1. Белорусский государственный университет, Минск, Беларусь 2. Научно-клинический центр физико-химической медицины имени академика Ю.М. Лопухина, Москва, Россия 3. Московский государственный университет имени М.В. Ломоносова, Москва, Россия 4. Научно-клинический центр физико-химической медицины имени академика Ю.М. Лопухина, Москва, Россия; Научно-исследовательский институт гриппа имени А.А. Смородинцева, Санкт-Петербург, Россия
В последнее время для разработки новых систем доставки лекарств всё чаще используют носители на основе природных биоминералов. В данной работе были исследованы эффекты нативных (CC) и гибридных микрочастиц ватерита c включением декстрансульфата (CCDS), хондроитинсульфата (CCCS), гепарина (CCHE), фукоидана (CCFU) и пектина (CCPE) на жизнеспособность и функциональную активность нейтрофилов. Среди протестированных препаратов только CCFU оказывали небольшое цитотоксическое действие. Сами по себе CC стимулируют реорганизацию актинового цитоскелета, а также продукцию активных форм кислорода (АФК) клетками, которая снижалась в присутствии хлорида дифенилениодония (DPI), ингибитора сборки NADPH-оксидазы. CC-индуцированная активация NADPH-оксидазы снижалась в присутствии ингибиторов нерецепторных тирозинкиназ семейства Src, фосфатидилинозитол-3-киназы (PI3K) и фосфолипазы С (PLC). Подобно нативным CC, гибридные микрочастицы ватерита также инициировали продукцию АФК нейтрофилами. После добавления CC и гибридных микрочастиц ватерита (за исключением CCDS) было зарегистрировано увеличение количества нейтрофилов, характеризующихся бóльшими значениями величины бокового светорассеяния, что свидетельствует об изменении морфологических характеристик клеток. Учитывая способность гибридных микрочастиц ватерита с полисахаридами активировать NADPH-оксидазу нейтрофилов, они представляются перспективными системами для доставки антибактериальных и противовирусных препаратов.
Григорьева Д.В., Михальчик Е.В., Мосиевич Д.В., Мишин П.И., Балабушевич Н.Г., Панасенко О.М., Соколов А.В., Горудко И.В. (2025) Сравнительный анализ влияния на активность нейтрофилов гибридных микрочастиц ватерита c различными полисахаридами. Биомедицинская химия, 71(3), 227-238.
Григорьева Д.В. и др. Сравнительный анализ влияния на активность нейтрофилов гибридных микрочастиц ватерита c различными полисахаридами // Биомедицинская химия. - 2025. - Т. 71. -N 3. - С. 227-238.
Григорьева Д.В. и др., "Сравнительный анализ влияния на активность нейтрофилов гибридных микрочастиц ватерита c различными полисахаридами." Биомедицинская химия 71.3 (2025): 227-238.
Григорьева, Д. В., Михальчик, Е. В., Мосиевич, Д. В., Мишин, П. И., Балабушевич, Н. Г., Панасенко, О. М., Соколов, А. В., Горудко, И. В. (2025). Сравнительный анализ влияния на активность нейтрофилов гибридных микрочастиц ватерита c различными полисахаридами. Биомедицинская химия, 71(3), 227-238.
Список литературы
Ferreira A.M., Vikulina A.S., Volodkin D. (2020) CaCO3 crystals as versatile carriers for controlled delivery of antimicrobials. J. Control. Release, 328, 470–489. CrossRef Scholar google search
Balabushevich N.G., Kovalenko E.A., Mikhalchik E.V., Filatova L.Y., Volodkin D., Vikulina A.S. (2019) Mucin adsorption on vaterite CaCO3 microcrystals for the prediction of mucoadhesive properties. J. Colloid Interface Sci., 545, 330–339. CrossRef Scholar google search
Balabushevich N.G., Maltseva L.N., Filatova L.Y., Mosievich D.V., Mishin P.I., Bogomiakova M.E., Lebedeva O.S., Murina M.A., Klinov D.V., Obraztsova E.A., Kharaeva Z.F., Firova R.K., Grigorieva D.V., Gorudko I.V., Panasenko O.M., Mikhalchik E.V. (2024) Influence of natural polysaccharides on the morphology and properties of hybrid vaterite microcrystals. Heliyon, 10(13), e33801. CrossRef Scholar google search
Григорьева Д.В., Михальчик Е.В., Балабушевич Н.Г., Мосиевич Д.В., Мурина М.А., Панасенко О.М., Соколов А.В., Горудко И.В. (2024) Влияние биополимеров и функционализированных ими микрочастиц ватерита на агрегацию тромбоцитов. Российский физиологический журнал им. И.М. Сеченова, 110(6), 1020–1036. CrossRef Scholar google search
Balabushevich N.G., Kovalenko E.A., Le-Deygen I.M., Filatova L.Y., Volodkin D., Vikulina A.S. (2019) Hybrid CaCO3-mucin crystals: effective approach for loading and controlled release of cationic drugs. Materials Design, 182, 108020. CrossRef Scholar google search
Галямина М.А., Побегуц О.В., Фирова Р.Х., Мосиевич Д.В., Хараева З.Ф., Панасенко О.М., Балабушевич Н.Г., Михальчик Е.В. (2024) Биологическая активность гибридных микрочастиц ватерит-пектин в отношении бактерий E. coli и нейтрофилов человека. Бюллетень экспериментальной биологии и медицины, 177(2), 209–214. CrossRef Scholar google search
Campbell J., Ferreira A.M., Bowker L., Hunt J., Volodkin D., Vikulina A. (2022) Dextran and its derivatives: biopolymer additives for the modulation of vaterite CaCO3 crystal morphology and adhesion to cells. Adv. Mater. Interfaces, 9(31), 1–10. CrossRef Scholar google search
Gusliakova O., Verkhovskii R., Abalymov A., Lengert E., Kozlova A., Atkin V., Nechaeva O., Morrison A., Tuchin V., Svenskaya Y. (2021) Transdermal platform for the delivery of the antifungal drug naftifine hydrochloride based on porous vaterite particles. Mater. Sci. Eng. C Mater. Biol. Appl., 119, 111428. CrossRef Scholar google search
Feoktistova N.A., Balabushevich N.G., Skirtach A.G., Volodkin D., Vikulina A.S. (2020) Inter-protein interactions govern protein loading into porous vaterite CaCO3 crystals. Phys. Chem. Chem. Phys., 22(17), 9713–9722. CrossRef Scholar google search
Kim A.L., Dubrovskii A.V., Musin E.V., Tikhonenko S.A. (2023) Determination of phenol with peroxidase immobilized on CaCO3. Int. J. Mol. Sci., 24(7), 6766. CrossRef Scholar google search
Zhao P., Tian Y., Lu Y., Zhang J., Tao A., Xiang G., Liu Y. (2022) Biomimetic calcium carbonate nanoparticles delivered IL-12 mRNA for targeted glioblastoma sono-immunotherapy by ultrasound-induced necroptosis. J. Nanobiotechnol., 20(1), 525. CrossRef Scholar google search
Ferreira A.M., Vikulina A.S., Bowker L., Hunt J.A., Loughlin M., Puddu V., Volodkin D. (2024) Nanoarchitectonics of bactericidal coatings based on CaCO3-nanosilver hybrids. ACS Appl. Bio Mater., 7(5), 2872–2886. CrossRef Scholar google search
Oparka M., Walczak J., Malinska D., van Oppen L.M.P.E., Szczepanowska J., Koopman W.J.H., Wieckowski M.R. (2016) Quantifying ROS levels using CM-H2DCFDA and HyPer. Methods, 109, 3–11. CrossRef Scholar google search
Grigorieva D.V., Gorudko I.V., Shamova E.V., Terekhova M.S., Maliushkova E.V., Semak I.V., Cherenkevich S.N., Sokolov A.V., Timoshenko A.V. (2019) Effects of recombinant human lactoferrin on calcium signaling and functional responses of human neutrophils. Arch. Biochem. Biophys., 675, 108122. CrossRef Scholar google search
Grynkiewicz G., Poenie M., Tsien R.Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem., 260(6), 3440–3450. CrossRef Scholar google search
Renò F., Carniato F., Rizzi M., Olivero F., Pittarella P., Marchese L. (2013) Flow cytometry evidence of human granulocytes interaction with polyhedral oligomeric silsesquioxanes: effect of nanoparticle charge. Nanotechnology, 24(18), 185101. CrossRef Scholar google search
Burt H.M., Jackson J.K., Taylor D.R., Crowther R.S. (1997) Activation of human neutrophils by calcium carbonate polymorphs. Dig. Dis. Sci., 42(6), 1283–1289. CrossRef Scholar google search
Pang L., Hayes C.P., Buac K., Yoo D.G., Rada B. (2013) Pseudogout-associated inflammatory calcium pyrophosphate dihydrate microcrystals induce formation of neutrophil extracellular traps. J. Immunol., 190(12), 6488–6500. CrossRef Scholar google search
Iversen T.-G., Skotland T., Sandvig K. (2011) Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today, 6, 176–185. CrossRef Scholar google search
Schorn C., Janko C., Latzko M., Chaurio R., Schett G., Herrmann M. (2012) Monosodium urate crystals induce extracellular DNA traps in neutrophils, eosinophils, and basophils but not in mononuclear cells. Front. Immunol., 3, 277. CrossRef Scholar google search
Parakhonskiy B., Zyuzin M.V, Yashchenok A., Carregal-Romero S., Rejman J., Möhwald H., Parak W.J., Skirtach A.G. (2015) The influence of the size and aspect ratio of anisotropic, porous CaCO3 particles on their uptake by cells. J. Nanobiotechnol., 13, 53. CrossRef Scholar google search
Bittkau K.S., Dörschmann P., Blümel M., Tasdemir D., Roider J., Klettner A., Alban S. (2019) Comparison of the effects of fucoidans on the cell viability of tumor and non-tumor cell lines. Marine Drugs, 17(8), 441. CrossRef Scholar google search
Horie M., Tabei Y., Sugino S., Eguchi K., Chiba R., Tajika M. (2019) Comparison of proinflammatory potential of needleshaped materials: aragonite and potassium titanate whisker. Arch. Toxicol., 93(10), 2797–2810. CrossRef Scholar google search
Picco A., Kukulski W., Manenschijn H.E., Specht T., Briggs J.A.G., Kaksonen M. (2018) The contributions of the actin machinery to endocytic membrane bending and vesicle formation. Mol. Biol. Cell, 29(11), 1346–1358. CrossRef Scholar google search
Jiang M.H., Zhu L., Jiang J.G. (2010) Immunoregulatory actions of polysaccharides from Chinese herbal medicine. Expert Opin. Ther. Targets, 14(12), 1367–1402. CrossRef Scholar google search
Kim Y.S., Ryu J.H., Han S.J., Choi K.H., Nam K.B., Jang I.H., Lemaitre B., Brey P.T., Lee W.J. (2000) Gram-negative bacteria-binding protein, a pattern recognition receptor for lipopolysaccharide and beta-1,3-glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells. J. Biol. Chem., 275(42), 32721–32727. CrossRef Scholar google search
Zhang W., Oda T., Yu Q., Jin J.O. (2015) Fucoidan from Macrocystis pyrifera has powerful immune-modulatory effects compared to three other fucoidans. Marine Drugs, 13(3), 1084–1104. CrossRef Scholar google search
Apostolova E., Lukova P., Baldzhieva A., Katsarov P., Nikolova M., Iliev I., Peychev L., Trica B., Oancea F., Delattre C., Kokova V. (2020) Immunomodulatory and anti-inflammatory effects of fucoidan: a review. Polymers (Basel), 12(10), 2338. CrossRef Scholar google search
Nahm C., Koo Y., Yun T., Kim H., Kang B.-T., Yang M.-P. (2023) Fucoidan increases porcine neutrophil extracellular trap formation through TNF-α from peripheral blood mononuclear cells. J. Vet. Clin., 40(3), 175–181 DOI: 10.17555/jvc.2023.40.3.175. CrossRef Scholar google search
Castro R., Zarra I., Lamas J. (2004) Water-soluble seaweed extracts modulate the respiratory burst activity of turbot phagocytes. Aquaculture, 229, 67–78. CrossRef Scholar google search
Li H., Liu Y., Zheng Y., Zhang M., Wang X., Cheng H., Xu J., Chen X., Zhao X., Ding Z. (2023) Enhancement of seaweed polysaccharides (fucoidan and laminarin) on the phagocytosis of macrophages via activation of intelectin in blunt snout bream (Megalobrama amblycephala). Front. Marine Sci., 10, 1124880. CrossRef Scholar google search
Герасимов И.Г., Игнатов Д.Ю. (2005) Свертывание крови активирует нейтрофилы к респираторному взрыву. Бюллетень экспериментальной биологии и медицины, 140(1), 88–90. CrossRef Scholar google search
Johann S., Zoller C., Haas S., Blümel G., Förster R. (1996) Anticoagulant glycosaminoglycans activate respiratory burst in neutrophils and monocytes. Clin. Appl. Thromb. Hemost., 2(2), 116–122. CrossRef Scholar google search
Li G., Keenan A.C., Young J.C., Hall M.J., Pamuklar Z., Ohman E.M., Steinhubl S.R., Smyth S.S. (2007) Effects of unfractionated heparin and glycoprotein IIb/IIIa antagonists versus bivalirdin on myeloperoxidase release from neutrophils. Arterioscler. Thromb. Vasc. Biol., 27(8), 1850–1856. CrossRef Scholar google search
Freitas M., Porto G., Lima J.L., Fernandes E. (2008) Isolation and activation of human neutrophils in vitro. The importance of the anticoagulant used during blood collection. Clin. Biochem., 41(7–8), 570–575. CrossRef Scholar google search
Запорожец Т.С., Беседнова Н.Н., Лямкин Г.П., Лоенко Ю.Н., Попов А.М. (1991) Иммуномодулирующие свойства пектина из морской травы Zostera. Антибиотики и химиотерапия, 36(8), 31–34. Scholar google search
Zaitseva O.O., Polezhaeva T.V., Khudyakov A.N., Solomina O.N., Laptev D.S., Svedentsov E.P., Utemov S.V., Kostyaev A.A. (2013) Influence of pectins on NADPH oxidase and phagocytic activity of neutrophils during cryopreservation. CryoLetters, 34(5), 544–548. Scholar google search