УДК [577.164.1:577.15]:616.379-008.64 ©Коллектив авторов

ВЛИЯНИЕ КОМПЛЕКСОВ ВОДОРАСТВОРИМЫХ ВИТАМИНОВ НА АКТИВНОСТЬ НЕКОТОРЫХ ФЕРМЕНТОВ ПРИ ДИАБЕТЕ

С.А. Петров, А.О. Данилова*, Л.М. Карпов

Одесский национальный университет им. И.И. Мечникова, пер. Шампанский, 2, Одесса, 65023 Украина; тел.: (0482) 68-78-73; эл. почта: olgaivdan@mail.ru

Внутримышечное введение витаминных комплексов, включающих тиамина хлорид (B_1) , рибофлавин (B_2) , липоевую кислоту (N), пантотенат кальция (B_5) , пиридоксина гидрохлорид (B_6) , фолиевую кислоту (B_9) , аскорбиновую кислоту (C) позволяет уменьшить уровень глюкозы в сыворотке крови крыс с аллоксановым диабетом, стабилизировать активность ряда ферментов энергетического обмена, лактатдегидрогеназы и пируватдегидрогеназного комплекса.

Ключевые слова: витамины, диабет, активность ферментов, энергетический обмен.

ВВЕДЕНИЕ

Ферментативные системы клеток (оксидоредуктазы, трансферазы, гидролазы и др.), катализирующие ключевые реакции клеточного метаболизма, всегда чутко реагируют действии экстремальных факторов на организм. В процессе онтогенеза у крыс в тканях внутренних органов возникают изменения эффективности условия ДЛЯ функционирования ферментов, которые катализируют окислительно-восстановительные пути метаболизма карбонильных соединений. Изучение кислородзависимых процессов (окислительное фосфорилирование, микросомное окисление) под воздействием негативных факторов. экспериментальных например патологий. является одним из актуальных вопросов биохимии, физиологии, биотехнологии [1-4].

Системы регуляции и контроля обменных процессов осуществляются благодаря ферментам, для многих из которых важную роль играет наличие витаминов и их переход в активные формы. Этот вопрос имеет теоретическое и практическое значение, поскольку позволяет приблизиться к пониманию механизмов функционирования организма как целостной системы и, благодаря этому создаёт условия для решения проблем, связанных с повышением стойкости живых организмов к неблагоприятным

воздействиям. В последние годы в этом направлении проводятся немало исследований [3-7], но много аспектов, связанных, например, с регуляцией и функционированием отдельных процессов, изучены недостаточно.

Поэтому целью исследования было изучение влияния введения витаминных комплексов на активность лактатдегидрогеназы и пируватдегидрогеназного комплекса и распределения форм витаминов по тканям животных с аллоксановым диабетом.

МЕТОДЫ

Экспериментальные исследования проводили на белых крысах-самцах линии Wistar, придерживаясь научно-практических рекомендаций по уходу за лабораторными животными и обращению с ними и "Европейской конвенции о защите позвоночных животных, которые используются для экспериментальных и научных целей". Животных содержали на стандартном рационе в условиях вивария по одному животному в разных клетках. За сутки до опыта их лишали еды, при свободном доступе к воде [8].

Изучение влияния четырёхкомпонентных витаминных комплексов на биохимические процессы и основные биохимические показатели

^{* -} адресат для переписки

проводили в пробах крови, гомогенатах печени, почек, кишечника, поджелудочной железы. Витаминные смеси готовились в виде водных растворов соответствующих витаминов. В работе были использованные витамины российского производства Белгородского фармацевтического завода: тиамина хлорид (В₁), рибофлавин (B₂), липоевая кислота (N), пантотенат кальшия (B_5) пиридоксина гидрохлорид (В₆), фолиевая кислота (В₉), аскорбиновая кислота (С). В состав витаминного комплекса 1 (ВК 1) входили: Во 0,25 мг, В1 4 мг, N 15 мг, С 50 мг из расчёта на г веса животного, в состав витаминного комплекса 2 (ВК 2): ${\rm B_2}$ и ${\rm B_6}$ по 3 мг, ${\rm B_5}$ 30 мг, C 50 мг из расчёта на г веса животного.

В предварительных исследованиях мы одноразово внутримышечно вводили крысам ВК 1 и ВК 2. При изучении аллоксанового диабета инъекции делали ежесуточно. Всего в этой серии эксперимента были задействованы 130 животных с весом 200±10 г.

Диабет вызывали одноразовым внутрибрюшинным введением аллоксана гидрата фирмы "Сhemapol" (Чехия) в количестве 15 мг/100 г массы животного после предварительного суточного голодания, что согласуется с общепринятыми методами индуцирования диабета [5]. Витаминные комплексы вводили животным внутримышечно в объёме 0,2 мл водного раствора 10 дней ежесуточно.

Животные были разделены на группы: 1a — интактные, 1б — с аллоксановым диабетом, ВК — получавшие инъекции комплекса витаминов ВК 1 — первая композиция, ВК 2 — вторая, а — здоровые животные, б — с диабетом.

В гомогенатах внутренних органов, которые готовили с использованием фосфатного буфера рН 7,2, определяли содержание окисленных и восстановленных форм никотинамидных коферментов, активность лактатдегидрогеназы (ЛДГ), пируватдегидрогеназного комплекса Содержание пирувата регистрировали колориметрическим методом, используя стандартных наборов фирмы "Lachema" (Чехия), по количеству лактата, восстановленного ПОД действием лактатдегидрогеназы в присутствии НАДН. изменения углеводного Оценку обмена осуществляли путём расчёта соотношения лактата к пирувату [9].

Для определения разных фракций витамина B_1 (общий тиамин, свободный тиамин, фосфорные эфиры тиамина) нами была использованная методика Елисеевой Г.Д. [11]. Метод базируется на окислении тиамина

в тиохром, экстракции последнего в органический растворитель и измерении интенсивности флуоресценции.

Все экспериментальные данные были обработаны с использованием офисного пакета "Microsoft Office Professional" с расчётом среднего значения, его ошибки, значений критерия Стьюдента и достоверности изменений между контрольными и опытными сериями. Сравнения результатов проводили по формулам математической статистики [12].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Через 5 дней после введения аллоксана развилась выраженная форма диабета, при этом крысам продолжали ежедневно делать инъекции ВК 1 и ВК 2. В контрольной группе животных с аллоксановым диабетом базальный уровень глюкозы В сыворотке крови 22.5 ± 1.6 ммоль/л, в группах животных, которые получали ВК 1 и ВК 2 он был 13,6±1,3 ммоль/л и 12,7±1,5 ммоль/л соответственно. Проведение глюкозотолерантного теста (ГТТ) позволило рассчитать постгликемический коэффициент (коэффициент Рафальского) [6], который у животных с диабетом был 1,1 (24,8/22,5), у крыс, которые получали ВК 1 - 1,05, ВК 2 – 1,03, тогда как у интактных животных он был 0,9. У крыс, которым вводили витаминные комплексы (группы ВК 1 б и ВК 2 б) уровень глюкозы ниже сравнении В с контрольной группой с диабетом 1 б на 39,6-43,6%.

Известно [13, 14], что 85-90% фосфорных эфиров тиамина (ФЭТ) представлены тиаминдифосфатом. Введение крысам ВК 1 (табл. 1) существенно повышает все его формы: общий B_1 — на 51,6%, ФЭТ — на 51,3%, а свободный — на 57%. Последнее нельзя считать позитивным фактом, так же, как и некоторое ухудшение других показателей при введении ВК 2.

В гомогенатах печени измеряли содержание общих флавинов, содержание FAD, FMN, сумму (РФ + FMN). Инъекции животным ВК 2 вызывали существенное (особенно через 3 и 24 ч) повышение уровня окисленных и несколько меньшее восстановленных форм никотинамидных коферментов, в печени и почках. При этом эффект был наибольшим через 3 ч (рис. 1). Под действием ВК 2 возрастали все показатели, причем наибольший рост был в печени, где увеличение достигало через 1 ч (табл. 2). В почках и кишечнике закономерности были приблизительно такими же: возрастание содержания флавинов

Таблица 1. Содержание общего и свободного тиамина, фосфорных эфиров (Φ ЭТ) в печени крыс через 3 ч после инъекции, витаминных комплексов (n=8).

№ п/п	Группа	Фракці	ии витамин	а В ₁ , мкг %	Часть ФЭТ, %	Соотношение ФЭТ /
J\2 11/11	животных	Общий тиамин	ТЄФ	Свободный тиамин	часть ФЭ1, 70	свободный тиамин
1	Контроль	535±14	501±22	34,2±2,4	93,6	14,7
2	ВК 1	811±35*	758±33*	53,7±2,5*	93,5	14,1
3	ВК 2	516±13	471±24	45,2±1,2*	91,3	10,4

Примечание. Здесь и в таблицах 2-6 * - разница с контролем достоверна (p<0,05).

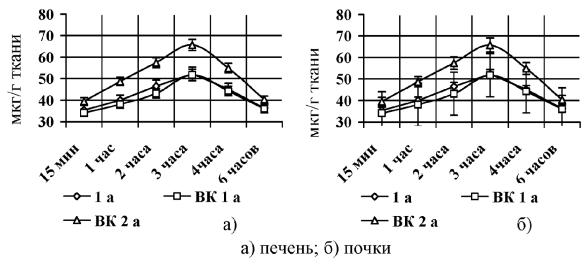


Рисунок 1. Содержание флавинов в органах крыс после введения ВК.

реализовывалось полностью за счёт роста фракции FAD. Через 3 ч тенденция осталась такой же (табл. 3). Кроме При введении ВК 1 эти показатели были немного меньше, чем у животных контрольной группы, но существенно не отличались, либо разница была недостоверной. В печени крыс, которым вводили ВК 2 несколько выше было содержание восстановленных форм коферментов и именно оно в большей мере росло после введения поливитаминного комплекса.

Известно, что при введении рибофлавина (РФ) здоровым крысам заметно повышалось количество FAD в печени и почках, а FMN — в тонком кишечнике [13, 15, 17]. Подкожно или внутрибрюшинно введённый рибофлавин через 1 ч максимально поступает в ткани почек, тонкого кишечника, печени, сердца, желудка, селезёнки и мышц [15].

Определение активности пируватдегидрогеназного комплекса (ПДГК) в органах крыс было необходимо, поскольку известна исключительно важная роль обмена пировиноградной кислоты для энергетического обмена, в частности, в клетках печени [16]. Полученные данные (табл. 3) свидетельствуют,

что витаминные комплексы ВК 1 и ВК 2 через час незначительно повышают активность ПДГК во всех исследованных органах, причём наиболее заметный прирост был в печени.

Через 3 ч повышение активности ПДГК во всех исследованных органах было заметнее (табл. 4), причем этот прирост был наибольшим в печени. Через 4 и 24 ч после введения эффект действия четырёхкомпонентных ВК становился намного меньшим, но и спустя сутки оставался выше, чем у контрольной группы животных (рис. 2). Таким образом, ВК имеют заметное стимулирующее действие на активность ПДГК, причём для 1 ВК эти значения немного выше, чем для 2 ВК, хотя разница между эффективностью этих комплексов не очень большая.

Необходимо отметить, что через 24 ч эффект действия ВК был незначительным и активность ПДГК в печени была почти на уровне активности через 1 ч после введения, то есть для ВК 2 а лишь на 16% выше, чем начальная и для ВК 1 а на 36% выше контроля. В кишечнике изменение активности было незначительным.

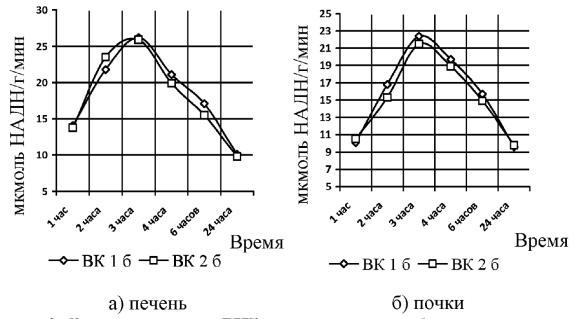
ИСПОЛЬЗОВАНИЕ КОМПЛЕКСОВ ВОДОРАСТВОРИМЫХ ВИТАМИНОВ ПРИ ДИАБЕТЕ

Таблица 2. Содержание флавинов в органах крыс через час после введения ВК, (мкг/г ткани), (n=8).

Орган	Помоложом	Группа животных				
Орган	Показатель	1 a	ВК 1 а	ВК 2 а		
	Общие флавины	39,8±2,1	37,4±2,4*	46,1±2,8*		
	FAD	29,5±1,4	28,1±1,7*	34,4±1,9*		
	FMN	9,4±1,3	8,6±1,2*	10,5±1,8*		
Печень	РФ	0,9±0,07	0,7±0,09	1,2±0,11		
	PΦ + FMN	10,3±1,2	9,3±1,1	11,7±1,4		
	Количество FAD, %	74,1	75,1	74,6		
	Соотношение FAD /(PФ + FMN)	2,9	3	2,9		
	Общие флавины	39,2±2,4	38,1±3,1*	47,8±3,1*		
	FAD	23,5±1,8	23,9±2,2	30,7±1,7*		
	FMN	14,6±1,1	13,3±1,3*	15,9±1,2*		
Почки	РФ	1,1±0,9	0,9±0,8	1,2±0,7		
	PΦ + FMN	15,7±1,7	14,2±1,4	17,1±1,5		
	Количество FAD, %	60	62,7	64,2		
	Соотношение FAD /(PФ + FMN)	1,5	1,7	1,8		
	Общие флавины	4,5±0,4	4,3±0,6	5,1±0,9*		
	FAD	3,2±0,3	3,0±0,4	3,7±0,4*		
	FMN	1,2±0,4	1,2±0,3	1,2±0,3		
Кишечник	РФ	0,1±0,03	0,1±0,02	0,2±0,04		
	PΦ + FMN	1,3±0,08	1,3±0,07	1,4±0,09		
	Количество FAD, %	71,1	69,8	72,5		
	Соотношение FAD /(PФ + FMN)	2,5	2,3	2,6		

 $\it Таблица 3.$ Содержание фракций флавинов в органах крыс через три часа после введения ВК, (мкг/г ткани), (n=8).

36 /	Группа	Фракции ви	тамина В ₂ , м	Количество	Соотношение	
№ п/п	животных	Общие флавины (ОФ)	ФАД	РФ + ФМН	ФАД, %	ФАД / (РФ + ФМН)
1	1 a	48,6±2,2	26,8±0,6	21,8±0,9	55,1	1,2
2	BK 1 a	41,8±2,3	27,2±1,5	14,6±1,3	65,1	1,9
3	ВК 2 а	67,9±2,6*	48,4±3,9*	19,5±1,7	71,3	2,5


В целом, по данным проведенных исследований можно отметить, что при сочетании витаминов B_1 , B_9 , N, C или B_2 , B_5 , B_6 , C возможно стимулирование прироста содержания коферментных форм у животных, получавших инъекции этих BK.

Таким образом, взаимодействие между витаминами представляет очень интересную, хотя и сложную для исследований, проблему. Можно предположить, что в организме существует несколько уровней контроля (всасывание, проникновение через биомембраны, транспорт, депонирование,

биосинтез коферментных форм, взаимодействие с апоферментами, метаболизм, выведение из организма и т.п.), ответственных за установление и поддержание оптимального соотношения между содержимым коферментов при разной обеспеченности витаминами.

Полученные данные подтверждают мнение многих исследователей, что соотношение витаминов при их поступлении в организм, особенно в виде комплексных поливитаминных препаратов, может иметь решающее значение для эффективности реализации ими их специфических функций [16-19]. Однако,

Орган	Группа		A	ктивность ПД	ГК	
Орган	животных	1 ч	3 ч	6 ч	8 ч	24 ч
	1 a	9,4±0,2	_	_	_	_
Печень	ВК 1 а	12,8±0,3*	28,2±0,3	22,7±0,2	19,5±0,3	13,7±0,2
	ВК 2 а	10,9±0,2*	25,7±0,2	18,7±0,2	16,2±0,4	11,5±0,3
	1 a	18,2±0,4		—		—
Почки	ВК 1 а	22,7±0,2*	30,1±0,3	27,5±0,4	26,1±0,5	24,3±0,4
	ВК 2 а	21,9±0,2*	29,2±0,4	25,8±0,3	25,4±0,4	23,7±0,6
	1 a	21,3±0,2		—		
Поджелудочная железа	ВК 1 а	27,4±0,3*	38,8±0,3	33,5±0,3	32,3±0,4	29,3±0,4
	ВК 2 а	25,8±0,3*	37,6±0,4	32,1±0,4	31,8±0,5	28,6±0,3
	1 a	6,7±0,2				
Толстый кишечник	ВК 1 а	8,5±0,4*	10,2±0,4	11,3±0,3	10,8±0,3	9,2±0,3
	ВК 2 а	8,1±0,3*	9,8±0,3	10,7±0,5	10,2±0,2	8,9±0,3
	1 a	6,6±0,2				
Тонкий кишечник	ВК 1 а	7,9±0,2*	8,7±0,4	9,4±0,5	8,5±0,32	8,2±0,5
	ВК 2 а	7,5±0,3*	8,8±0,3	9,2±0,3	8,4±0,4	8,0±0,3
	1 a	7,2±0,2				
12-перстная кишка	ВК 1 а	8,0±0,3*	8,7±0,2	9,1±0,3	8,5±0,4	8,3±0,2
	ВК 2 а	7,7±0,2*	8,2±0,3	8,5±0,2	8,1±0,3	8,0±0,1

Рисунок 2. Изменение активности ПДГК в органах крыс с диабетом после введения им витаминных комплексов.

решение этой проблемы очень сложно, когда речь идет уже не о смесях из двух-трёх компонентов, а о комплексах с большим их числом. Очевидно, что для этого ещё необходимо разработать адекватные методологические подходы.

Влияние ВК на содержание окисленных и восстановленных форм никотинамидных

коферментов приведено в таблице 5. В гомогенате печени измеряли содержание окисленых форм никотинамидних коферментов — сумму (NAD + NADP), и восстановленных — сумму (NADH + NADPH).

Выяснено, что при диабете (группа 1 б) содержание окисленных форм снижается относительно контроля в печени на 21,2%,

ИСПОЛЬЗОВАНИЕ КОМПЛЕКСОВ ВОДОРАСТВОРИМЫХ ВИТАМИНОВ ПРИ ДИАБЕТЕ

Таблица 5. Влияние ВК на уровень окисленны	(O) и восстановленных (B) форм никотинамидных
коферментов (мкг/г ткани) в органах крыс, (n=8).	

Орган	Показатель	Контроль 1 а	Диабет			
Орган	Показатель	Контроль г а	1 б	BK 1 6 1,7±7,2* 243,3±11,4* 34±13,7* 388,3±9,4* 3,1±20,9 632,6±14,5 1.02 1,2 3±10,2* 325,0±11,2* 325,0±11,2* 32±16,1* 402,9±8,6* 0,6±26,3 727,9±14,1 1,05 1,24 6,1±8,4* 262,0±9,8* 3,2±9,9* 314,3±9,4* 0,3±17,5 576,3±13,9 1,03 1,2 3,±11,2* 262,7±10,6* 5,5±11,7* 325,7±8,4 8,8±22,9 588,4±16,1	ВК 2 б	
	В	253,5±12,4	251,7±7,2*	243,3±11,4*	334,5±9,8*	
Печень	О	410,7±9,8	256,4±13,7*	388,3±9,4*	384,7±12,6*	
Печень	O + B	664,2±16,6	508,1±20,9	632,6±14,5	719,2±16,7	
	O / B	1,62	1.02	1,2	1,15	
	В	246,9±11,2	156,4±10,2*	325,0±11,2*	512,7±8,3*	
Почки	О	214,5±5,7	164,2±16,1*	402,9±8,6*	400,5±12,1*	
ПОЧКИ	O+ B	363,8±11,8	320,6±26,3	727,9±14,1	913,2±17,9	
	O/ B	1,43	1,05	1,24	1,28	
	В	212,7±8,4	236,1±8,4*	262,0±9,8*	261,5±8,9*	
Поджелудочная	О	391,4±10,2	243,2±9,9*	314,3±9,4*	300,7±12,6*	
железа	O + B	604,1±14,7	479,3±17,5	576,3±13,9	562,2±17,9	
	O / B	1,84	1,03	1,2	1,15	
	В	276,1±9,7	204,3±11,2*	262,7±10,6*	252,7±8,5*	
Кишечник	О	319,2±6,4	214,5±11,7*	325,7±8,4	323,3±11,3	
Кишсчник	O+ B	595,3±11,2	418,8±22,9	588,4±16,1	576,0±18,5	
	O/ B	1,56	1,04	1,24	1,28	

в почках на 25,4% (растёт), в поджелудочной железе на 18,7%, в кишечнике - на 5,3%. Содержание восстановленных форм в группе ВК 1 б в печени и кишечнике изменялось незначительно, а в почках, поджелудочной железе их содержание увеличилось на 31% и 23% по сравнению со здоровыми животными группы 1 а. Содержание общих никотинамидных коферментов незначительно менялось в печени и кишечнике, поджелудочной железе, снижалось на 20,7%, а в почках увеличивалось на 61,4%, в сравнении с контролем 1 а. Инъекции ВК 2 животным с экспериментальным аллоксановым диабетом приводили к уменьшению содержания окисленных форм никотинамидных коферментов во всех органах, кроме кишечника. При введении ВК соотношение окисленных к восстановленным формам в печени, почках, поджелудочной железе и кишечнике в среднем на 10-15% выше, чем в группе 1 б, следовательно, оба ВК оказывают существенное влияние на уровень никотинамидных коферментов, причем значения, более близкие к норме были у животных группы ВК 1 б в сравнении с группой ВК 2 б. Оба витаминных комплекса (ВК 1 и ВК 2), оказывали корригирующее действие во всех органах на общее содержание никотинамидных ферментов и на отдельных формы. Соотношение окисленных к восстановленным формам никотинамидных коферментов имело тенденцию к нормализации во всех изученных органах на фоне инъекций обоих ВК.

Влияние ВК на активность ЛДГ в органах подопытных животных представлена в таблице 6. Из приведенных данных видно, что использование ВК позволяет снизить активность ЛДГ во всех исследованных органах у здоровых животных (группы ВК 1 а, ВК 2 а).

Таблица 6. Влияние ВК на уровень ЛДГ (мкмоль НАДН/г/мин) в органах крыс, (n=10).

Группа животных	Исследуемый орган							
	толстый	тонкий	12-перстная	почки	печень	поджелудочная		
	кишечник	кишечник	кишка			железа		
1 a	58,12±2,1	70,6±4,3	65,11±3,2	190,2±5,2	95,7±2,2	210,4±4,8		
1 б	70,91±3,4*	90,72±4,2*	82,49±3,4*	230,4±8,4*	68,3±5,6*	389,6±9,2*		
ВК 1 а	44,13±2,4*	65,11±3,2*	61,12±2,9*	183,4±8,4	87,1±4,1*	198,5±6,9		
ВК 1 б	41,22±2,9*	61,92±4,1	60,85±2,7*	181,5±7,3	86,5±3,8*	193,7±7,4		
ВК 2 а	59,52±3,5	73,48±1,9*	70,15±3,1*	205,4±7,9*	72,7±3,1*	244,5±9,5*		
ВК 2 б	62,39±2,8	73,75±1,6*	69,9±4,3*	203,8±8,2*	73,1±3,9*	243,9±10,2*		

После введения аллоксана активность фермента в значительной степени увеличивается во всех органах в контрольной группе 1 б, кроме печени, где происходит уменьшение активности на 28,6%. Введение ВК крысам с диабетом (группы ВК 1 б и ВК 2 б) достоверно снижает активность фермента, 12-16% соответственно на В толстом кишечнике, на 19% в тонком кишечнике, на 15% в 12-перстной кишке и больше всего на 37% в поджелудочной железе. В печени активность была меньше, чем у здоровых крыс, получавших ВК.

Таким образом, ВК снижали активность ЛДГ относительно группы аллоксандиабетических животных 1 б во всех органах кроме печени.

Динамика изменений активности пируватдегидргеназного комплекса ПДГК в органах крыс приведена в таблице 7. У животных группы 1 б показатель активности ПДГК уменьшался в среднем в разных органах в 1,5-2 раза. В группах, получавших инъекции ВК, уменьшения активности было намного меньше (табл. 7). При этом в печени активность ПДГК в группах ВК 1 б, ВК 2 б практически не отличается от активности ПДГК в контроле без диабета (1 а).

Поскольку стимулирующее действие ВК более всего заметно в печени и почках [16], нами исследованы изменения активности ПДГК через 1, 3, 6, 24 ч после введения ВК 1 и ВК 2. Из приведенных на рисунке 2 кривых видно, что, как и у крыс без диабета, максимальная активность выявлена через 3 ч после инъекций, потом активность уменьшается, а спустя сутки остаточное увеличение активности в печенке и почках лишь на 17-22% выше группы 1 б с аллоксановым диабетом.

Действие ВК является многовекторным и сложным, причем их введение вызывает усиление тканевого дыхания, которое повышает общий уровень обменных процессов [16]. Проведенные исследования подтверждают способность ВК усиливать синтез коферментных форм, благодаря чему увеличивается и ферментная активность. Это подтверждает и оценка соотношения лактата к пирувату в органах животных с аллоксановым диабетом, поскольку благодаря введению ВК заметна чёткая тенденция к его снижению во всех органах, кроме почек (рис. 3).

Выявленное увеличение соотношения лактата к пирувату у животных с аллоксановым диабетом (группа 1 б) свидетельствует об активации

 ${\it Таблица}$ 7. Изменение активности ПДГК в органах крыс с диабетом после введения витаминных комплексов, (n = 8).

Группа			Исследуем	ый орган		
животных	толстый кишечник	тонкий кишечник	12-перстная кишка	почки	печень	поджелудочная железа
1 a	6,7±0,2	6,6±0,2	7,2±0,2	18,2±0,4	9,4±0,2	21,3±0,2
ВК 1 б	6,4±0,5	4,2±0,4*	6,3±0,2*	9,5±0,6*	10,1±0,4	15,5±0,5*
ВК 2 б	5,9±0,7	4,0±0,3*	6,5±0,3*	9,7±0,5*	9,8±0,7	15,6±0,4*

Примечание. Активность ПДГК выражена в мкмоль NADH/г/мин. * - разница с контролем достоверна (p<0,05).

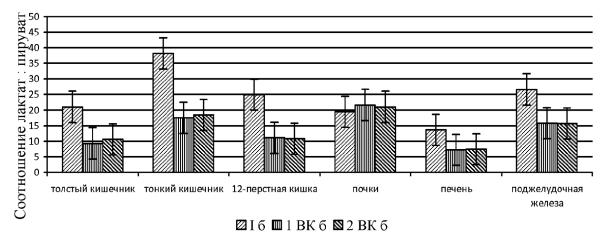


Рисунок 3. Соотношение лактата к пирувату в разных органах животных с аллоксановым диабетом.

ИСПОЛЬЗОВАНИЕ КОМПЛЕКСОВ ВОДОРАСТВОРИМЫХ ВИТАМИНОВ ПРИ ДИАБЕТЕ

анаэробных процессов, которая наблюдается также в почках у животных, которые получали ВК 1 и ВК 2, а уменьшение этого соотношения во всех других органах свидетельствует об активации аэробных процессов благодаря использованию обоих ВК. Таким образом, выяснено, что после введения аллоксана содержание лактата, пирувата и активность ЛДГ и ПДГК изменяется с разной интенсивностью, однако, введение ВК способствует повышению активности этих ферментов.

Таким образом, полученные данные свидетельствуют о том, что введение животным витаминных комплексов ВК 1 и ВК 2 способствует активации обменных процессов, подавленных при аллоксановом диабете. В то же время, действие витаминных комплексов является непродолжительным, через 24 ч эффект становится незначительным, хотя инъекции ВК имеют определённый защитный эффект.

ЛИТЕРАТУРА

- 1. *Северин Е.С.* (2000) Биохимические основы патологических процессов, Медицина, М.
- 2. *Щербак И.Г.* (2005) Биологическая химия, Изд-во СПбГМУ, СПб.
- 3. Esposito K., Nappo F., Marfella R. et al. (2002) Circulation, **106**, 2067-2072.
- 4. Thornalley P.J., Babaei-Jadidi R., Al Ali H. et al. (2007) Diabetologia, **50**, 287–290.

- Rolo A. (2006) Toxicol. Appl. Pharmacol., 212, 167-178.
- 6. Маркина О.А. (2003) Клин. фармакол. тер., №2, 6-9.
- 7. Западнюк И.П., Западнюк В.И., Захария Е.А., Западнюк Б.В. (1983) Вища шк., Киев.
- 8. Козлова В.И. (2004) Медицина, Львов.
- 9. Горячковский А.И. (2005) Экология, Одесса.
- 10. Балаболкин М.И., Клебанова Е.М., Креминская В.М. (2007) Лечащий врач, №10. http://www.lvrach.ru/2007/10/4716721/
- 11. *Островский Ю.М.* (1979) Экспериментальная витаминология, Наука и техника, Минск.
- 12. Гланц С. (1999) Медико-биологическая статистика, Практика, Москва.
- 13. *Ших Е.В.* (2002) Витаминный статус и его восстановление с помощью фармакологической коррекции витаминными препаратами. Автореф. дисс. д-ра мед. наук, РНЦВМиК МЗ РФ, Москва.
- Гороховская Г.Н., Зимаева Ю.О., Петина М.М. (2008) Клинич. эндокринол., №5, 345-346.
- 15. Ших Е.В. (2002) Клин. медицина, №7, 39-42.
- Карпов Л.М., Анісімов В.Ю. (2009) Вісник Харківського нац. ун-ту ім. В.Н.Каразіна. Серія: біологія, 10, 878, 16-20.
- Sauve A.A. (2008) J. Pharmacol. Exp. Ther., 324, 883-893.
- 18. *Манушарова Р.А.*, *Черкезов Д.И.* (2009) Медицинский совет, №4. http://www.remedium.ru/drugs/doctor/neurology/detail.php?ID=37747
- 19. *Depeint F., Bruce W.R., Shangari N. et al.* (2006) Chem. Biol. Interact, **16**3, 94-112.

Поступила: 22. 02. 2013.

THE EFFECT OF A WATER-SOLUBLE VITAMINS ON THE ACTIVITY OF SOME ENZYMES IN DIABETES

S.A. Petrov, A.O. Danilova, L.M. Karpov

Odessa National Mechnikov University, 2, Shampanskiy lane, Odesa, 65023 Ukraine; tel.: (0482) 68-78-73; e-mail: olgaivdan@mail.ru

Intramuscular injections of the vitamin complex containing: thiamine chloride (B_1) , riboflavin (B_2) , lipoic acid (N), calcium pantothenate (B_5) , pyridoxine hydrochloride (B_6) , folic acid (B_9) , ascorbic acid (C) can reduce the blood glucose level in serum of rats with alloxan diabetes, stabilize activity of some enzymes of energy metabolism, lactate dehydrogenase and pyruvate dehydrogenase complex.

Key words: vitamins, diabetes, enzyme activity, energy metabolism.