1. Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича, Москва, Россия 2. ФИЦ оригинальных и перспективных биомедицинских и фармацевтических технологий, Москва, Россия
Фабомотизол — оригинальный анксиолитик, разработанный в НИИ фармакологии имени В.В. Закусова и действующий на ряд важных рецепторных систем мозга. В модели болезни Паркинсона, вызванной у крыс курсовым введением пестицида ротенона, фабомотизол ослаблял нарушения поведенческих реакций животных, влиял на профиль и относительное содержание белков мозга. Через 5 дней после завершения курсового введения ротенона позитивное влияние фабомотизола на поведенческие реакции крыс сохранялось. По данным протеомного исследования, профиль белков мозга и изменения их относительного содержания существенно отличались от результатов, полученных сразу после завершения курсового введения ротенона, а также ротенона и фабомотизола. Изменения относительного содержания почти всех белков, обнаруженные сразу после завершения курсового введения ротенона или ротенона и фабомотизола, через пять дней уже не определялись. В то же время было обнаружено изменение относительного содержания других белков, ассоциированных с нейродегенерацией при болезнях Паркинсона и Альцгеймера. Такая динамика свидетельствует о волнообразном изменении содержания патогенетически важных белков мозга, вовлечённых в механизмы нейродегенерации и нейропротекции.
Бунеева О.А., Капица И.Г., Завьялова М.Г., Калошина С.А., Згода В.Г., Медведев А.Е. (2025) Отсроченное действие нейропротектора фабомотизола на протеом мозга крыс в ротеноновой модели паркинсонизма. Биомедицинская химия, 71(3), 217-226.
Бунеева О.А. и др. Отсроченное действие нейропротектора фабомотизола на протеом мозга крыс в ротеноновой модели паркинсонизма // Биомедицинская химия. - 2025. - Т. 71. -N 3. - С. 217-226.
Бунеева О.А. и др., "Отсроченное действие нейропротектора фабомотизола на протеом мозга крыс в ротеноновой модели паркинсонизма." Биомедицинская химия 71.3 (2025): 217-226.
Бунеева, О. А., Капица, И. Г., Завьялова, М. Г., Калошина, С. А., Згода, В. Г., Медведев, А. Е. (2025). Отсроченное действие нейропротектора фабомотизола на протеом мозга крыс в ротеноновой модели паркинсонизма. Биомедицинская химия, 71(3), 217-226.
Список литературы
Fleming S.M., Zhu C., Fernagut P.-O., Mehta A., di Carlo C.D., Seaman R.L., Chesselet M.-F. (2004) Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone. Exp. Neurol., 187(2), 418–429. CrossRef Scholar google search
Duty S., Jenner P. (2011) Animal models of Parkinson's disease: a source of novel treatments and clues to the cause of the disease. Br. J. Pharmacol., 164, 1357–1391. CrossRef Scholar google search
Cannon J.R., Tapias V., Na H.M., Honick A.S., Drolet R.E., Greenamyre J.T. (2009) A highly reproducible rotenone model of Parkinson's disease. Neurobiol. Dis., 34(2), 279–290. CrossRef Scholar google search
Капица И.Г., Казиева Л.Ш., Вавилов Н.Э., Згода В.Г., Копылов А.Т., Медведев А.Е., Бунеева О.А. (2023) Особенности поведенческих реакций и профиля изатин-связывающих белков мозга у крыс с индуцированным ротеноном экспериментальным паркинсонизмом. Биомедицинская химия, 69(1), 46–54. CrossRef Scholar google search
Бунеева О.А., Капица И.Г., Казиева Л.Ш., Вавилов Н.Э., Згода В.Г., Медведев А.Е. (2024) Отсроченное действие ротенона на относительное содержание изатин-связывающих белков мозга у крыс с экспериментальным паркинсонизмом. Биомедицинская химия, 70(1), 25–32. CrossRef Scholar google search
Buneeva O., Medvedev A. (2025) Monoamine oxidase inhibitors in toxic models of Parkinsonism. Int. J. Mol. Sci., 26(3), 1248. CrossRef Scholar google search
Воронин М.В., Кадников И.А., Абрамова Е.В. (2021) Молекулярные механизмы нейротропного действия афобазола. Экспериментальная и клиническая фармакология, 84(2), 15–22. CrossRef Scholar google search
Voronin M.V., Vakhitova Y.V., Tsypysheva I.P., Tsypyshev D.O., Rybina I.V., Kurbanov R.D., Abramova E.V., Seredenin S.B. (2021) Involvement of chaperone Sigma1R in the anxiolytic effect of fabomotizole. Int. J. Mol. Sci., 22(11), 5455. CrossRef Scholar google search
Бунеева О.А., Капица И.Г., Згода В.Г., Медведев А.Е. (2023) Нейропротекторные эффекты изатина и афобазола сопровождаются увеличением уровня растворимого в Тритоне Х-100 альфа-синуклеина в мозге крыс с экспериментальным ротеноновым паркинсонизмом. Биомедицинская химия, 69(5), 290–299. CrossRef Scholar google search
Воронина Т.А., Вальдман Е.А., Неробкова Л.Н., Капица И.Г. (2012) Руководство по проведению доклинических исследований лекарственных средств, часть первая (Миронов А.Н. (ред.)), Гриф и К, Москва, cc. 219-235. Scholar google search
Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254. CrossRef Scholar google search
Бунеева О.А., Капица И.Г., Казиева Л.Ш., Вавилов Н.Э., Згода В.Г., Медведев А.Е. (2023) Количественные изменения изатин-связывающих белков мозга у крыс с индуцированным ротеноном экспериментальным паркинсонизмом. Биомедицинская химия, 69(3), 188–192. CrossRef Scholar google search
Arnold S. (2012) Cytochrome c oxidase and its role in neurodegeneration and neuroprotection. Adv. Exp. Med. Biol., 748, 305–339. CrossRef Scholar google search
Agarwal A., Chandran A., Raza F., Ungureanu I.-M., Hilcenko C., Stott K., Bright N.A., Morone N., Warren A.J., Lautenschläger J. (2024) VAMP2 regulates phase separation of α-synuclein. Nat. Cell Biol., 26(8), 1296–1308. CrossRef Scholar google search
Wang C., Zhang K., Cai B., Haller J.E., Carnazza K.E., Hu J., Zhao C., Tian Z., Hu X., Hall D., Qiang J., Hou S., Liu Z., Gu J., Zhang Y., Seroogy K.B., Burre J., Fang Y., Liu C., Brunger A.T., Li D., Diao J. (2024) VAMP2 chaperones α-synuclein in synaptic vesicle co-condensates. Nat. Cell Biol., 26(8), 1287–1295. CrossRef Scholar google search
Laferrière F., Claverol S., Bezard E., de Giorgi F., Ichas F. (2022) Similar neuronal imprint and no cross-seeded fibrils in α-synuclein aggregates from MSA and Parkinson's disease. NPJ Parkinsons Dis., 8, 10. CrossRef Scholar google search
Buneeva O., Medvedev A. (2022) Atypical ubiquitination and Parkinson's disease. Int. J. Mol. Sci., 23(7), 3705. CrossRef Scholar google search
Hurley M.J., Brandon B., Gentleman S.M., Dexter D.T. (2013) Parkinson's disease is associated with altered expression of CaV1 channels and calcium-binding proteins. Brain, 136(Pt 7), 2077–2097. CrossRef Scholar google search
Zaichick S.V., McGrath K.M., Caraveo G. (2017) The role of Ca2+ signaling in Parkinson's disease. Dis. Model. Mech., 10(5), 519–535. CrossRef Scholar google search
Zhong J., Tang G., Zhu J., Wu W., Li G., Lin X., Liang L., Chai C., Zeng Y., Wang F., Luo L., Li J., Chen F., Huang Z., Zhang X., Zhang Y., Liu H., Qiu X., Tang S., Chen D. (2021) Single-cell brain atlas of Parkinson's disease mouse model. J. Genet. Genomics Yi Chuan Xue Bao, 48(4), 277–288. CrossRef Scholar google search
Curtis W.M., Seeds W.A., Mattson M.P., Bradshaw P.C. (2022) NADPH and mitochondrial quality control as targets for a circadian-based fasting and exercise therapy for the treatment of Parkinson's disease. Cells, 11(15), 2416. CrossRef Scholar google search
Favretto F., Baker J.D., Strohäker T., Andreas L.B., Blair L.J., Becker S., Zweckstetter M. (2020) The molecular basis of the interaction of cyclophilin A with α-synuclein. Angew. Chem. Int. Ed. Engl., 59(14), 5643–5646. CrossRef Scholar google search
Nakao N., Frodl E.M., Widner H., Carlson E., Eggerding F.A., Epstein C.J., Brundin P. (1995) Overexpressing Cu/Zn superoxide dismutase enhances survival of transplanted neurons in a rat model of Parkinson's disease. Nat. Med., 1(3), 226–231. CrossRef Scholar google search
Choi J., Rees H.D., Weintraub S.T., Levey A.I., Chin L.-S., Li L. (2005) Oxidative modifications and aggregation of Cu,Zn-superoxide dismutase associated with Alzheimer and Parkinson diseases. J. Biol. Chem., 280(12), 11648–11655. CrossRef Scholar google search
Kuang X.-L., Liu F., Chen H., Li Y., Liu Y., Xiao J., Shan G., Li M., Snider B.J., Qu J., Barger S.W., Wu S. (2014) Reductions of the components of the calreticulin/calnexin quality-control system by proteasome inhibitors and their relevance in a rodent model of Parkinson's disease. J. Neurosci. Res., 92(10), 1319–1329. CrossRef Scholar google search
Katayama T., Sawada J., Takahashi K., Yahara O., Hasebe N. (2021) Meta-analysis of cerebrospinal fluid neuron-specific enolase levels in Alzheimer's disease, Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Alzheimers Res. Ther., 13(1), 163. CrossRef Scholar google search
Villa R.F., Arnaboldi R., Ghigini B., Gorini A. (1992) Mitochondrial factors involved in Parkinson's disease by MPTP toxicity in Macaca fascicularis and drug effect. Neurochem. Res., 17(11), 1147–1154. CrossRef Scholar google search
Keane P.C., Kurzawa M., Blain P.G., Morris C.M. (2011) Mitochondrial dysfunction in Parkinson's disease. Parkinsons Dis., 2011, 716871. CrossRef Scholar google search
Xu J., Fu X., Pan M., Zhou X., Chen Z., Wang D., Zhang X., Chen Q., Li Y., Huang X., Liu G., Lu J., Liu Y., Hu Y., Pan S., Wang Q., Wang Q., Xu Y. (2019) Mitochondrial creatine kinase is decreased in the serum of idiopathic Parkinson's disease patients. Aging Dis., 10(3), 601–610. CrossRef Scholar google search
Poon H.F., Frasier M., Shreve N., Calabrese V., Wolozin B., Butterfield D.A. (2005) Mitochondrial associated metabolic proteins are selectively oxidized in A30P alpha-synuclein transgenic mice — a model of familial Parkinson's disease. Neurobiol. Dis., 18(3), 492–498. CrossRef Scholar google search
Bar-Am O., Yogev-Falach M., Amit T., Sagi Y., Youdim M.B.H. (2004) Regulation of protein kinase C by the anti-Parkinson drug, MAO-B inhibitor, rasagiline and its derivatives, in vivo. J. Neurochem., 89(5), 1119–1125. CrossRef Scholar google search
Chen Z., Zhang W., Selmi C., Ridgway W.M., Leung P.S.C., Zhang F., Gershwin M.E. (2021) The myristoylated alanine-rich C-kinase substrates (MARCKS): a membrane-anchored mediator of the cell function. Autoimmun. Rev., 20(11), 102942. CrossRef Scholar google search
Erhardt B., Marcora M.S., Frenkel L., Bochicchio P.A., Bodin D.H., Silva B.A., Farías M.I., Allo M.Á., Höcht C., Ferrari C.C., Pitossi F.J., Leal M.C. (2021) Plasma membrane calcium ATPase downregulation in dopaminergic neurons alters cellular physiology and motor behaviour in Drosophila melanogaster. Eur. J. Neurosci., 54(6), 5915–5931. CrossRef Scholar google search
Pellegrini L., Wetzel A., Grannó S., Heaton G., Harvey K. (2016) Back to the tubule: microtubule dynamics in Parkinson's disease. Cell. Mol. Life Sci., 74(3), 409–434. CrossRef Scholar google search
Song J., Yang X., Zhang M., Wang C., Chen L. (2021) Glutamate metabolism in mitochondria is closely related to Alzheimer's disease. J. Alzheimers Dis., 84(2), 557–578. CrossRef Scholar google search
Villar-Conde S., Astillero-Lopez V., Gonzalez-Rodriguez M., Saiz-Sanchez D., Martinez-Marcos A., Ubeda-Banon I., Flores-Cuadrado A. (2023) Synaptic involvement of the human amygdala in Parkinson's disease. Mol. Cell. Proteomics, 22(12), 100673. CrossRef Scholar google search
Bohush A., Leśniak W., Weis S., Filipek A. (2021) Calmodulin and its binding proteins in Parkinson's disease. Int. J. Mol. Sci., 22(6), 3016. CrossRef Scholar google search
Chithra Y., Dey G., Ghose V., Chandramohan V., Gowthami N., Vasudev V., Srinivas Bharath M.M. (2023) Mitochondrial complex I inhibition in dopaminergic neurons causes altered protein profile and protein oxidation: implications for Parkinson's disease. Neurochem. Res., 48(8), 2360–2389. CrossRef Scholar google search
Shi M.-M., Shi C.-H., Xu Y.-M. (2017) Rab GTPases: the key players in the molecular pathway of Parkinson's disease. Front. Cell. Neurosci., 11, 81. CrossRef Scholar google search
Bellucci A., Longhena F., Spillantini M.G. (2022) The role of Rab proteins in Parkinson's disease synaptopathy. Biomedicines, 10(8), 1941. CrossRef Scholar google search
Song Q., Meng B., Xu H., Mao Z. (2020) The emerging roles of vacuolar-type ATPase-dependent lysosomal acidification in neurodegenerative diseases. Transl. Neurodegener., 9(1), 17. CrossRef Scholar google search
Remnestål J., Just D., Mitsios N., Fredolini C., Mulder J., Schwenk J.M., Uhlén M., Kultima K., Ingelsson M., Kilander L., Lannfelt L., Svenningsson P., Nellgård B., Zetterberg H., Blennow K., Nilsson P., Häggmark-Månberg A. (2016) CSF profiling of the human brain enriched proteome reveals associations of neuromodulin and neurogranin to Alzheimer's disease. Proteomics Clin. Appl., 10(12), 1242–1253. CrossRef Scholar google search
Piccini P., Weeks R.A., Brooks D.J. (1997) Alterations in opioid receptor binding in Parkinson's disease patients with levodopa-induced dyskinesias. Ann. Neurol., 42(5), 720–726. CrossRef Scholar google search
Verma A., Ravindranath V. (2019) CaV1.3 L-type calcium channels increase the vulnerability of substantia nigra dopaminergic neurons in MPTP mouse model of Parkinson's disease. Front. Aging Neurosci., 11, 382. CrossRef Scholar google search
Matuskey D., Tinaz S., Wilcox K.C., Naganawa M., Toyonaga T., Dias M., Henry S., Pittman B., Ropchan J., Nabulsi N., Suridjan I., Comley R.A., Huang Y., Finnema S.J., Carson R.E. (2020) Synaptic changes in Parkinson disease assessed with in vivo imaging. Ann. Neurol., 87(3), 329–338. CrossRef Scholar google search
Agliardi C., Meloni M., Guerini F.R., Zanzottera M., Bolognesi E., Baglio F., Clerici M. (2021) Oligomeric α-syn and SNARE complex proteins in peripheral extracellular vesicles of neural origin are biomarkers for Parkinson's disease. Neurobiol. Dis., 148, 105185. CrossRef Scholar google search
He Y., Nan D., Wang H. (2023) Role of non-receptor-type tyrosine phosphatases in brain-related diseases. Mol. Neurobiol., 60(11), 6530–6541. CrossRef Scholar google search
Hwang H., Zhang J., Chung K.A., Leverenz J.B., Zabetian C.P., Peskind E.R., Jankovic J., Su Z., Hancock A.M., Pan C., Montine T.J., Pan S., Nutt J., Albin R., Gearing M., Beyer R.P., Shi M., Zhang J. (2010) Glycoproteomics in neurodegenerative diseases. Mass Spectrom. Rev., 29(1), 79–125. CrossRef Scholar google search
Birkner K., Loos J., Gollan R., Steffen F., Wasser B., Ruck T., Meuth S.G., Zipp F., Bittner S. (2019) Neuronal ICAM-5 plays a neuroprotective role in progressive neurodegeneration. Front. Neurol., 10, 205. CrossRef Scholar google search
Kim K., Lee S.-G., Kegelman T.P., Su Z.-Z., Das S.K., Dash R., Dasgupta S., Barral P.M., Hedvat M., Diaz P., Reed J.C., Stebbins J.L., Pellecchia M., Sarkar D., Fisher P.B. (2011) Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J. Cell. Physiol., 226(10), 2484–2493. CrossRef Scholar google search
Chung D., Shum A., Caraveo G. (2020) GAP-43 BASP1 in axon regeneration: implications for the treatment of neurodegenerative diseases. Front. Cell Dev. Biol., 8, 567537. CrossRef Scholar google search
MacDonald K., Iulianella A. (2022) The actin-cytoskeleton associating protein BASP1 regulates neural progenitor localization in the neural tube. Genesis, 60(1–2), e23464. CrossRef Scholar google search
Gray M., Nash K.R., Yao Y. (2024) Adenylyl cyclase 2 expression and function in neurological diseases. CNS Neurosci. Ther., 30(7), e14880. CrossRef Scholar google search
Zhou Z., Chen Q.-Y., Zhuo M., Xu P.-Y. (2024) Inhibition of calcium-stimulated adenylyl cyclase subtype 1 (AC1) for the treatment of pain and anxiety symptoms in Parkinson's disease mice model. Mol. Pain, 20, 17448069241266683. CrossRef Scholar google search
Lee Y.M., Park S.H., Shin D.-I., Hwang J.-Y., Park B., Park Y.-J., Lee T.H., Chae H.Z., Jin B.K., Oh T.H., Oh Y.J. (2008) Oxidative modification of peroxiredoxin is associated with drug-induced apoptotic signaling in experimental models of Parkinson disease. J. Biol. Chem., 283(15), 9986–9998. CrossRef Scholar google search
Roede J.R., Hansen J.M., Go Y.-M., Jones D.P. (2011) Maneb and paraquat-mediated neurotoxicity: involvement of peroxiredoxin/thioredoxin system. Toxicol. Sci., 121(2), 368–375. CrossRef Scholar google search
Santulli C., Bon C., Cecco E.D., Codrich M., Narkiewicz J., Parisse P., Perissinotto F., Santoro C., Persichetti F., Legname G., Espinoza S., Gustincich S. (2022) Neuronal haemoglobin induces loss of dopaminergic neurons in mouse substantia nigra, cognitive deficits and cleavage of endogenous α-synuclein. Cell Death Dis., 13(12), 1048. CrossRef Scholar google search
Lin J., Ou R., Li C., Hou Y., Zhang L., Wei Q., Pang D., Liu K., Jiang Q., Yang T., Xiao Y., Zhao B., Chen X., Song W., Yang J., Wu Y., Shang H. (2023) Plasma glial fibrillary acidic protein as a biomarker of disease progression in Parkinson's disease: a prospective cohort study. BMC Med., 21(1), 420. CrossRef Scholar google search
Lapeña-Luzón T., Rodríguez L.R., Beltran-Beltran V., Benetó N., Pallardó F.V., Gonzalez-Cabo P. (2021) Cofilin and neurodegeneration: new functions for an old but gold protein. Brain Sci., 11(7), 954. CrossRef Scholar google search
Liu K., Li F., Han H., Chen Y., Mao Z., Luo J., Zhao Y., Zheng B., Gu W., Zhao W. (2016) Parkin regulates the activity of pyruvate kinase M2. J. Biol. Chem., 291(19), 10307–10317. CrossRef Scholar google search
Williams E.T., Chen X., Moore D.J. (2017) VPS35, the retromer complex and Parkinson's disease. J. Parkinsons Dis., 7(2), 219–233. CrossRef Scholar google search
Sassone J., Reale C., Dati G., Regoni M., Pellecchia M.T., Garavaglia B. (2021) The role of VPS35 in the pathobiology of Parkinson's disease. Cell. Mol. Neurobiol., 41(2), 199–227. CrossRef Scholar google search
Schmidt S.I., Blaabjerg M., Freude K., Meyer M. (2022) RhoA signaling in neurodegenerative diseases. Cells, 11(9), 1520. CrossRef Scholar google search
León A., Aparicio G.I., Scorticati C. (2021) Neuronal glycoprotein M6a: an emerging molecule in chemical synapse formation and dysfunction. Front. Synaptic Neurosci., 13, 661681. CrossRef Scholar google search
Chalorak P., Dharmasaroja P., Meemon K. (2020) Downregulation of eEF1A/EFT3-4 enhances dopaminergic neurodegeneration after 6-OHDA exposure in C. elegans. Model. Front. Neurosci., 14, 303. CrossRef Scholar google search
Ren Y., Zhao J., Feng J. (2003) Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J. Neurosci., 23(8), 3316–3324. CrossRef Scholar google search
Mazzetti S., Giampietro F., Calogero A.M., Isilgan H.B., Gagliardi G., Rolando C., Cantele F., Ascagni M., Bramerio M., Giaccone G., Isaias I.U., Pezzoli G., Cappelletti G. (2024) Linking acetylated α-tubulin redistribution to α-synuclein pathology in brain of Parkinson's disease patients. NPJ Parkinsons Dis., 10, 2. CrossRef Scholar google search