К настоящему времени накоплен большой объём данных о биологической активности малотоксичного природного гликозида — глицирризиновой кислоты (ГК), однако механизм действия данного соединения на молекулярном уровне до конца не изучен. Расширение знаний о спектре клеточных белковых мишеней ГК способствует пониманию новых особенностей фармакодинамики. Целью работы была экспериментальная идентификация тканеспецифического спектра белковых молекул, взаимодействующих с глицирризиновой кислотой в модельной системе. Образцы интактного лизата ткани печени крысы инкубировали с ковалентно иммобилизованной ГК на EAH-сефарозе 4B с последующей элюцией аффинно выделенных белковых молекул и их трипсинолизом. С помощью масс-спектрометрического анализа были идентифицированы 88 потенциальных белковых мишеней ГК. Дополнительно, по результатам гель-хроматографического разделения лизата ГК влияла на полуколичественное распределение белков Aldh6a1, Decr1 и Sod1 во фракциях. Молекулярный докинг в программе Flare™ использовали для моделирования комплексов ГК и белков, по результатам которого выбрали 5 белков (Acox2, Acr1c9, Maoa, Mat1a, Nalcn) образующих с ГК комплексы с наиболее благоприятными параметрами ΔG и Rank score. Больше половины (57%) аффинно выделенных белков участвуют в процессах базового клеточного метаболизма и биотрансформации эндогенных и экзогенных соединений. Систематизированы и сопоставлены данные об ассоциациях потенциальных белковых мишеней ГК с заболеваниями и разными типами биологической активности ГК.
Ершов П.В. и др. Глицирризиновая кислота: новые потенциальные белковые мишени // Биомедицинская химия. - 2025. - Т. 71. -N 4. - С. 270-282.
Ершов П.В. и др., "Глицирризиновая кислота: новые потенциальные белковые мишени." Биомедицинская химия 71.4 (2025): 270-282.
Ершов, П. В., Яблоков, Е. О., Калужский, Л. А., Мезенцев, Ю. В., Гнеденко, О. В., Константинов, М. А., Торопыгин, И. Ю., Иванов, А. С. (2025). Глицирризиновая кислота: новые потенциальные белковые мишени. Биомедицинская химия, 71(4), 270-282.
Список литературы
Bravo V., Serrano M., Duque A., Ferragud J., Coronado P.J. (2023) Glycyrrhizinic acid as an antiviral and anticancer agent in the treatment of human papillomavirus. J. Pers. Med., 13(12), 1639. CrossRef Scholar google search
Graebin C.S. (2016) The Pharmacological Activities of Glycyrrhizinic Acid (“Glycyrrhizin”) and Glycyrrhetinic Acid. In: Sweeteners (Merrilon J.-M., Ramawat K.G., eds), Springer International Publishing AG, Cham, pp. 1–17. CrossRef Scholar google search
Palawisuth S., Triwatcharikorn J., Hu T., Jaruchanapongtorn S., Cheyasak N. (2023) Efficacy and safety of cream containing dipotassium glycyrrhizinate, Vaccinium myrtillius, epigallocatechin gallatyl glucoside, and Tamarindus indica compared with triamcinolone acetonide cream in eczema and psoriasis. J. Med. Assoc. Thai., 106(2), 115–121. CrossRef Scholar google search
Liu X., Tian X., Ma Z., Chen J., Huang Q., Gao P., Zhang C. (2022) Efficacy and safety of glycyrrhizic acid preparation treating comorbid liver injury in COVID-19: a systematic review. Front. Pharmacol., 13, 1003697. CrossRef Scholar google search
Nazari S., Rameshrad M., Hosseinzadeh H. (2017) Toxicological effects of Glycyrrhiza glabra (licorice): a review. Phytother. Res., 31(11), 1635–1650. CrossRef Scholar google search
Ивашкин В.Т., Бакулин И.Г., Богомолов П.О., Мациевич М.В., Гейвандова Н.И., Корой П.В., Недогода С.В., Саблин О.А., Ленская Л.Г., Белобородова Е.В., Багрецова А.А., Абдулхаков Р.А., Осипенко М.Ф., Осипова И.В., Почепцов Д.А., Чумачек Е.В., Хромцова О.М., Кузьмичева Е.В. (2017) Результаты многоцентрового двойного слепого рандомизированного плацебоконтролируемого пострегистрационного (IV фаза) клинического исследования “Гепард” (PHG-M2/P02-12), проведенного с целью оценки эффективности и безопасности комбинированного препарата глицирризиновой кислоты и эссенциальных фосфолипидов (Фосфоглив) при неалкогольной жировой болезни печени. Российский журнал гастроэнтерологии, гепатологии, колопроктологии, 27(2), 34–43. CrossRef Scholar google search
EU Clinical Trials Register goes live | European Medicines Agency. Retrieved June 12, 2025, from: https://www.ema.europa.eu/en/news/eu-clinical-trialsregister- goes-live. Scholar google search
Manns M.P., Wedemeyer H., Singer A., Khomutjanskaja N., Dienes H.P., Roskams T., Goldin R., Hehnke U., Inoue H.; European SNMC Study Group (2012) Glycyrrhizin in patients who failed previous interferon alpha-based therapies: biochemical and histological effects after 52 weeks. J. Viral Hepat., 19(8), 537–546. CrossRef Scholar google search
Liang J.-F., Qin X.-D., Huang X.-H., Fan Z.-P., Zhi Y.-Y., Xu J.-W., Chen F., Pan Z.-L., Chen Y.-F., Zheng C.-B., Lu J. (2024) Glycyrrhetinic acid triggers a protective autophagy by inhibiting the JAK2/STAT3 pathway in cerebral ischemia/ reperfusion injury. Neuroscience, 554, 96–106. CrossRef Scholar google search
Cheng X., Liu Y., Qi B., Wang Y., Zheng Y., Liang X., Chang Y., Ning M., Gao W., Li T. (2024) Glycyrrhizic acid alleviated MI/R-induced injuries by inhibiting Hippo/YAP signaling pathways. Cell. Signal., 115, 111036. CrossRef Scholar google search
Zhang L., Zhang N., Pang C. (2024) The mechanistic interaction, aggregation and neurotoxicity of α-synuclein after interaction with glycyrrhizic acid: modulation of synucleinopathies. Int. J. Biol. Macromol., 267(Pt 2), 131423. CrossRef Scholar google search
Wang Q., Lu T., Song P., Dong Y., Dai C., Zhang W., Jia X., Guo Z., Zhao M., Zhang J., Wang P., Wang J., Guo Q. (2024) Glycyrrhizic acid ameliorates hepatic fibrosis by inhibiting oxidative stress via AKR7A2. Phytomedicine, 133, 155878. CrossRef Scholar google search
Ni Q., Gao Y., Yang X., Zhang Q., Guo B., Han J., Chen S. (2022) Analysis of the network pharmacology and the structure-activity relationship of glycyrrhizic acid and glycyrrhetinic acid. Front. Pharmacol., 13, 1001018. CrossRef Scholar google search
Zhou N., Zou C., Qin M., Li Y., Huang J. (2019) A simple method for evaluation pharmacokinetics of glycyrrhetinic acid and potential drug-drug interaction between herbal ingredients. Sci. Rep., 9, 11308. CrossRef Scholar google search
Matsuoka K., Miyajima R., Ishida Y., Karasawa S., Yoshimura T. (2016) Aggregate formation of glycyrrhizic acid. Colloids Surf. A Physicochem. Eng. Asp., 500, 112–117. CrossRef Scholar google search
Поляков Н.Э., Лешина Т.В. (2023) Физико-химические подходы к изучению антиоксидантной активности глицирризина. Журнал физической химии, 97(5), 624–633. CrossRef Scholar google search
Wiśniewski J.R., Zougman A., Nagaraj N., Mann M. (2009) Universal sample preparation method for proteome analysis. Nat. Methods, 6(5), 359–362. CrossRef Scholar google search
Rappsilber J., Mann M., Ishihama Y. (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc., 2(8), 1896–1906. CrossRef Scholar google search
Ma J., Yoshimura M., Yamashita E., Nakagawa A., Ito A., Tsukihara T. (2004) Structure of rat monoamine oxidase A and its specific recognitions for substrates and inhibitors. J. Mol. Biol., 338(1), 103–114. CrossRef Scholar google search
Bennett M.J., Albert R.H., Jez J.M., Ma H., Penning T.M., Lewis M. (1997) Steroid recognition and regulation of hormone action: crystal structure of testosterone and NADP+ bound to 3α-hydroxysteroid/dihydrodiol dehydrogenase. Structure, 5(6), 799–812. CrossRef Scholar google search
González B., Pajares M.A., Hermoso J.A., Alvarez L., Garrido F., Sufrin J.R., Sanz-Aparicio J. (2000) The crystal structure of tetrameric methionine adenosyltransferase from rat liver reveals the methionine-binding site. J. Mol. Biol., 300(2), 363–375. CrossRef Scholar google search
Kang Y., Wu J.-X., Chen L. (2020) Structure of voltagemodulated sodium-selective NALCN-FAM155A channel complex. Nat. Commun., 11, 6199. CrossRef Scholar google search
Krissinel E., Henrick K. (2007) Inference of macromolecular assemblies from crystalline state. J. Mol. Biol., 372(3), 774–797. CrossRef Scholar google search
Elizarraras J.M., Liao Y., Shi Z., Zhu Q., Pico A.R., Zhang B. (2024) WebGestalt 2024: faster gene set analysis and new support for metabolomics and multi-omics. Nucleic Acids Res., 52(W1), W415–W421. CrossRef Scholar google search
Pletscher-Frankild S., Pallejà A., Tsafou K., Binder J.X., Jensen L.J. (2015) DISEASES: text mining and data integration of disease-gene associations. Methods, 74, 83–89. CrossRef Scholar google search
UniProt Consortium (2023) UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res., 51(D1), D523–D531. CrossRef Scholar google search
Szklarczyk D., Kirsch R., Koutrouli M., Nastou K., Mehryary F., Hachilif R., Gable A.L., Fang T., Doncheva N.T., Pyysalo S., Bork P., Jensen L.J., von Mering C. (2023) The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res., 51(D1), D638–D646. CrossRef Scholar google search
Franz M., Rodriguez H., Lopes C., Zuberi K., Montojo J., Bader G.D., Morris Q. (2018) GeneMANIA update 2018. Nucleic Acids Res., 46(W1), W60–W64. CrossRef Scholar google search
Bhattacharjee M., Manoharan S., Sathisaran U., Tamatam A., Perumal E. (2024) MAO inhibiting phytochemicals from the roots of Glycyrrhiza glabra L. J. Biomol. Struct. Dyn., 42(8), 3887–3905. CrossRef Scholar google search
Wang Z., Ma J., Yao S., He Y., Miu K.-K., Xia Q., Fu P.P., Ye Y., Lin G. (2022) Liquorice extract and 18β-glycyrrhetinic acid protect against experimental pyrrolizidine alkaloid-induced hepatotoxicity in rats through inhibiting cytochrome P450- mediated metabolic activation. Front. Pharmacol., 13, 850859. CrossRef Scholar google search
Lv Q.-L., Wang G.-H., Chen S.-H., Hu L., Zhang X., Ying G., Qin C.-Z., Zhou H.-H. (2015) In vitro and in vivo inhibitory effects of glycyrrhetinic acid in mice and human cytochrome P450 3A4. Int. J. Environ. Res. Public Health, 13(1), 84. CrossRef Scholar google search
Zdrazil B., Felix E., Hunter F., Manners E.J., Blackshaw J., Corbett S., de Veij M., Ioannidis H., Lopez D.M., Mosquera J.F., Magarinos M.P., Bosc N., Arcila R., Kizilören T., Gaulton A., Bento A.P., Adasme M.F., Monecke P., Landrum G.A., Leach A.R. (2024) The ChEMBL database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods. Nucleic Acids Res., 52(D1), D1180–D1192. CrossRef Scholar google search
Knox C., Wilson M., Klinger C.M., Franklin M., Oler E., Wilson A., Pon A., Cox J., Chin N.E.L., Strawbridge S.A., Garcia-Patino M., Kruger R., Sivakumaran A., Sanford S., Doshi R., Khetarpal N., Fatokun O., Doucet D., Zubkowski A., Rayat D.Y., Jackson H., Harford K., Anjum A., Zakir M., Wang F., Tian S., Lee B., Liigand J., Peters H., Wang R.Q.R., Nguyen T., So D., Sharp M., da Silva R., Gabriel C., Scantlebury J., Jasinski M., Ackerman D., Jewison T., Sajed T., Gautam V., Wishart D.S. (2024) DrugBank 6.0: the DrugBank knowledgebase for 2024. Nucleic Acids Res., 52(D1), D1265–D1275. CrossRef Scholar google search
Zhang Y., Sheng Z., Xiao J., Li Y., Huang J., Jia J., Zeng X., Li L. (2023) Advances in the roles of glycyrrhizic acid in cancer therapy. Front. Pharmacol., 14, 1265172. CrossRef Scholar google search
Shi J., Li J., Li J., Li R., Wu X., Gao F., Zou L., Mak W.W.S., Fu C., Zhang J., Leung G.P.-H. (2021) Synergistic breast cancer suppression efficacy of doxorubicin by combination with glycyrrhetinic acid as an angiogenesis inhibitor. Phytomedicine, 81, 153408. CrossRef Scholar google search
Hawthorne S., Gallagher S. (2008) Effects of glycyrrhetinic acid and liquorice extract on cell proliferation and prostate-specific antigen secretion in LNCaP prostate cancer cells. J. Pharm. Pharmacol., 60(5), 661–666. CrossRef Scholar google search
Shetty A.V., Thirugnanam S., Dakshinamoorthy G., Samykutty A., Zheng G., Chen A., Bosland M.C., Kajdacsy-Balla A., Gnanasekar M. (2011) 18β-Glycyrrhetinic acid targets prostate cancer cells by down-regulating inflammation-related genes. Int. J. Oncol., 39(3), 635–640. CrossRef Scholar google search
Li J.-Y., Cao H.-Y., Liu P., Cheng G.-H., Sun M.-Y. (2014) Glycyrrhizic acid in the treatment of liver diseases: literature review. BioMed Res. Int., 2014, 872139. CrossRef Scholar google search
Wang Q., Huang Y., Li Y., Zhang L., Tang H., Zhang J., Cheng G., Zhao M., Lu T., Zhang Q., Luo P., Zhu Y., Xia F., Zhang Y., Liu D., Wang C., Li H., Qiu C., Wang J., Guo Q. (2022) Glycyrrhizic acid mitigates tripterygium-glycosidetablet- induced acute liver injury via PKM2 regulated oxidative stress. Metabolites, 12(11), 1128. CrossRef Scholar google search
Sun X., Duan X., Wang C., Liu Z., Sun P., Huo X., Ma X., Sun H., Liu K., Meng Q. (2017) Protective effects of glycyrrhizic acid against non-alcoholic fatty liver disease in mice. Eur. J. Pharmacol., 806, 75–82. CrossRef Scholar google search
Chen S.-R., Chen X.-P., Lu J.-J., Wang Y., Wang Y.-T. (2015) Potent natural products and herbal medicines for treating liver fibrosis. Chin. Med., 10, 7. CrossRef Scholar google search
Richard S.A. (2021) Exploring the pivotal immunomodulatory and anti-inflammatory potentials of glycyrrhizic and glycyrrhetinic acids. Mediators Inflamm., 2021, 6699560. CrossRef Scholar google search
Alqahtani A., Hamid K., Kam A., Wong K.H., Abdelhak Z., Razmovski-Naumovski V., Chan K., Li K.M., Groundwater P.W., Li G.Q. (2013) The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications. Curr. Med. Chem., 20(7), 908–931. CrossRef Scholar google search
Akutagawa K., Fujita T., Ouhara K., Takemura T., Tari M., Kajiya M., Matsuda S., Kuramitsu S., Mizuno N., Shiba H., Kurihara H. (2019) Glycyrrhizic acid suppresses inflammation and reduces the increased glucose levels induced by the combination of Porphyromonas gulae and ligature placement in diabetic model mice. Int. Immunopharmacol., 68, 30–38. CrossRef Scholar google search
Sohn E.-J., Kang D.-G., Lee H.-S. (2003) Protective effects of glycyrrhizin on gentamicin-induced acute renal failure in rats. Pharmacol. Toxicol., 93(3), 116–122. CrossRef Scholar google search
Wu C.-H., Chen A.-Z., Yen G.-C. (2015) Protective effects of glycyrrhizic acid and 18β-glycyrrhetinic acid against cisplatin-induced nephrotoxicity in BALB/c mice. J. Agric. Food Chem., 63(4), 1200–1209. CrossRef Scholar google search
Haleagrahara N., Varkkey J., Chakravarthi S. (2011) Cardioprotective effects of glycyrrhizic acid against isoproterenol-induced myocardial ischemia in rats. Int. J. Mol. Sci., 12(10), 7100–7113. CrossRef Scholar google search
Li M., Wen Z., Xue Y., Han X., Ma D., Ma Z., Wu Z., Guan S., Sun S., Chu L. (2020) Cardioprotective effects of glycyrrhizic acid involve inhibition of calcium influx via L-type calcium channels and myocardial contraction in rats. Naunyn-Schmiedebergs Arch. Pharmacol., 393(6), 979–989. CrossRef Scholar google search
Shi M., Zhang X., Zhang R., Zhang H., Zhu D., Han X. (2022) Glycyrrhizic acid promotes sciatic nerves recovery in type 1 diabetic rats and protects Schwann cells from high glucose-induced cytotoxicity. J. Biomed. Res., 36(3), 181. CrossRef Scholar google search
Klein I., Isensee J., Wiesen M.H.J., Imhof T., Wassermann M.K., Müller C., Hucho T., Koch M., Lehmann H.C. (2023) Glycyrrhizic acid prevents paclitaxel-induced neuropathy via inhibition of OATP-mediated neuronal uptake. Cells, 12(9), 1249. CrossRef Scholar google search
Gendy A.M., El-Sadek H.M., Amin M.M., Ahmed K.A., El-Sayed M.K., El-Haddad A.E., Soubh A. (2023) Glycyrrhizin prevents 3-nitropropionic acid-induced neurotoxicity by downregulating HMGB1/TLR4/NF-κB p65 signaling, and attenuating oxidative stress, inflammation, and apoptosis in rats. Life Sci., 314, 121317. CrossRef Scholar google search
Paudel Y.N., Angelopoulou E., Semple B., Piperi C., Othman I., Shaikh M.F. (2020) Potential neuroprotective effect of the HMGB1 inhibitor glycyrrhizin in neurological disorders. ACS Chem. Neurosci., 11(4), 485–500. CrossRef Scholar google search
Zhao H., Wang S.-L., Qian L., Jin J.-L., Li H., Xu Y., Zhu X.-L. (2013) Diammonium glycyrrhizinate attenuates Aβ1–42-induced neuroinflammation and regulates MAPK and NF-κB pathways in vitro and in vivo. CNS Neurosci. Ther., 19(2), 117–124. CrossRef Scholar google search
Chandramouli C., Ting Y.S., Lyn L.Y., Ha T.S., Kadir K.A. (2011) Glycyrrhizic acid improves lipid and glucose metabolism in high-sucrose-fed rats. J. Endocrinol. Metab., 1(3), 125–141. CrossRef Scholar google search
Eu C.H.A., Lim W.Y.A., Ton S.H., Kadir K.A. (2010) Glycyrrhizic acid improved lipoprotein lipase expression, insulin sensitivity, serum lipid and lipid deposition in high-fat diet-induced obese rats. Lipids Health Dis., 9, 81. CrossRef Scholar google search
Lim W.Y.A., Chia Y.Y., Liong S.Y., Ton S.H., Kadir K.A., Husain S.N.A.S. (2009) Lipoprotein lipase expression, serum lipid and tissue lipid deposition in orally-administered glycyrrhizic acid-treated rats. Lipids Health Dis., 8, 31. CrossRef Scholar google search
Ojha S., Javed H., Azimullah S., Abul Khair S.B., Haque M.E. (2016) Glycyrrhizic acid attenuates neuroinflammation and oxidative stress in rotenone model of Parkinson’s disease. Neurotox. Res., 29(2), 275–287. CrossRef Scholar google search
Ren Q., Jiang X., Paudel Y.N., Gao X., Gao D., Zhang P., Sheng W., Shang X., Liu K., Zhang X., Jin M. (2022) Co-treatment with natural HMGB1 inhibitor glycyrrhizin exerts neuroprotection and reverses Parkinson’s disease like pathology in zebrafish. J. Ethnopharmacol., 292, 115234. CrossRef Scholar google search
Markina Y.V., Kirichenko T.V., Markin A.M., Yudina I.Y., Starodubova A.V., Sobenin I.A., Orekhov A.N. (2022) Atheroprotective effects of Glycyrrhiza glabra L. Molecules, 27(15), 4697. CrossRef Scholar google search
Zhu Z., Guo Y., Li X., Teng S., Peng X., Zou P., Zhou S. (2020) Glycyrrhizic acid attenuates balloon-induced vascular injury through inactivation of RAGE signaling pathways. Cardiovasc. Innov. Appl., 4(4), 239–249. CrossRef Scholar google search
Wang C.-Y., Kao T.-C., Lo W.-H., Yen G.-C. (2011) Glycyrrhizic acid and 18β-glycyrrhetinic acid modulate lipopolysaccharide-induced inflammatory response by suppression of NF-κB through PI3K p110δ and p110γ inhibitions. J. Agric. Food Chem., 59(14), 7726–7733. CrossRef Scholar google search
Yin Z., Zhu W., Wu Q., Zhang Q., Guo S., Liu T., Li S., Chen X., Peng D., Ouyang Z. (2019) Glycyrrhizic acid suppresses osteoclast differentiation and postmenopausal osteoporosis by modulating the NF-κB, ERK, and JNK signaling pathways. Eur. J. Pharmacol., 859, 172550. CrossRef Scholar google search
Ramli E.S.M., Suhaimi F., Asri S.F.M., Ahmad F., Soelaiman I.N. (2013) Glycyrrhizic acid (GCA) as 11β-hydroxysteroid dehydrogenase inhibitor exerts protective effect against glucocorticoid-induced osteoporosis. J. Bone Miner. Metab., 31(3), 262–273. CrossRef Scholar google search
Xu H., Fang L., Zeng Q., Chen J., Ling H., Xia H., Ge Q., Wu C., Zou K., Wang X., Wang P., Yuan W., Dong R., Hu S., Xiao L., He B., Tong P., Jin H. (2023) Glycyrrhizic acid alters the hyperoxidative stress-induced differentiation commitment of MSCs by activating the Wnt/β-catenin pathway to prevent SONFH. Food Funct., 14(2), 946–960. CrossRef Scholar google search
Liang X., Hu C., Wang Y. (2023) Biomimetic-modified bioprosthetic heart valves with controlled release of glycyrrhizin acid mediated by the inflammatory microenvironment for anti-thrombotic, anti-inflammatory, and anti-calcification. Chem. Eng. J., 472, 145044. CrossRef Scholar google search
Jiang L., Wang Q., Shen S., Xiao T., Li Y. (2014) Discovery of glycyrrhetinic acid as an orally active, direct inhibitor of blood coagulation factor Xa. Thromb. Res., 133(3), 501–506. CrossRef Scholar google search
Mendes-Silva W., Assafim M., Ruta B., Monteiro R.Q., Guimarães J.A., Zingali R.B. (2003) Antithrombotic effect of glycyrrhizin, a plant-derived thrombin inhibitor. Thromb. Res., 112(1–2), 93–98. CrossRef Scholar google search
Penninkilampi R., Eslick E.M., Eslick G.D. (2017) The association between consistent licorice ingestion, hypertension and hypokalaemia: a systematic review and meta-analysis. J. Hum. Hypertens., 31(11), 699–707. CrossRef Scholar google search