
Sacchettino L., Costanzo M., Veneruso I., d’Argenio V., Mayer M., Napolitano F., d’Angelo D. (2025) Altered microbiome and metabolome profiling in fearful companion dogs: an exploratory study. PLOS One, 20(1), e0315374. CrossRef Scholar google search
Zhao H., Zhou X., Song Y., Zhao W., Sun Z., Zhu J., Yu Y. (2025) Multi-omics analyses identify gut microbiota-fecal metabolites-brain-cognition pathways in the Alzheimer's disease continuum. Alzheimers Res. Ther., 17, 36. CrossRef Scholar google search
Bø G.H., Harma R., Klingenberg C., Pettersen V. (2024) The impact of gut microbiome modulating interventions on fecal metabolome of infants: a systematic review and quality assessment. Authorea, DOI: 10.22541/au.172846644.42916472/v1. CrossRef Scholar google search
Deng K., Xu J.-J., Shen L., Zhao H., Gou W., Xu F., Fu Y., Jiang Z., Shuai M., Li B.-Y., Hu W., Zheng J.-S., Chen Y.-M. (2023) Comparison of fecal and blood metabolome reveals inconsistent associations of the gut microbiota with cardiometabolic diseases. Nat. Commun., 14(1), 571. CrossRef Scholar google search
Dong L., Han L., Duan T., Lin S., Li J., Liu X. (2020) Integrated microbiome–metabolome analysis reveals novel associations between fecal microbiota and hyperglycemia-related changes of plasma metabolome in gestational diabetes mellitus. RSCAdvances, 10(4), 2027–2036. CrossRef Scholar google search
Zierer J., Jackson M.A., Kastenmüller G., Mangino M., Long T., Telenti A., Mohney R.P., Small K.S., Bell J.T., Steves C.J., Valdes A.M., Spector T.D., Menni C. (2018) The fecal metabolome as a functional readout of the gut microbiome. Nat. Genet., 50(6), 790–795. CrossRef Scholar google search
Jackson A., Acero M.M., Doukhanine E.V., Iwasiow R.M., Hernandez C.A.M. (2017) Device for collecting, transporting and storing biomolecules from a biological sample. US Patent No. WO2015172250. Retrieved from: https://patentscope.wipo.int/search/en/detail.jsf?docId= WO2015172250. Scholar google search
Ramamoorthy S., Levy S., Mohamed M., Abdelghani A., Evans A.M., Miller L.A., Mehta L., Moore S., Freinkman E., Hourigan S.K. (2020) An ambient-temperature collection and stabilization device performs comparably to flash-frozen collection for stool metabolomics in infants. Res. Sq., DOI: 10.21203/rs.3.rs-94154/v1. CrossRef Scholar google search
Isokääntä H., Pinto da Silva L., Karu N., Kallonen T., Aatsinki A.-K., Hankemeier T., Schimmel L., Diaz, E., Hyötyläinen T., Dorrestein P.C., Knight R., Orešič M., Kaddurah-Daouk R., Dickens A.M., Lamichhane S. (2024) Comparative metabolomics and microbiome analysis of ethanol versus OMNImet/geneGUT fecal stabilization. Anal. Chem., 96(22), 8893–8904. CrossRef Scholar google search
Giebelhaus R.T., Nguyen G., Schmidt S.A., Wang S., Mesfin E.Y., Nam S.L., de la Mata A.P., Harynuk J.J. (2024) GC×GC-TOFMS analysis of fecal metabolome stabilized using an at-home stool collection device. Appl. Biosci., 3(3), 348–359. CrossRef Scholar google search
Neveu V., Nicolas G., Amara A., Salek R.M., Scalbert A. (2023) The human microbial exposome: expanding the Exposome-Explorer database with gut microbial metabolites. Sci. Rep., 13, 1946. CrossRef Scholar google search
Gautam A., Bhowmik D., Basu S., Zeng W., Lahiri A., Huson D.H., Paul S. (2023) Microbiome Metabolome Integration Platform (MMIP): a web-based platform for microbiome and metabolome data integration and feature identification. Brief. Bioinform., 24(6), bbad325. CrossRef Scholar google search
Zuffa S., Schmid R., Bauermeister A., Gomes P.W.P., Caraballo-Rodriguez A.M., El Abiead Y., Aron A.T., Gentry E.C., Zemlin J., Meehan M.J., Avalon N.E., Cichewicz R.H., Buzun E., Terrazas M.C., Hsu C.Y., Oles R., Ayala A.V., Zhao J., Chu H., Kuijpers M.C.M., Jackrel S.L., Tugizimana F., Nephali L.P., Dubery I.A., Madala N.E., Moreira E.A., Costa-Lotufo L.V., Lopes N.P., Rezende-Teixeira P., Jimenez P.C., Rimal B., Patterson A.D., Traxler M.F., Pessotti R.C., Alvarado-Villalobos D., Tamayo-Castillo G., Chaverri P., Escudero-Leyva E., Quiros-Guerrero L.-M., Bory A.J., Joubert J., Rutz A., Wolfender J.-L., Allard P.M., Sichert A., Pontrelli S., Pullman B.S., Bandeira N., Gerwick W.H., Gindro K., Massana-Codina J., Wagner B.C., Forchhammer K., Petras D., Aiosa N., Garg N., Liebeke M., Bourceau P., Kang K.B., Gadhavi H., de Carvalho L.P.S., dos Santos M.S., Pérez-Lorente A.I., Molina-Santiago C., Romero D., Franke R., Brönstrup M., de León A.V.P., Pope P.B., la Rosa S.L., la Barbera G., Roager H.M., Laursen M.F., Hammerle F., Siewert B., Peintner U., Licona-Cassani C., Rodriguez-Orduña L., Rampler E., Hildebrand F., Koellensperger G., Schoeny H., Hohenwallner K., Panzenboeck L., Gregor R., O'Neill E.C., Roxborough E.T., Odoi J., Bale N.J., Ding S., Sinninghe Damsté J.S., Guan X.L., Cui J.J., Ju K.S., Silva D.B., Silva F.M.R., da Silva G.F., Koolen H.H.F., Grundmann C., Clement J.A., Mohimani H., Broders K., McPhail K.L., Ober-Singleton S.E., Rath C.M., McDonald D., Knight R., Wang M., Dorrestein P.C. (2024) microbeMASST: a taxonomically informed mass spectrometry search tool for microbial metabolomics data. Nat. Microbiol., 9(2), 336–345. CrossRef Scholar google search
Shtossel O., Koren O., Shai I., Rinot E., Louzoun Y. (2024) Gut microbiome-metabolome interactions predict host condition. Microbiome, 12, 24. CrossRef Scholar google search
Кайбышева В.О., Жарова М.Е., Филимендикова К.Ю., Никонов Е.Л. (2021) Заболевания, ассоциированные с нарушением состава микробиоты кишечника. Доктор.Ру, 20(4), 40–45. CrossRef Scholar google search
Bartha V., Boutin S., Schüßler D.L., Felten A., Fazeli S., Kosely F., Luft T., Wolff D., Frese C., Schoilew K. (2025) Exploring the influence of oral and gut microbiota on ulcerative mucositis: a pilot cohort study. Oral Dis., DOI: 10.1111/odi.15246 [Online ahead of print]. CrossRef Scholar google search
Курбатов В.А., Андреев Б.А., Нефедова Л.И. (2020) Метаболиты кишечного микробиома и их влияние на здоровье человека. Здоровье. Медицинская экология. Наука, 2(81), 35–40. CrossRef Scholar google search