БИОИНФОРМАТИКА

УДК 004.382.7:615 ©Коллектив авторов

НЕСТЕРОИДНЫЕ ПРОТИВОВОСПАЛИТЕЛЬНЫЕ ЛЕКАРСТВЕННЫЕ СРЕДСТВА. СООБЩЕНИЕ І. ИССЛЕДОВАНИЕ ВЗАИМОСВЯЗИ "СТРУКТУРА - ЭФФЕКТИВНОСТЬ ПРОТИВОВОСПАЛИТЕЛЬНОГО ДЕЙСТВИЯ"

В.Р. Хайруллина¹, А.Д. Мухаметов¹*, Л.А. Тюрина², Г.Г. Гарифуллина¹, А.Я. Герчиков¹, Ф.С. Зарудий³

¹Башкирский государственный университет, 450074 г. Уфа, ул. Фрунзе 32; тел.: (3472) 736701; факс: (3472) 736701, эл. почта: gerchikov@inbox.ru, muaza@mail.ru ²Уфимский государственный нефтяной технический университет, г. Уфа; ³Институт органической химии уфимского научного центра РАН, г. Уфа

С использованием компьютерной системы SARD-21 (Structure Activity Relationship & Design) выявлены структурные признаки, характерные для высоко- и низкоэффективных нестероидных противовоспалительных лекарственных средств (НПВЛС), и степень их влияния на противовоспалительные свойства. Сформирована модель прогноза эффективности противовоспалительного действия НПВЛС с уровнем достоверного распознавания 76 и 81% по двум методам. Выявленные структурные параметры могут быть с успехом применены для создания новых высокоэффективных НПВЛС, а также для модификации структур известных НПВЛС, с целью увеличения эффективности их противовоспалительного действия.

Ключевые слова: нестероидные противовоспалительные лекарственные средства, теория распознавания образов, структура-свойство, циклооксигеназа.

ВВЕДЕНИЕ. На сегодняшний день известно свыше сотни нестероидных противовоспалительных лекарственных средств (НПВЛС), различающихся как по структуре, так и по эффективности противовоспалительного действия и степени токсичности [1-4]. Установлено, что противовоспалительное действие НПВЛС в значительной степени обусловлено ингибированием фермента циклооксигеназы (ЦОГ), существующей в виде двух близких по структуре изомерных форм: ЦОГ-1 и ЦОГ-2 [1]. Имеется множество работ, в которых обсуждается вклад каждой из изоформ ЦОГ в воспалительный процесс и терапевтическая эффективность НПВЛС, селективно ингибирующих эти изоформы [5]. Выявление различий в строении активных центров ЦОГ-1 и ЦОГ-2 а также того факта, что содержание ЦОГ-2 в тканях и органах повышается на фоне развития воспаления, послужило основанием для активного поиска и разработки НПВЛС, селективно ингибирующих активность этого фермента [5].

Механизм противовоспалительного действия НПВЛС в значительной степени связан с химическим взаимодействием структурных фрагментов НПВЛС с функциональными группами активных центров ЦОГ. Эффективность связывания определяется природой фармакофорных групп, а, следовательно, строением ингибиторов ЦОГ.

I

^{* -} адресат для переписки

НЕСТЕРОИДНЫЕ ПРОТИВОВОСПАЛИТЕЛЬНЫЕ СРЕДСТВА

Целью настоящей работы было выявление структурных фрагментов, ответственных за эффективное связывание молекул НПВЛС с активным центром циклооксигеназы, и создание на основе установленных закономерностей модели прогноза эффективности противовоспалительного действия НПВЛС. Для выполнения этой задачи была использована теория распознавания образов [6, 7], успешно реализованная в программном пакете SARD-21 (Structure Activity Relationship & Design) [8].

МЕТОДИКА ЭКСПЕРИМЕНТА. Анализ взаимосвязи "структура—эффективность противовоспалительного действия" выполнен с использованием программного пакета SARD-21 [8] и состоял из нескольких этапов:

1. Формирование обучающей выборки. Обучающая выборка сформирована на основе 99 соединений, классифицированных на две группы с альтернативными свойствами: ряд А содержит 52 эффективных противовоспалительных препарата, в ряд В включено 47 соединений, обладающих низкой эффективностью противовоспалительного действия. В качестве критерия при отнесении исходных соединений к классу высоко- или низкоэффективных использован параметр 50%-ного ингибирования изомерных форм циклооксигеназ (IC₅₀) [4, 9, 10]. Классификацию проводили исходя из результатов сопоставления ингибирующей активности различных НПВЛС относительно двух изоформ ЦОГ. К высокоэффективным были отнесены те из них, у которых константа ингибирования одной из изоформ циклооксигеназ не превышала 0,1 мкМ. К низкоэффективным отнесены те, для которых обе константы ингибирования превышали 1,0 мкМ (табл. 1).

Таблица 1. Типичные структуры НПВЛС обучающей выборки.

Класс высокоакти	вных соединений	Класс низкоактивных соединений		
H ₂ N O O S N-NH CF ₃	F O S NH ₂	HOOH	OH N- H H ₃ C CH ₃	
17,7/ 0,0093*	0,087/ 4,3	30/39	25/ 2,9	
SC-558	Капрофен	Ресвератрол	Мефенамовая	
			кислота	
CH ₃	HO O CI	OH O N CH ₃	H ₂ C N	
0,076/ 5,5	0,013/ 1,0	5,7/ 2,1	116/ 1,1	
Флурбипрофен	Индометацин	Мелоксикам	Эториковсиб	

Примечание: * Даны значения $IC_{50}(COX1)/IC_{50}(COX2)$, мкМ [9, 11].

2. Представление структуры химического соединения на языке фрагментарных дескрипторов (ФД). Полное дескрипторное описание исследуемых групп соединений проводили на базе соответствующих процедур системы с использованием трех типов ФД: 1) исходные фрагменты, в том числе элементы циклических систем и сами циклические системы; 2) субструктуры из нескольких химически связанных исходных фрагментов; 3) логические функции (конъюнкции, дизъюнкции, строгие дизъюнкции) на основе дескрипторов первого и второго типов.

Для формирования логических сочетаний использовано 35 фрагментарных признаков первого, 58 признаков второго и 69 признаков третьего типа.

- 3. Оценка информативности всех признаков. Характер влияния описывают при помощи коэффициента информативности (r), который изменяется от -1 до +1. Чем больше абсолютное значение r, тем выше вероятность влияния данного признака на проявление анализируемого свойства ("+" положительное, "-" отрицательное).
- 4. Формирование математической модели распознавания и прогноза и ее апробация на соединениях с известным противовоспалительным действием. Полное дескрипторное описание исследуемых групп соединений, содержащее 1009 признаков, является избыточным. С использованием экспериментально подобранных эвристических критериев 3/3 (т.е. признак должен встречаться в трех структурах своего ряда и одна структура для распознавания должна содержать минимум три признака) проведено сокращение его размерности до оптимального уровня и определены наиболее значимые факторы решающий набор признаков (РНП). Критериями включения признаков в РНП являются максимальная информативность, минимальная взаимозависимость и оптимальное узнавание распознаваемых объектов. Модели распознавания и прогноза представляют собой логические уравнения типа C=F(S), где С свойство (активность), F правила распознавания (алгоритм распознавания образов, по которому производится классификация исследуемых соединений, геометрический или метод "голосования"), S-набор распознающих структурных параметров (РНП).

Распознавание структур и прогноз эффективности противовоспалительного действия проводили с использованием двух методов теории распознавания образов: а) геометрического, основанного на определении расстояний до гипотетических эталонов в классе высоко- и низкоэффективных структур обучения и расстояния до идеальной структуры в многомерном пространстве РНП с использованием евклидовой метрики, б) метода голосования, основанного на сравнении числа положительных и отрицательных признаков, входящих в РНП и описывающих каждую анализируемую структуру.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ. Применив вышеописанный алгоритм к исследованию соединений обучающей выборки, нами были сформированы математические модели противовоспалительной активности. Они представляют собой сочетание правил классификации и решающего набора структурных параметров. При автоматическом отборе в рамках алгоритма в РНП (табл. 2) вошли фрагментарные признаки и их логические сочетания, потенциально ответственные за противовоспалительную активность (ПВА).

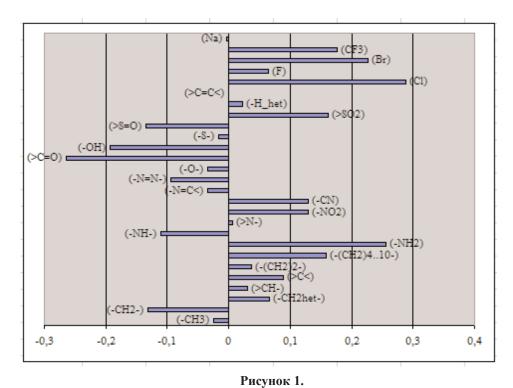
В качестве элементов сложных дескрипторов в совокупности признаков решающего набора, характеризующих активные ПВС, присутствуют: сульфоновая группа, бром, хлор, паразамещённый арил, группы с "подвижным водородом" (табл.2, признак 7: {(-OH)#(-NH-)#(-H het)}.

Полученная модель позволяет не только выявлять соединения, обладающие ПВА, но и ранжировать их по силе противовоспалительного действия. Тестирование её на исследуемой выборке, а также структурах исходного ряда показало, что при данных условиях достигнут максимальный уровень прогноза, как для соединений обучения (83 и 86%) по методам "голосования" и геометрического подхода, так и для исследуемых структур (81 и 76%, табл. 3). Результаты прогноза свидетельствует о применимости созданной математической модели для дальнейших исследований, дизайна и прогноза ПВА новых соединений.

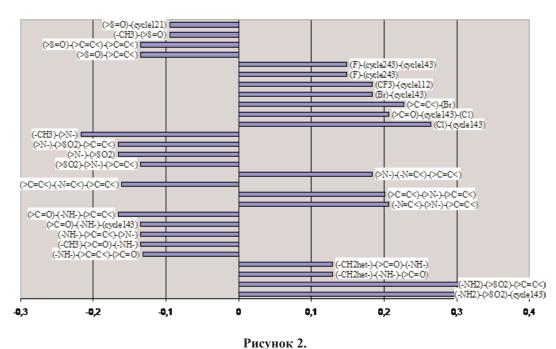
При формировании РНП дополнительно выявлен характер влияния индивидуальных циклических и ациклических структурных признаков на проявление ПВА. Функциональные группы, характерные для высоко- и низкоэффективных НПВЛС, представлены на рисунке 1. На рисунках 2 и 3 приведены азот-, кислород-, галоген- и серосодержащие субструктурные признаки эффективных НПВЛС. В таблице 4 приведены циклические фрагменты эффективных НПВЛС и соответствующие им коды.

НЕСТЕРОИДНЫЕ ПРОТИВОВОСПАЛИТЕЛЬНЫЕ СРЕДСТВА

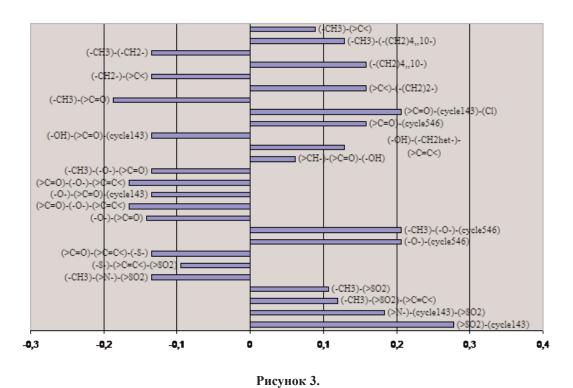
Таблица 2. Решающий набор признаков.


№	Содержимое признака	r	
признака			
1	{(>C=C<)-(-Cl)}! {(>SO ₂)-(1,4-дизам.бензол)}!	0,504	
	{(>C=C<)-(-Br)}		
2	{(-NH ₂)-(>SO ₂)}! {(>C=C<)-(-CI)}! {(>C=C<)-	0,497	
	(-Br)}		
3	(-Cl)! (-NH ₂)! (-Br)	0,465	
4	{(>SO ₂)-(1,4-дизам.бензол)}# {(>C=C<)-	0,422	
	(2,3-дизам.тиофен)}# {(>C=O)-(1,4-		
	дизам.бензол)}		
5	(1,4-дизам. бензол)! (>CH-)! (-S-)	0,362	
6	6 (1,3,5-тризам1Н пиразол)# (1,3,4-		
	тризам.бензол)# (1,1,2,3,4-пентазам1,2,3,4-		
	тетрагидро-1а ⁴ тиено [2,3-е][1,2] тиазин)		
7	(-OH)# (-NH-)#(-H_het)	0,307	
8	(>C=O) #(1,2,3,5-тетразам1H-индол)#	-0,346	
	(1,1,2,3,4-пентазам1,2,3,4-тетрагидро-1а ⁴		
	тиено [2,3-е][1,2] тиазин)		
9	(-O-)#(-N=C<)#(>N-)	-0,297	
10	(1,2,3,4,5-пентазам2,5-дигидро-1Н-пиррол)#	-0,277	
	(2,3-дизам. тетрагидро 2H-фуран)# (-CH ₂ -)		
11	{(-OH)-(>C=O)-(>C=C<)}		
12	{(-OH)-(>C=C<)}		
13	{(>C=O)-(>C=C<)}	-0,205	
14	(F)# (-H_het) #(>N-)	-0,202	

Примечание: !-знак дизъюнкции, #-знак строгой дизъюнкции.


Таблица 3. Результаты тестирования РНП на экзаменационной выборке.

№	Структура	Литер. данные	Гесии	Голос.
1	H'C NW CE'	A	A	A
	Целековсиб 1,2/0,83*		_	
2		A	A	В
-	Толметин 0,35/0,82	- n		
3	H.C. O. CH.	В	В	В
	Напровсен 9,3/28 н.с. , сн.	- n		
4	цс но 7,6/7,2	B	В	В
5	NO ₂	В	В	В
	O CH'			
	Нимесулид 1,0/1,9			
6	2	В	В	В
	Дифиунисан 11,3/8,2			
7	HW 50	A	A	A
8	Вальдекоксиб 25,4/0,89 сн.	_	A	
•	DE COR COR	A	A	-
	- 50/ 0,006			
9	N O	В	A	В
	- 2500/ 32,4			
10		В	A	В
	- 1000/3,1			


Примечание: * Даны значения $IC_{50}(COX1)$ / $IC_{50}(COX2)$, мкМ.

Влияние отдельных функциональных групп на эффективность противовоспалительного действия.

Влияние сульфоксид-, галоген- и азот- содержащих признаков на эффективность противовоспалительного действия. Здесь и далее цифрами обозначены коды циклических фрагментов, структурные формулы которых приведены в таблице 4.

Влияние алкил-, кислород-, серосодержащих признаков на противовоспалительную эффективность.

Таблица 4. Циклические фрагменты, характерные для эффективных НПВЛС.

R—N-NH R	N−R 116	R—R	R————R	R R
112*	116	121	143	243
O R	R R	O R	R S R	R R R
322	546	579	586	588

Примечание: * Цифрами обозначены коды циклов при расчёте.

НЕСТЕРОИДНЫЕ ПРОТИВОВОСПАЛИТЕЛЬНЫЕ СРЕДСТВА

Установлено, что из фрагментарных признаков наибольший вклад в проявление ПВА вносят такие функциональные группы, как –Cl, -Br, -NH₂, >SO₂, (рис. 1). Как свидетельствуют данные таблицы 4, из циклических фрагментов для эффективных НПВЛС характерны 1,4-ди- и 1,2,4,5-тетразамещенные ароматические системы. Анализ влияния субструктурных параметров на ПВА рассмотрен с учетом их принадлежности к различным функциональным группам. В соответствии с данными рисунков 2 и 3, вклад субструктурных дескрипторов в целевое свойство неоднозначен и меняется в зависимости от природы формирующих их фрагментов, а также способа их сочетания друг с другом. Определены наиболее значимые сочетания указанных выше функциональных групп.

В частности, установлено, что среди азотсодержащих признаков наибольшее влияние на ПВА оказывает сочетание первичной аминогруппы с сульфоновым фрагментом и 1,4-дизамещенным бензолом (рис. 2). Для эффективных соединений также характерны признаки, полученные в результате сочетания третичного азота с азометиновой и этиленовой группами (рис. 2). Интересно отметить, что способ сочетания фрагментов в этих признаках не влияет на целевое свойство.

Из галогенсодержащих признаков наибольший положительный вклад в ПВА показали хлор- и бромсодержащие ароматические фрагменты. Среди фторсодержащих признаков наибольшим положительным значением коэффициента информативности отличаются трифторметильная группа и ее сочетания с 1,3,5-тризамещенным 1H-пиразолом (цикл 112, табл. 4), а также фрагменты, полученные в результате включения фтора в структуру 1,4- и 1,2,4,5-тетразамещенных ароматических фрагментов.

Индивидуально сульфоновая группа вносит положительный вклад в изучаемое свойство. Помимо отмеченного выше сочетания первичной аминогруппы с сульфоновым фрагментом высокую положительную оценку информативности показали сочетания сульфоновой группы с 1,4-дизамещенной ароматической системой и третичной аминогруппой. В то же время признаки, содержащие третичный атом азота, сульфоновую и этиленовую группы независимо от способа их связывания друг с другом имеют отрицательные значения информативности и не типичны для эффективных НПВЛС (рис. 2). Сульфоксидная группа как индивидуально, так и в составе агрегированных признаков характерна для низкоэффективных НПВЛС (рис. 2).

В соответствии с данными рисунка 3, введение полиметиленовых групп в молекулы НПВЛС будет способствовать увеличению липофильности соединений и в то же время усилит их терапевтическое действие.

Среди кислородсодержащих признаков высокой отрицательной оценкой информативности характеризуются гидроксильная и карбонильная группы (рис. 3). Отрицательный вклад в целевое свойство вносит и карбоксильная группа (сочетание (>C=O)-(-OH)). В целом, влияние этих функциональных групп на ПВА неоднозначно. Так, например, сочетание третичного атома углерода с карбоксильной группой положительно влияет на проявление противовоспалительных свойств, в то время как связывание карбоксильной группы с *n*- и *о*-замещенным бензолом не типично для эффективных соединений. Высокую положительную оценку информативности показывают сочетания карбонильной группы с циклами 1,2,3,5-тетразамещенным -1H-индолом и 1,4-дизамещенным бензолом (цикл 546 и 143 соответственно, табл. 4).

Достоверность полученных результатов можно продемонстрировать на примере структур известных НПВЛС. Так, экспериментальное соединение SC-558 (табл. 1), которое оказывает высокий противовоспалительный эффект, содержит в своей структуре такие высокоинформативные признаки, как $(-NH_2)$ - $(>SO_2)$ -(1,4-дизам. бензол), (>C=C<)-(-Br), (1, 4-дизамещ. бензол)-(Br), $(-CF_3)$ и других (рис. 1, 2). Аналогично, эффективность известного НПВП капрофена (табл. 1) обусловлена присутствием в нём фрагментов $(-NH_2)$ - $(>SO_2)$ -(1,4-дизам. бензол); (-F); (1,4-дизамещ. бензол) (рис. 1, 2; табл. 4).

Ресвератрол, содержащий в своей структуре три гидроксильные группы, значительно уступает по эффективности противовоспалительного действия двум вышеназванным соединениям (табл. 1).

ЗАКЛЮЧЕНИЕ И ВЫВОДЫ.

Заключение: Результаты изучения взаимосвязи "структура-эффективность противовоспалительного действия" в ряду НПВЛС позволяют проводить виртуальный скрининг различных природных и синтетических веществ на наличие противовоспалительной активности (ПВА), предсказать возможные направления модификации уже известных и активно используемых НПВЛС с целью усиления их противовоспалительного действия, а также предложить ценные практические рекомендации к синтезу новых эффективных соединений.

Выводы:

- 1. Выявлены циклические и ациклические структурные признаки, характерные для эффективных НПВЛС.
- 2. На базе этих признаков сформирована модель прогноза эффективности противовоспалительного действия с уровнем достоверного распознавания 76 и 81% по двум методам.

Работа выполнена при финансовой поддержке в рамках проекта "Развитие научного потенциала высшей школы" (2006-2008 годы) и Роснауки (Госконтракт № 02.438.11.7003).

ЛИТЕРАТУРА

- 1. *Насонов Е.Л.* (2000) Нестероидные противовоспалительные препараты (Перспективы применения в медицине), Анко, Москва.
- 2. Brooks P., Day R. (1993) N. Engl. J. Med., 324, 1716–1725.
- 3. *Насонов Е.Л.* (2002) РМЖ, **10** (4), 206–212.
- 4. Laurel J., Benjamin D. (2002) Mediators of Inflammation, 11, 275–286.
- 5. Лазарева Д.Н., Муфазалова Н.А., Муфазалов Ф.Ф., Самигуллина Л.И., Рафикова Э.А. (2005) Нестероидные противовоспалительные препараты, Здравоохранение Башкортостана, Уфа.
- 6. Кадыров Ч.Ш., Тюрина Л.А., Симонов В.Д., Семенов В.А. (1989) Машинный поиск препаратов с заданными свойствами, Фан, Ташкент.
- 7. *Стьюпер Э., Брюггер У., Джурс П.* (1982) Машинный анализ связи химической структуры и биологической активности, Мир, М.
- 8. *Кирлан В.В.* (2003) Прогноз и молекулярный дизайн гетероорганических соединений с комплексом заданных свойств. Автореф. дисс. канд. хим. наук, БашГУ, Уфа.
- 9. *Dannhardt G., Kiefer W.* (2001) Eur. J. Med. Chem., **36**, 109–126.
- 10. Raichurkar A.V., Kulkarni V.M. (2003) I.E.J.M.D., **2**, 242–261.
- 11. Warner T.D., Jiuliano F., Vojnovic J. et al. (1999) Proc. Natl. Acad. Sci. USA Pharmacology, **96**, 7563-7568.

Поступила: 27. 07. 2006.

NONSTEROIDAL ANTI-INFLAMMATORY DRUGS. DECLARATION I. A STUDY OF INTERRELATION "STRUCTURE – THE EFFECTIVENESS OF ANTI-INFLAMMATORY ACTION"

V.R. Khayrullina', A.D. Mukhametov', L.A. Tjurina', G.G. Garifullina', A.J. Gerchikov', F.S. Zarudiy'

¹Bashkortostan State University, Frunze ul., 32, Ufa, 450074 Russia; tel./fax: (+7 3472) 73-67-01; e-mail: gerchikov@inbox.ru

²Ufa State Petroleum Technological University, Ufa, Russia

³Institute of Organic Chemistry, Ufa Science Centre of RAS, Ufa, Russia

Using the computer system SARD-21 (Structure Activity Relationship & Design) the structural features typical for high- and low- effective nonsteroid anti-inflammatory drugs (NSAIDs) were analyzed. This information has been used for the model for prediction of anti-inflammatory effectiveness of medicines with 76% and 81% level of recognition by two methods. New data can be used for creating new highly effective NSAIDs, and for increasing effectiveness of already known components.

Key words: Nonsteroidal anti-inflammatory drugs, theory of shape recognition, structure-activity, cyclooxygenase.