УДК 544.165 ©Коллектив авторов

ПРЕДСКАЗАНИЕ СЕЛЕКТИВНОГО ТОРМОЖЕНИЯ НЕЙРАМИНИДАЗЫ ВИРУСА ГРИППА РАЗЛИЧНЫХ ШТАММОВ ПОТЕНЦИАЛЬНЫМИ ИНГИБИТОРАМИ

А.В. Микурова*, А.В. Рыбина, В.С. Скворцов

Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича, 119121, Москва, ул. Погодинская, 10; эл. почта: a.mikurova@ibmc.msk.ru

Создана универсальная модель предсказания торможения нейраминидазы различных штаммах вируса гриппа заданным ингибитором. Она основана на известных данных о трёхмерной структуре (3D) нейраминидазы из различных штаммов вируса гриппа (A/Tokyo/3/67, A/tern/Australia/G70C/75, B/Lee/40), а также моделировании трёхмерной структуры нейраминидазы других штаммов (A/PR/8/34 и A/Aichi/2/68). С использованием докинга и молекулярной динамики были смоделированы 235 комплексов для лигандов с известными значениями IC₅₀ для 185 соединений. Отбор конечных вариантов из трёх промежуточных для каждой пары белок/лиганд и расчёт независимых переменных для построения уравнений линейной регрессии выполнен с использованием MM-PBSA/MM-GBSA. В результате был получен набор уравнений, как для отдельных штаммов, так и уравнение, объединяющее все данные. Таким образом, результаты данной работы показывают реальную возможность предсказания степени ингибирования нейраминидазы для каждого из рассмотренных штаммов произвольным ингибитором и предсказать спектр его действия на различные варианты вируса гриппа.

Ключевые слова: нейраминидаза вируса гриппа, ингибиторы, вычислительные методы, QSAR

DOI 10.18097/PBMC20166206691

ВВЕДЕНИЕ

Грипп по-прежнему остаётся серьезным респираторным заболеванием, ежегодно поражающим миллионы людей во всем мире, поэтому разработка эффективных лекарственных средств остаётся важной проблемой здравоохранения. К существенным особенностям вируса гриппа относится способность быстро формировать новые штаммы, резистентные к химиопрепаратам с противовирусной активностью, причём наблюдается устойчивая циркуляция новых штаммов путём передачи от человека к человеку [1]. Среди белков вируса гриппа, играющих важную роль в проникновении возбудителя в клетки (и образовавшихся вирионов из клетки), важная роль принадлежит нейраминидазе (КФ 3.2.1.18) [2]. Именно поэтому данный фермент представляет собой привлекательную фармакологическую мишень для создания препаратов против вируса гриппа.

В данной работе рассмотрены ингибиторы нейраминидазы вирусов гриппа А и В (табл. 1), числу которых относятся как препараты 2-го поколения осельтамивир (Tamiflu™), занамивир (Relenza^{тм}), так и менее известные препараты: например, перамивир, имеющий ограниченное применение, в том числе и из-за внутривенного способа введения и/или высокой токсичности [3], а также новый препарат ланинамивир. Рассматривая различные ингибиторы нейраминидазы, следует учитывать тот факт, что в ряде случаев имеет место превращение исходного вещества (пролекарства) в активную форму, как, например, в случае осельтамивира, подвергающегося метаболическому превращению В печени В осельтамивира карбоксилат, который и ингибирует нейраминидазу [4].

Следовательно, данные по ингибированию, взятые из литературных источников, могут не всегда соответствовать конкретному соединению с заданной структурной формулой.

разные годы сотни соединений были исследованы в качестве потенциальных ингибиторов нейраминидазы вируса гриппа (см., например, литературные источники, приведённые в табл. 1). Известны многочисленные случаи появления резистентности вируса к этим соединениям, вызванные мутациями в этом ферменте, например, 275Y, I223T, N294S, Q136K, I223T, E119V для вируса гриппа A(H1N1)pdm09, а также R152K и D198N для вируса гриппа В [1, 5]. С учётом известных мутаций, обнаруженных в нейраминидазе, данные об активности всего нескольких ингибиторов могут дать огромное число вариантов комплексов фермент-ингибитор, пригодных для Важно, что для 6 антигенных подтипов нейраминидаз вируса А и нейраминидазы вируса В известна трёхмерная структура, а общее число структур формы), (включая мутантные приведённых в ProteinDataBank [www.rcsb.org, 6], перевалило за сотню. Остальные же варианты, в том числе и варианты одного подтипа для разных штаммов, могут быть с высокой степенью достоверности смоделированы по гомологии с уже известными.

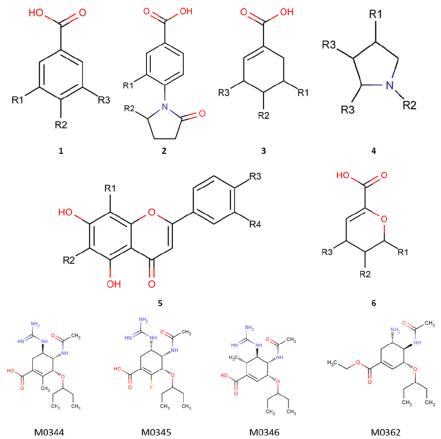
В связи с вышеизложенным, мы предположили, что поиск (или создание) не самого эффективного ингибитора, а в равной степени действующего на нейраминидазу всех (или большинства) штаммов позволит минимизировать вероятность возникновения резистентности. Ведь в таком случае торможения этого фермента, укладывающегося в терапевтический диапазон концентраций, комплекс фермент-ингибитор

* - адресат для переписки

будет не столь прочным (как у высокоэффективных ингибиторов), но и резистентность будет возникать не так часто. Несколько (не более двух-трёх) соединений такого рода, охватывающих всё многообразие известных штаммов максимально полно, могли бы стать лекарственными средствами более длительного использования без возникновения признаков резистентности.

Основная задача данной работы заключалась в создании универсальной модели предсказания степени ингибирования нейраминидазы заданным ингибитором на различных штаммах вируса. Хотя компьютерное моделирование в данной области широко применяется уже более 20 лет [7, 8], существенным недостатком многих работ является то, что они либо проведены на какой-то отдельной структуре, либо игнорируют тот факт, что мишень (нейраминидаза) в разных штаммах вируса гриппа не всегда одинаковая.

В данной работе представлены первые результаты анализа для пяти штаммов, из которых три штамма имели известную структуру для нейраминидазы, а для двух других такая структура была смоделирована по гомологии.


МЕТОДИКА

Анализ связи структура-активность проведён на наборе из 185 соединений (235 наблюдений для пары ингибитор/нейраминидаза конкретного

штамма) из 6 больших групп, центральное ядро которых представлено на рисунке. Соединения, использованные в работе и величины ІС₅₀ (концентрация, вызывающая 50% торможение ферментативной активности) приведены в таблице 1. Анализ литературных данных показывает, что в случаях, включённых в данное исследование, активность нейраминидазы (и ее торможение) измеряли с одним и тем же субстратом – 2'-(4-метилумбеллиферил)-альфа-D-Nацетилнейраминовой кислотой. Собственно в работе вместо величины ІС₅₀, традиционно определяемой для ингибиторов нейраминидазы вируса гриппа, которая при определении в эксперименте может давать ошибку в полпорядка [9], для анализа использовали величину pIC₅₀ (с целью регуляризации ошибки) с общим диапазоном значений от 8,36 до 15,74.

В работе использовали данные о трёхмерной структуре (3D) нейраминидазы из различных штаммов вируса гриппа, доступные в ProteinDataBank: A/Tokyo/3/67 (2bat), A/tern/Australia/G70C/75 (1f8b), B/Lee/40 (1inf). Трёхмерную структуру нейраминидазы двух других штаммов, проявляющих высокую степень идентичности к 2hty (A/PR/8/34 – 88%) или 1ing (A/Aichi/2/68 – 94%) моделировали по гомологии с использованием средств пакета SybylX [10].

Подготовку данных, докинг и молекулярная динамики средствами программ Dock 6.5 [11] и Amber 9.0 [12] (поля сил AMBER99 и GAFF) выполняли по схеме, описанной ранее [13]. Вкратце: до трёх вариантов виртуальных комплексов,

Рисунок 1. Структуры ингибиторов нейраминидазы вируса гриппа, использованные в работе. Цифрами указаны общие структурные части соединений из таблицы 1.

трованию неир	Таблица I. Данные по ингибированию нейраминидазы различных штаммов вируса гриппа	гаммов вируса гриш	ıa			Mark OI			
Замс	эстители					IC ₅₀ , MKINI			Иото
R ₂		R_3	$ m R_4$	A/Australia/ G70C/75	A/PR/8/34	A/Tokyo/3/67	A/Aichi/2/68	B/Lee/40	чник
-NH-CO-CH ₃	H			5500					16
-NH-CO-CH ₃	0			2500					16
-NH-SO ₂ -CH ₃	4	-NH-C(=NH)-NH ₂		100					16
-NH-CO-C ₅ H ₆	Н			1500					16
-NH-SO ₂ -CH ₃	H			2000					16
-NH-CO-CH(CH ₃) ₂	4	-NH-C(=NH)-NH ₂		1000					16
-CO-NH-CH ₃	4	-NH-C(=NH)-NH ₂		5					16
-SO ₂ -NH ₂	4	-NH-C(=NH)-NH ₂		6					16
-CH ₂ -(R)SO-CH ₃	4	-NH-C(=NH)-NH ₂		140					16
-CH ₂ -SO ₂ -CH ₃	7	-NH-C(=NH)-NH ₂		300					16
Н	4	-NH-C(=NH)-NH ₂		2000					16
Н	4	-NH-C(=NH)-NH ₂		1500					16
Н	4	-NH-C(=NH)-NH ₂		200					16
-SO ₂ -NH ₂	Н			2500					16
-NH-CO-CH ₃	Ţ-	-NH-C(=NH)-NH ₂		2,5					16
Н	Ξ			4000					16
Н	Ξ			2000					16
-NH-CO-CH ₃	-	-NH-C(=NH)-NH ₂		100					16
Н	-			250				1000	17
(R)-CH ₂ OH				20				10	17
-CH ₂ -NH ₃				2600				500	17
-(CH ₂ OH) ₂				092					17
-(CH ₂ OH) ₂	-			5				8	17
Н				222					17
-(CH ₂ OH) ₂	ı			0,048				104	17
(R)NH-CO-CF ₃	(F	(R)-O-(CH ₂) ₂ -CH ₃			0,1				18
(R)NH-CO-CH ₂ -CH ₃		(R)-O-(CH ₂) ₂ -CH ₃			1,5				18
(R)NH-SO-CH ₃	(F	(R)-O-(CH ₂) ₂ -CH ₃			25				18
(S)NH-CO-CH ₃	<u>32</u>	(S)-O-(CH ₂) ₂ -CH ₃			0,14				18
(R)NH-CO-CH ₃		(R)-O-(CH ₂) ₂ -CH ₂			0.0019				18, 19

11 3 MONING (RANICACATII)A (SINILACOCII) (SI-OCII)A-CIII, CIII (SI-OCII)A-CIII, CIII (SI-OCII)A-CIII, CIII (SI-OCII)A-CIII (SI-OCIII)A-CIII (SI-OCIII)A-CIIIIA (SI-OCIII)A-CIII (SI-OCIII)A-CIIII (SI-OCIII)A-CIII (SI-OCIII)A-CIIII (SI-OCIII)A-CIII	Табли	ıya I. 🕽	Данные 1	Таблица 1. Данные по ингибированию нейраминидазы разли	инидазы различных	чных штаммов вируса гриппа (продолжение)			
3 MORDER (SAMI) (RNH-COCCH) (RO-CHIC-Jells) 0.0001 0.000131 3 MORDER (SAMI) (RNH-COCCH) (RO-CHIC-Jells) 0.025 0.025 3 MORDER (SAMI) (RNH-COCCH) (RO-CHIC-Jells) 0.025 0.015 3 MORDER (SAMI) (RNH-COCCH)	31	3	M0306		(S)NH-CO-CH ₃	(S)-O-(CH ₂) ₂ -CH ₃	0,0046		18
3 M038 (S)-SH; (RNH-CO-CH; (RO-CH-P _C -CH; 0,1633 3 M039 (S)-SH; (RNH-CO-CH; (RO-CH-P _C -CH; 0,225 3 M031 (S)-SH; (RNH-CO-CH; (RO-CH-P _C -CH; 0,225 3 M031 (S)-SH; (RNH-CO-CH; (RO-CH-P _C -CH; 0,022 3 M031 (S)-SH; (RNH-CO-CH; (RO-CH-P _C -CH; 0,06 3 M031 (S)-SH; (RNH-CO-CH; (RO-CH-P _C -CH; 0,06 3 M031 (S)-SH; (RNH-CO-CH; (RO-CH-P _C -CH; 0,06 3 M031 (S)-SH; (RNH-CO-CH; (RO-CH-P _C -CH; 0,07 3 M031 (S)-SH; (RNH-CO-CH; (RO-CH-P _C -CH; 0,03 3 M031 (S)-SH; (RNH-CO-CH; (RO-CH-P _C -CH; 0,03 3 M031 (S)-SH; (RNH-CO-CH; (RO-CH-P _C -CH; 0,03 3 M032 (S)-SH; (RNH-CO-CH; (RO-CH-P _C -CH; 0,03	32	3	M0307	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-O-CH(C ₂ H ₅) ₂	0,001	0,003333	18-21
3 M039 (S)-WH, M19, MNI-CO-CH, M	33	3	M0308	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-O-(CH ₂) ₂ -CH ₃	0,16333		17-19
3 M0310 (S)-NH, M1, M1, M2, M2, M3, M2, M3, M3, M3, M3, M3, M3, M3, M3, M3, M3	34	3	M0309	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-O-CH ₂ -O-CH ₃	2		18
3 M0312 (S)-NH3, (R)-NHC-OCCH3, (R)-OCH-ICH, P.CH (R)-OCH-ICH, P	35	3	M0310		(R)NH-CO-CH ₃	(R)-O-(CH ₂) ₂ -CF ₃	0,225		18
3 MORTAL (SANII) (RINHECOCHI) (RIACHI-CHI-CHI-CHI-CHI-CHI-CHI-CHI-CHI-CHI-	36	3	M0311	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-O-CH=CH ₂	2,2		18
3 M0314 (S)-NH; (R)NH-CO-CH; (R)AO-CH(-CH2,-CH2,-D) 0.06 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.54 0.53 0.54 0.53 0.54 0.53 0.54 0.53 0.54	37	8	M0312		(R)NH-CO-CH ₃	(R)-O-CH(-CH ₂ -CH ₂ - CH ₂ -CH ₂ -)	0,022		18
3 M0314 (9)-Hi (B)-Hi (R)-M-CCH, (R)-CcH, (R)-CCH, <t< td=""><th>38</th><td>8</td><td>M0313</td><td></td><td>(R)NH-CO-CH₃</td><td>(R)-O-CH(-CH₂-CH₂- CH₂-CH₂-CH₂-)</td><td>90,0</td><td></td><td>18</td></t<>	38	8	M0313		(R)NH-CO-CH ₃	(R)-O-CH(-CH ₂ -CH ₂ - CH ₂ -CH ₂ -CH ₂ -)	90,0		18
3 M0315 (S)-NH3 (RNH-CO-CH4) (R)-OH 6.3 M0316 (S)-NH3 (RNH-CO-CH3) (R)-OH 3.7 M0318 (R)-M14 (R)-M14 <th>39</th> <td>3</td> <td>M0314</td> <td>(S)-NH₃</td> <td>(R)NH-CO-CH₃</td> <td>(R)-O-C₅H₆</td> <td>0,53</td> <td></td> <td>18</td>	39	3	M0314	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-O-C ₅ H ₆	0,53		18
3 M0316 (R)NH4 (R)NH4CO-CH4 (R)O-CH4GH (40	3	M0315		(R)NH-CO-CH ₃	(R)-OH	6,3		19
3 M0317 (8)-M4 (RNH-COCCH) (RO-CH2-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3	41	3	M0316		(S)NH-CO-CH ₃	(R)-O-CH ₃	3,7		19
3 M0318 (8)-Hij (R)-HC-OCHj (R)-OCHj ₃ -CHj 0,23 0,21 0,22 0,21 0,21 0,22 0,21 0,22 0,	42	3	M0317	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-O-CH ₂ -CH ₃	2	0,185	19, 22
3 M0319 (S)-NH3 (R)NH-CO-CH4 (R)-O-(CH5) _A -CH3 0.15 1 2 1 1 2 1 2 2 1 1 2 2 1 2 2 1 2 2 1 2 2 2 3 3 3 3 3 3	43	3	M0318	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-O-(CH ₂) ₃ -CH ₃	0,3	0,215	19, 22
3 M0320 (S)-NH3 (R)NH-CO-CH3 (R)-O-(CH3)-CH3 (R)-O-(CH3)-C	44	3	M0319	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-O-(CH ₂) ₄ -CH ₃	0,2		19
3 M0321 (S)-NH3 (R)NH-CO-CH3 (R)-O-(CH3, P-CH3 (R) (R)-O-(CH3, P-CH3 (R) (R)-O-(CH3, P-CH3 (R) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R)	45	3	M0320		(R)NH-CO-CH ₃	(R)-O-(CH ₂) ₅ -CH ₃	0,15	1,45	19
3 M0322 (8)-NH3 (R)NH-CO-CH3 (R)-O-(CH2)-CH3 (R)-O-(CH2)-CH3 (R)-O-(CH2)-CH4 (R)-O-(CH2)-CH2 (R)-O-(CH2)-CH2 (R)-O-(CH2)-CH2 (R)-O-(CH2)-CH2 (R)-O-(CH2)-CH2 (R)-O-(CH2)-CH2 (R)-O-(CH2)-CH2 (R)-O-(CH2)-CH2 (R)-O-(CH2)-CH2 (R)-O-(R)-CH2 (R)-CH2-CH2 (R)-CH	46	3	M0321	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-O-(CH ₂) ₆ -CH ₃	0,27		19
3 M0323 (S)-NH ₃ (R)NNH-CO-CH ₃ (R)-O-(CH ₂) ₈ -CH ₄ 0.21 1 1 3 M0324 (S)-NH ₃ (R)NNH-CO-CH ₃ (R)-O-(CH ₂) ₉ -CH ₄ 0.6 10.9 19. 3 M0326 (S)-NH ₃ (R)NH-CO-CH ₃ (R)-O-CH ₂ -CH ₁ -CH ₂ -CH ₃ 0.001 10.0 <t< td=""><th>47</th><td>3</td><td>M0322</td><td>(S)-NH₃</td><td>(R)NH-CO-CH₃</td><td>(R)-O-(CH₂)₇-CH₃</td><td>0,18(*)</td><td>3,5</td><td>19</td></t<>	47	3	M0322	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-O-(CH ₂) ₇ -CH ₃	0,18(*)	3,5	19
3 M0324 (S)-NH ₃ (R)NH-CO-CH ₃ (R)O-(CH ₂)σ-CH ₄ 0.06 19 19 3 M0326 (S)-NH ₃ (R)NH-CO-CH ₃ (R)O-CH ₂ -CH(CH ₃)-C ₂ H ₃ 0.01 0.01 0.00 19 3 M0326 (S)-NH ₃ (R)NH-CO-CH ₃ (R)CH(CH ₃)-C ₂ H ₃ 0.009 0.009 19 3 M0328 (S)-NH ₃ (R)NH-CO-CH ₃ (R)CH(CH ₃)-C ₂ H ₃ 0.009 0.009 19 3 M0329 (S)-NH ₃ (R)NH-CO-CH ₃ (S)CH(CH ₃)-CH ₂ CH ₂ CH ₂ CH ₂ 0.001 0.001 0.002 19 3 M0330 (S)-NH ₃ (R)NH-CO-CH ₃ (R)-CH ₂ CH ₂ CH ₂ CH ₂ 0.001 0.001 0.002 0.002 19 3 M0331 (S)-NH ₃ (R)NH-CO-CH ₃ (R)-CH ₂ CH ₂ CH ₂ CH ₂ 0.001 0.006 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	48	3	M0323	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-O-(CH ₂) ₈ -CH ₄	0,21		19
3 M0326 (S)-NH3 (R)NH-CO-CH3 (R)-O-CH2-CH3 (R)-O-CH2-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3	49	3	M0324		(R)NH-CO-CH ₃	(R)-O-(CH ₂) ₉ -CH ₄	9,0		19
3 M0326 (S)-NH3 (R)NH-CO-CH3 (R)-O-CH2-2H3 (R)-O-CH2-2H3 0,009 0,009 19 <t< td=""><th>20</th><td>3</td><td>M0325</td><td></td><td>(R)NH-CO-CH₃</td><td>(R)-O-CH₂-CH(CH₃)₂</td><td>0,2</td><td></td><td></td></t<>	20	3	M0325		(R)NH-CO-CH ₃	(R)-O-CH ₂ -CH(CH ₃) ₂	0,2		
3 M0327 (S)-NH3 (R)NH-CO-CH3 (R)-O-CH2-(R)-CH3-(R)-CH3-(R) (R)-O-CH3-(R)-CH3-(R)-CH3-(R) (R)-O-CH3-(R)-CH3-(R)-CH3-(R) (R)-O-CH3-(R)-CH3-(R)-CH3-(R) (R)-O-CH3-(R)-CH3-(R)-CH3-(R) (R)-O-CH3-(R)-CH3-(R)-CH3-(R) (R)-O-CH3-(R)-CH3-(R)-CH3-(R) (R)-O-CH3-(R)-CH3-(R)-CH3-(R) (R)-O-CH3-(R)-CH3-(R)-CH3-(R) (R)-O-CH3-(R)-CH3-(R)-CH3-(R)-CH3-(R)-CH3-(R) (R)-O-CH3-(R)-R)-(R)-(R)-(R)-(R)-(R)-(R)-(R)-(R)-	51	3	M0326		(R)NH-CO-CH ₃	(R)-O-CH ₂ - (R)CH(CH ₃)-C ₂ H ₅	0,01	0,007	19, 21
3 M0328 (S)-NH ₃ (R)NH-CO-CH ₃ (R)O-CH ₂ -(R)CH(C ₂ H ₃)- CH ₂ -CH=CH ₂ (R)O-CH ₂ -(R)CH(C ₂ H ₃)- CH ₂ -CH=CH ₂ (S)-O-CH ₂ -(S)CH(C ₂ H ₃)- CH ₂ -CH=CH ₂ (S)-O-CH ₂ -(CH ₂ -CH ₃ -CH ₃ (R)O-CH ₂ -(R) ₃ (R)O-CH ₂ -(R) ₃ -CH ₃ (R)O-CH ₂ -(R) ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₂ -CH	52	3	M0327	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-O-CH ₂ - (S)CH(CH ₃)-C ₂ H ₅	600'0	0,002	
3 M0329 (S)-NH ₃ (S)NH-CO-CH ₃ (S)NH-CO-CH ₃ (S)-CH ₂ -(S)CH(C ₂ H ₃)- CH ₃ (S)-CH ₂ -(CH ₂ -CH ₃) (R)-CH ₂ -CH ₃ (R)-CH ₃ -CH ₃ (R)-CH ₂ -CH ₃ (R)-CH ₂ -CH ₃ (R)-CH ₂ -CH ₃ (R)-CH ₂ -CH ₃ (R)-CH ₃ (R)-CH ₃ (R)-CH ₂ -CH ₃ -CH ₃ (R)-CH ₃ (R)	53	3	M0328		(R)NH-CO-CH ₃	(R)-O-CH ₂ -(R)CH(C ₂ H ₃)- CH ₂ -CH=CH ₂	0,001	0,003	19
3 M0331 (S)-NH ₃ (R)NH-CO-CH ₃ (R)-(CH ₂) ₆ -CH ₃ (R) 0,001(*) 0,004(*) (R)NH-CO-CH ₃ (S)-O-CH(-CH ₂ -CH ₃ (R)-(CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ (R)-(CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ (R)-(CH ₂ -CH ₂	54	3	M0329	(S)-NH ₃	(S)NH-CO-CH ₃	(S)-O-CH ₂ -(S)CH(C ₂ H ₅)- CH ₂ -CH=CH ₂	0,003	0,024	19
3 M0331 (S)-NH ₃ (R)NH-CO-CH ₃ (S)-O-CH(-CH ₂ -CH ₂	55	3	M0330		(R)NH-CO-CH ₃	(R)-(CH ₂) ₆ -CH ₃	0,001(*)	0,004(*)	19
3 M0332 (S)-NH ₃ (R)NH-CO-CH ₃ (R)-CH ₂ -CH ₂	99	3	M0331	(S)-NH ₃	(R)NH-CO-CH ₃	(S)-O-CH(-CH ₂ -CH ₂ - CH ₂ -CH ₂ -CH ₂ -)	90,0	0,12	19
	57	3	M0332		(R)NH-CO-CH ₃	(R)-O-(S)CH(C ₂ H ₅)- CH ₂ -CH(-CH ₂ -CH ₂ - CH ₂ -CH ₂ -)	0,016	6,5	19

Табл	uųa 1.,	Данные	по ингибированию нейрам	линидазы различных	Таблица 1. Данные по ингибированию нейраминидазы различных штаммов вируса гриппа (продолжение)		,	•		
58	3	M0333	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-O-(R)CH(C ₂ H ₃)- (CH ₂) ₂ -CH(-CH ₂ -CH ₂ - CH ₂ -CH ₂ -CH ₂ -)	0,001			2,15	19
59	3	M0334	(S)-NH ₃	(R)NH-CO-CH ₃	(S)-O-C ₅ H ₆	0,53				19
09	3	M0335	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-O-CH ₂ -C ₅ H ₆	0,62				19
61	3	M0336	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-O-(S)CH(C ₂ H ₅)- (CH ₂) ₂ -C ₅ H ₆	0,0003			0,07	19
62	3	M0337	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-O-(R)CH(C ₂ H ₅)- CH ₂ -C ₅ H ₆	0,012			0,035	19
63	3	M0338	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-O-(CH ₂) ₃ -C ₄ H ₆ -C ₅ H ₆	60,0				19
64	3	M0339	(S)-NH-C(=NH)-NH ₂	(R)NH-CO-CH ₃	(R)-OH	0,1				19
65	3	M0340	(S)-NH-C(=NH)-NH ₂	(R)NH-CO-CH ₃	(R)-O-(CH ₂) ₃ -CH ₃	0,003				19
99	3	M0341	(S)-NH-C(=NH)-NH ₂	(R)NH-CO-CH ₃	(R)-O-(R)CH(CH ₃)-C ₂ H ₅	0,0005				19
29	3	M0342	(S)-NH-C(=NH)-NH ₂	(R)NH-CO-CH ₃	(R)-O-(S)CH(CH ₃)-C ₂ H ₅	0,0005				19
89	3	M0343	(S)-NH-C(=NH)-NH ₂	(R)NH-CO-CH ₃	(R)-O-CH(C ₂ H ₅) ₂	0,0005				19
69	3	M0344	Рис. 1			2,3				19
70	3	M0345	Рис. 1			0,003			60'0	19
71	3	M0346	Рис. 1			1,5			36	19
72	3	M0347	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-N(CH ₃)-(CH ₂) ₂ -CH ₃	0,065			0,065	20
73	3	M0348	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-N(CH ₃)-(CH ₂) ₃ -CH ₃	0,18				20
74	3	M0349	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-N(CH ₃)-CH(C ₂ H ₅) ₂	0,006			0,06(*)	20
75	3	M0350	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-N(CH ₃)-(CH ₂) ₂ -C ₅ H ₆	0,1			0,565	20
92	3	M0351	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-N(CH ₃)-cC ₆ H ₁₁	0,2			1	20
77	3	M0352	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-N(C ₂ H ₅)-(CH ₂) ₂ -CH ₃	0,09				20
78	3	M0353	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-N(C ₂ H ₅)-(CH ₂) ₃ -CH ₃	0,085			0,175	20
79	3	M0354	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-N((CH ₂) ₂ -CH ₃) ₂	0,012			90'0	20
80	3	M0355	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-NH ₂ -(CH ₂) ₂ -CH ₃	0,2			0,24	20
81	3	M0356	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-NH ₂ -CH(C ₂ H ₅) ₂	0,011			0,1	20
82	3	M0357	(R)-NH ₃	(S)NH-CO-CH ₃	(S)NH-CO-C ₂ H ₅	2,7			5,0	20
83	3	M0358	(S)-NH3	(R)NH-CO-CH ₃	(R)NH-CO-CH(CH ₃) ₂	6,4			17	20
84	3	M0359	(S)-NH ₃	(R)NH-CO-CH ₃	$(R)NH-CO-CH(C_2H_5)_2$	4			3,2	20
85	3	M0360	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-O-CH ₃	3,7				21
98	3	M0361	(S)-NH ₃	(R)NH-CO-CH ₃	(R)-O-CH((CH ₂) ₂ -CH ₃) ₂	0,016				21
87	3	M0362	Рис. 1			0,00099 (*)	0,00145 (*)	0,00023	0,00574 (*)	22

Record	a 1.	Данные		инидазы различных 1	птаммов вируса грипп	а (продолжение)			_	
Re-North CONVICIGE-19, H Re-Nut, Re-	_	M0401		$-CO-CH(C_2H_5)_2$	Н	(R)-NH ₂		22		23
Re-Nottle	Σ	10402		$-CO-N(C_2H_5)_2$		(R)-NH ₂		25		23
(B-COOH CONCRIGHÇAD (B-NH; (B-NH; 1.6 (B-COOH CONCRIGHÇAD H (B-NH; 1.6 (B-COOH CONCRIGHÇAD H (B-NH; 2.1 (B-COOH CONCRIGHÇAD H (B-NH; 2.1 (B-COOH CONCRIGHÇAD H (B-NH; 1.3 (B-COOH CONCRIGHÇAD (B-NH; 1.3 1.3 (B-COOH CONCRIGHÇAD (B-CH;NH; (B-NH; 1.3 1.3 (B-COOH CONCRIGHÇAD (B-CH;NH;	Σ	[0403	(R)-COOH	-CO-N((CH ₂) ₂ -CH ₃) ₂		(R)-NH ₂		32		23
(By-COOH CONCRIGHORDA DE LA CO	Σ	10404	(R)-COOH	-CO-N(C ₂ H ₅)-CH(CH ₃) ₂	Н	(R)-NH ₂		1,6		23
(R)-COOH (R)-NH (R)-N	Σ	0405		-CO-N(CH(CH ₃) ₂) ₂	Н	(R)-NH ₂		4		23
(B)-COOH CONCR(R(H)-B), CH ₂ -H (B)-NH ₂ 2.1 (B)-COOH CCNC(R(H)-B), CH ₂ -H (B)-NH ₂ 2 (B)-COOH CCNC(R(H)-B), CH ₂ -H (B)-NH ₂ 13 (B)-COOH CONC(R(H)-B), CH ₂ -H (B)-NH ₂ 1,3 (B)-COOH CONC(R(H)-B), CH ₂ -H (B)-NH ₂ 46 (B)-COOH CONC(R(H)-B), CH ₂ -H (B)-NH ₂ 1,3 (B)-COOH CONC(R(H)-B), CH ₂ -H (B)-NH ₂ 1,3 (B)-COOH CONC(R(H)-B), CH ₂ -H (B)-NH ₂ 1,3 (B)-COOH CONC(R(H)-B), CH ₂ -H-H-COC-H (B)-NH ₂ 1,3	Σ	10406		-CO-N(CH(CH ₃) ₂)-CH ₂ - CH ₂ -OH	Н	(R)-NH ₂		21		23
(R)-COOHH CO-NCH(CH3,b)-CH _b -DH H (R)-NH ₂ 2 (R)-COOH CO-NCH(CH3,b)-CH _b -DH H (R)-NH ₂ 13 13 (R)-COOH CO-NCH(CH3,b)-CH _b -DH H (R)-NH ₂ 46 13 (R)-COOH CO-NCH(CH3,b)-CH _b -DH-DH (R)-NH ₂ 1,3 46 1,3 (R)-COOH CO-NCH(CH3,b)-CH _b -DH-DH-DH-DH-DH-DH-DH-DH-DH-DH-DH-DH-DH-	2	10407		-CO-N(CH(CH ₃) ₂)-CH ₂ -CH ₂ -OH	Н	(R)-NH ₂		2,1		23
(R)-COOH CrO-NC(CHE)p.CHp- CD-NC(CHE)p.CHp- CD-NC(CHE)p.CHp- CD-NC(CHE)p.CHp- CD-NC(HC(Hp)p.CHp- CD-NC(HC(Hp)p.CHp- CD-NC(HC(Hp)p.CHp- CD-NC(HC(Hp)p.CHp- CD-NC(HC(Hp)p.CHp- CD-NC(HC(Hp)p.CHp- CD-NC(HC(Hp)p.CHp- CD-NC(HC(Hp)p.CHp- CD-NC(HC(Hp)p.CHp- CD-NC(HC(Hp)p.CHp- CD-NC(Hp)p	Σ	10408	(R)-COOH	-CO-N(CH(CH ₃) ₂)-CH ₂ -CH ₂ -OH	Н	(R)-NH ₂		2		23
(B)-COOHH CO-NORH(HR)B, CH ₂ H (R)-NH ₂ 1.3 H H (R)-COOHH CO-NORH(HCH)B, CH ₂ -CH ₂	2	10409		-CO-N(CH(CH ₃) ₂)-CH ₂ -CH ₂ -CH ₂ -COOH		(R)-NH ₂		19		23
(R)-COOH CCO-N(CH(CH) ₄) ₂) CH ₂ H (R)-NH ₂ 46 (R)-COOH CO-N(CH(CH) ₄) ₂) CH ₂ H (R)-NH ₂ 1,3 1,3 (R)-COOH CO-N(CH(CH) ₃) ₂) (R)-CH ₂ -NH ₂ (R)-NH ₂ 7,5 1,3 1,5 (R)-COOH CO-N(C ₂ H ₃)-CH(CH ₃) ₂ (R)-CH ₂ -NH-CO-CH ₃ (R)-NH ₂ (R)-NH ₂ 7,5 1,6 (S)-COOH CO-N(C ₂ H ₃)-CH(CH ₃) ₂ (R)-CH ₂ -NH-CO-CH ₃ (R)-NH ₂ (R)-NH ₂ 9,6 1,0 (S)-COOH CO-N(C ₂ H ₃)-CH(CH ₃) ₂ (R)-CH ₂ -NH-CO-CH ₃ (R)-NH ₂ (R)-NH ₂ 9,6 1,0 (S)-COOH CO-N(C ₂ H ₃)-CH(CH ₃) ₂ (R)-CH ₂ -NH-CO-CH ₃ (R)-NH ₂ (R)-NH ₂ 9,6 1,0 (S)-COOH CO-N(C ₂ H ₃)-CH(CH ₃) ₂ (R)-CH ₂ -NH-CO-CH ₃ (R)-NH ₂ (R)-NH ₂ 1,0 1,0 (S)-COOH CO-N(C ₂ H ₃)-CH(CH ₃) ₂ (R)-CH ₂ -CH ₂	2	10410		-CO-N(CH(CH ₃) ₂)-CH ₂ -CH ₂ -CH ₂ -COOH	Н	(R)-NH ₂		1,3		23
(B)-COOH CONCH(CH) ₃) ₂ -CH ₂ (R)-NH ₂ 1.3 1.4 1.3 1.3 1.3 1.4 1.3 1.3 1.4 <t< td=""><td>2</td><td>10411</td><td></td><td>-CO-N(CH(CH₃)₂)-CH₂-CH₂-NH₂</td><td>Н</td><td>(R)-NH₂</td><td></td><td>46</td><td></td><td>23</td></t<>	2	10411		-CO-N(CH(CH ₃) ₂)-CH ₂ -CH ₂ -NH ₂	Н	(R)-NH ₂		46		23
(B)-COOH (CO-N(CH(CH) ₂)) ₂ H (R)-NH- (C=N(L) ₂)-CH(CH) ₂) ₃ (R)-NH- (C=N(L) ₂)-CH(CH) ₂) ₃ (R)-NH- (R)-NH- (R)-NH- (R)-NH- (R)-COOH (CO-N(C ₂ H ₃)-CH(CH) ₂) ₃ (R)-CH ₂ -NH-CO-CH ₃ (S)-NH ₂ (S)-NH- (R)-NH- (R)-NH- (R)-NH- (R)-COOH (CO-N(C ₂ H ₃)-CH(CH) ₃) ₂ (R)-CH ₂ -NH-CO-CF ₃ (R)-NH ₂ </td <td>2</td> <td>10412</td> <td></td> <td>-CO-N(CH(CH₃)₂)-CH₂- CH₂-oC₅H₅N</td> <td>Н</td> <td>(R)-NH₂</td> <td></td> <td>1,3</td> <td></td> <td>23</td>	2	10412		-CO-N(CH(CH ₃) ₂)-CH ₂ - CH ₂ -oC ₅ H ₅ N	Н	(R)-NH ₂		1,3		23
(S)-COOH CO-N(C ₂ H ₃)-CH(CH ₃)) (R)-CH ₂ -NH-CO-CH ₃ (S)-NH ₂ 7.5 7.5 (S)-COOH -CO-N(C ₂ H ₃)-CH(CH ₃)) (R)-CH ₂ -NH-CO-C ₂ H ₃ (S)-NH ₂ 96 96 (S)-COOH -CO-N(C ₂ H ₃)-CH(CH ₃)) (R)-CH ₂ -NH-CO-CF ₃ (R)-NH ₂ 96 96 (S)-COOH -CO-N(C ₂ H ₃)-CH(CH ₃)) (R)-CH ₂ -NH-CO-CF ₃ (R)-NH ₂ 96 96 (S)-COOH -CO-N(C ₂ H ₃)-CH(CH ₃)) (R)-CH ₂ -NH-CO-CF ₃ (R)-NH ₂ 90 96 (S)-COOH -CO-N(C ₂ H ₃)-CH(CH ₃)) (R)-CH ₂ -NH-CO-CF ₃ (R)-NH ₂ 130 96 -CH ₂ -MC-CH ₂ -CH ₂	2	10413		-CO-N(CH(CH ₃) ₂) ₂		(R)-NH- C(=NH)-NH ₂		13		23
(S)-COOH -CO-N(C ₂ H ₃)-CH(CH ₃) ₂ (R)-CH ₂ -NH-CO-C ₂ H ₃ (R)-NH ₂ 16 P (S)-COOH -CO-N(C ₂ H ₃)-CH(CH ₃) ₂ (R)-CH ₂ -NH-CO-C ₂ H ₃ (R)-NH ₂ 96 96 (S)-COOH -CO-N(C ₂ H ₃)-CH(CH ₃) ₂ (R)-CH ₂ -NH-CO-CF ₃ (R)-NH ₂ 96 96 (S)-COOH -CO-N(C ₂ H ₃)-CH(CH ₃) ₂ (R)-CH ₂ -NH-CO-CF ₃ (R)-NH ₂ 96 96 (S)-COOH -CO-N(C ₂ H ₃)-CH(CH ₃) ₂ (R)-CH ₂ -NH-CO-CF ₃ (R)-NH ₂ 96 96 (CH ₂ -NC-CH ₂ -CH	2	10414		-CO-N(C ₂ H ₅)-CH(CH ₃) ₂		(S)-NH ₂		7,5		23
(s)-COOH CO-N(C ₂ H ₃)-CH(CH ₃) ₂ (R)-CH ₂ -NH-CO-CF ₃ (R)-NH ₂ Possible Possi	2	10415		-CO-N(C ₂ H ₅)-CH(CH ₃) ₂	(R)-CH ₂ -NH-CO-C ₂ H ₅	(S)-NH ₂		16		23
(8)-COOH CO-N(C ₂ H ₃)-CH(CH ₃) ₂ (R)-CH ₂ (R)-NH ₂ 0.28 9 (8)-COOH -CO-N(C ₂ H ₃)-CH(CH ₃) ₂ (R)-CH ₂ -NH-CO-CF ₃ (R)-NH ₂ 130 9 C-CH ₂ -N(-CH ₂ -CH ₂ -NH-CO-CH ₃ H H H 181,75 9 C-CH ₂ -N(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -N(CH ₃)-N(CH ₃ -NH-CH ₂ -CH ₂ -N(CH ₃ -NH-CH ₂ -NH-CH ₂ -NH-CH ₂ -N(CH ₃ -NH-CH ₂ -NH-C	2	10416		-CO-N(C ₂ H ₅)-CH(CH ₃) ₂	(R)-CH ₂ -NH-CO- CH=CH ₂	(R)-NH ₂		96		23
(S)-COOH CO-N(C ₂ H ₃)-CH(CH ₃) ₂ (R)-CH ₂ -NH-SO ₂ -CH ₃ (R)-NH ₂ (R)-NH ₂ 130 R CH ₂ -N(-CH ₂ -CH ₂ -N(-CH ₂ -N(-CH ₂ -CH ₂ -N(-CH ₂ -CH ₂ -N(-CH ₂ -CH ₂	2	10417	(S)-COOH	-CO-N(C ₂ H ₅)-CH(CH ₃) ₂		(R)-NH ₂		0,28		23
CH2-N(-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2	2	10418		-CO-N(C ₂ H ₅)-CH(CH ₃) ₂		(R)-NH ₂		130		23
CH ₂ -N(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -N(CH ₃)) H	2	10501		но-	Н	Н	103,87			24
CCH ₂ -N(CH ₃)- CCH ₂ -CH ₂) H H H 431,12 P CCH ₂ -CH ₂ - CH ₂ -CH ₂ -	2	10502		Н	Н	Н	181,75			24
-CH ₂ -N(-CH ₂ -CH ₂ -O) H H H 447,9 R CH ₂ -CH ₂ -O H H H H 258,83 R -CH ₂ -N(-CH ₂ -CH ₂ -O H H H H B -CH ₂ -N(-CH ₂ -CH ₂ -O H H H B B -CH ₂ -N(-CH ₂ -CH ₂ -O H H H H H N(CH ₂ -CH ₂ -CH ₂ -O H H H H H		10503		Н	Н	Н	431,12			24
-CH ₂ -N(-CH ₂ -(R)C(OH)H- CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH(OH)- CH ₂ -N(-CH ₂ -CH ₂ -CH(OH)- CH ₂ -N(-CH ₂ -CH		10504		Н	Н	Н	447,9			24
-CH ₂ -N(-CH ₂ -CH ₍₂ -CH(OH))- H H H 295,26 H CH ₂ -CH ₂ -N(-CH ₂ -N(-CH ₂ -CH ₂ -N(-CH ₂ -N(-CH ₂ -CH ₂ -N(-CH ₂ -N		10505		Н	Н	Н	258,83			24
-CH ₂ -N(-CH ₂ -CH ₂ - N(CH ₂ -CH ₂ OH)-CH ₂ -CH ₂ -) H H H		10506		Н	Н	Н	295,26			24
		40507		Н	Н	Н	135,33			24

Таблиц	ta 1. 1	Данные	$\it Ta6nuya~I$. Данные по инги $\it 0$ ированию нейраминидазы различных штаммов вируса гриппа (продолжение)	инидазы различных 1	штаммов вируса гриш	та (продолжение)			
113	S	M0508	-CH ₂ -N(-CH ₂ -CH ₂ - CH(CH ₂ -OH)-CH ₂ -CH ₂ -)	Н	Н	Н	83,7		24
114	v	M0509		Н	НО-	НО-	62,87		24
115	5	M0510		Н	НО-	НО-	63,63		24
116	5	M0511	-CH ₂ -N(-CH ₂ -CH ₂ -CH(CH ₂ - OH)-CH ₂ -CH ₂ -)	Н	НО-	НО-	64,21		24
117	5	M0512	-CH ₂ -N(-CH ₂ -CH ₂ -N(CH ₃)- CH ₂ -CH ₂ -)	НО-	Н	Н	301,71		24
118	S	M0513	-CH ₂ -N(-CH ₂ -CH ₂ -O- CH ₂ -CH ₂ -)	Н	НО-	НО-	81,87		24
119	S	M0514		Н	НО-	НО-	53,82		24
120	5	M0515		Н	НО-	НО-	43,46		24
121	5	M0516		Н	НО-	НО-	161,18		24
122	5	M0517		Н	НО-	Н	167,52		24
123	S	M0518		Н	НО-	Н	50,49		24
124	5	M0519	-CH ₂ -N(-CH ₂ -(S)CH(CH ₃)- CH ₂ -CH ₂ -CH ₂ -)	Н	НО-	Н	52,47		24
125	5	M0520		Н	НО-	Н	48,54		24
126	5	M0521	-CH ₂ -N(-(R)CH(CH ₃)-CH ₂ -O- CH ₂ -(R)CH(CH ₃)-)	Н	НО-	Н	63,95		24
127	S	M0522	-CH ₂ -N(-CH ₂ -CH ₂ -CH(CH ₂ - C ₅ H ₆)-CH ₂ -CH ₂ -)	Н	НО-	Н	46,11		24
128	S	M0523	-CH ₂ -N(-CH ₂ -CH ₂ -N(CH ₂ - CH ₂ OH)-CH ₂ -CH ₂ -)	НО-	НО-	Н	276,43		24
129	5	M0524	-CH ₂ -N(-CH ₂ -(S)CH(OH)- CH ₂ -CH ₂ -CH ₂ -)	Н	НО-	Н	45,35		24
130	5	M0525		Н	НО-	Н	40,91		24
131	5	M0526		Н	НО-	Н	44,47		24
132	S	M0527	-CH ₂ -N(-CH ₂ -CH ₂ -CH(CH ₃)- CH ₂ -CH ₂ -)	Н	НО-	Н	164,49		24
133	5	M0528		Н	НО-	Н	148,4		24
134	5	M0529	-CH ₂ -N(-(R)CH(CH ₂ -OH)- CH ₂ -CH ₂ -CH ₂ -)	Н	НО-	Н	49,71		24

135					mimor pupyed ipinin	чных штаммов вируса гриппа (продолжение)					
	5 M(M0530	-CH ₂ -N(-CH ₂ -CH ₂ -CH(OH)- CH ₂ -CH ₂ -)	но-	Н	Н	91,54				24
	5 M(M0531	-CH ₂ -N(-CH ₂ -CH ₂ -CH ₂ -)	НО-	Н	H	107,11				24
137	5 M(M0532	-CH ₂ -N(-(R)CH(CH ₃)-CH ₂ - CH ₂ -CH ₂ -CH ₂ -)	но-	Н	н	99,66				24
138	S M(M0533	-CH ₂ -N(-(R)CH(CH ₃)-CH ₂ -O- CH ₂ -(R)CH(CH ₃)-)	но-	Н	н	591,03				24
139	5 M(M0534	-CH ₂ -N(-CH ₂ -CH ₂ - CH(CH ₂ - OH)-CH ₂ -CH ₂ -)	но-	Н	н	470,1				24
140	5 M(M0535	-CH ₂ -N(-CH ₂ -(S)CH(OH)- CH ₂ -CH ₂ -CH ₂ -)	но-	Н	н	68,22				24
141	9 W(M0601	(R)-(R)CH(OH)-(R)CH(OH)- CH ₂ OH	(S)-NH-CO-CH ₃	(R)-NH-C(=NH)-NH ₂	neur0 ₇ 0 ₂	0,001	0,00138	0,00156	0,00419	22, 25, 26
142	9 W(M0602	(R)-(R)CH(OH)-(R)CH(OH)- CH ₂ OH	(R)-NH-CO-CH ₃	(S)-NH ₂		0,15				21
143	9 M(M0603	(S)-CO-N(CH ₃)-CH ₂ -CH ₂ OH	(S)-NH-CO-CH ₃	(R)-NH ₂				420		25
144	9 W	M0604	(S)-CO-NH-(CH ₂) ₂ -CH ₃	(S)-NH-CO-CH ₃	(R)-NH ₂				19		25
145)M(M0605	(S)-CO-N(CH ₃) ₂	(S)-NH-CO-CH ₃	(R)-NH ₂				2,4		25
146	9 M(M0606	(S)-CO-N(CH ₃)-(CH ₂) ₂ -CH ₃	(S)-NH-CO-CH ₃	(R)-NH ₂		3,7		0,18	23	25
147	9 M(M0607	(S)-CO-NH-(CH ₂) ₂ -NH ₂	(S)-NH-CO-CH ₃	(R)-NH-C(=NH)-NH ₂				20		25
148	9 M(M0608	(S)-CO-NH-(CH ₂) ₂ -CH ₃	(S)-NH-CO-CH ₃	(R)-NH-C(=NH)-NH ₂				0,5		25
149	9 M(M0609	(S)-CO-N(CH ₃) ₂	(S)-NH-CO-CH ₃	(R)-NH-C(=NH)-NH ₂				0,025		25
150	9 M(M0610	(S)-CO-N(CH ₃)-(CH ₂) ₂ -CH ₃	(S)-NH-CO-CH ₃	(R)-NH-C(=NH)-NH ₂		0,0056		0,0035	4,7	25
151	9 M(M0611	(S)-CO-N((CH ₂) ₂ -CH ₃) ₂	(S)-NH-CO-CH ₃	(R)-NH ₂		0,008		0,0075	4,6	25
152	9 M(M0612	(S)-CO-N(-(R)CH(CH ₃)-CH ₂ - CH ₂ -(R)CH(CH ₃)-)	(S)-NH-CO-CH ₃	(R)-NH ₂		1,6		900'0	3,4	25
153	9 M(M0613	(S)-CO-N((CH ₂) ₃ -CH ₃) ₂	(S)-NH-CO-CH ₃	(R)-NH ₂		Ξ		0,45		25
154	9 M(M0614	(S)-CO-N(C_2H_5) ₂	(S)-NH-CO-CH ₃	(R)-NH ₂		0,04		0,004	1,6	25
155	9 M(M0615	(S)-CO-N(CH_2 - $CH=CH_2$) ₂	(S)-NH-CO-CH ₃	(R)-NH ₂				0,04		25
156)W 9	M0616	(S)-CO-NH-(-CH ₂ -CH ₂ -CH ₂ - CH ₂ -CH ₂ -)	(S)-NH-CO-CH ₃	(R)-NH ₂				19		25
157	9 M(M0617	(S)-CO-N((CH ₂) ₂ -CH ₃) ₂	(R)-NH-CO-CH ₃	(R)-NH-C(=NH)-NH ₂				0,000		25
158	9 M(M0618	(S)-CO-N(C_2H_5) ₂	(R)-NH-CO-CH ₃	(R)-NH-C(=NH)-NH ₂				0,001		25
159	9 M(M0619	(S)-CO-N(C ₂ H ₅)-(CH ₂) ₂ -CH ₃	(S)-NH-CO-CH ₃	(R)-NH ₂				0,003		25
160	9 M(M0620	(S)-CO-N(C ₃ H ₇)-(CH ₂) ₃ -CH ₃	(S)-NH-CO-CH ₃	(R)-NH ₂				0,004		25
161	9 M((S)-CO-N(C_3H_7)-CH ₂ - C_5H_6	(S)-NH-CO-CH ₃	(R)-NH ₂				4,2		25
162)M(M0622	(S)-CO-N(C_3H_7)-(CH_2) ₂ - C_5H_6	(S)-NH-CO-CH ₃	(R)-NH ₂				0,002	13	25

Табл	uya I. 🏻	Данные	по ингибированию нейрамі	инидазы различных п	<i>Таблица 1.</i> Данные по ингибированию нейраминидазы различных штаммов вируса гриппа (продолжение)		
163	9	M0623	(S)-CO-N(C_3H_7)-(CH_2) ₂ - C_5H_6	(S)-NH-CO-CH ₃	(R)-NH-C(=NH)-NH ₂	0,005	25
164	9	M0624	(S)-CO-N(C_3H_7)-(CH_2) ₃ - C_5H_6	(S)-NH-CO-CH ₃	(R)-NH ₂	0,018	25
165	9	M0625	(S)-CO-N(C ₃ H ₇)-(CH ₂) ₇ -CH ₃	(R)-NH-CO-CH ₃	(R)-NH ₂	0,023	25
166	9	M0626	(S)-CO-N(C ₃ H ₇)-(CH ₂) ₇ -CH ₃	(R)-NH-CO-CH ₃	(R)-NH-C(=NH)-NH ₂	0,007	25
167	9	M0627	(S)-CO-NH-(CH ₂) ₂ -C ₅ H ₆	(S)-NH-CO-CH ₃	(R)-NH ₂	12	25
168	9	M0628	(S)-CO-N(CH ₃)-(CH ₂) ₂ -C ₅ H ₆	(S)-NH-CO-CH ₃	(R)-NH ₂	0,32	25
169	9	M0629	(S)-CO-N(C ₂ H ₅)-(CH ₂) ₂ -C ₅ H ₆	(S)-NH-CO-CH ₃	(R)-NH ₂	0,005	25
170	9	M0630	(S)-CO-N(CH ₂ -COOH)- (CH ₂) ₂ -C ₅ H ₆	(S)-NH-CO-CH ₃	(R)-NH ₂	130	25
171	9	M0631	(S)-CO-N(CH ₂ -CO-NH ₂)- (CH ₂) ₂ -C ₅ H ₆	(S)-NH-CO-CH ₃	(R)-NH ₂	19	25
172	9	M0632	(S)-CO-N(CH ₂ -CH ₂ OH)- (CH ₂) ₂ -C ₅ H ₆	(S)-NH-CO-CH ₃	(R)-NH ₂	0,012	25
173	9	M0633	(S)-CO-N(CH ₂ -CH(CH ₃) ₂)- (CH ₂) ₂ -C ₅ H ₆	(S)-NH-CO-CH ₃	(R)-NH ₂	0,014	25
174	9	M0634	(S)-CO-N(CH(CH ₃) ₂)- (CH ₂) ₂ -C ₅ H ₆	(S)-NH-CO-CH ₃	(R)-NH ₂	0,008	25
175	9	M0635	(S)-CO-N((CH ₂) ₂)-(CH ₂) ₂ -C ₅ H ₆	(S)-NH-CO-CH ₃	(R)-NH ₂	47	25
176	9	M0636	(S)-CO-N(cycC ₃ H ₅)- (CH ₂) ₂ -C ₅ H ₆	(S)-NH-CO-CH ₃	(R)-NH ₂	0,046	25
177	9	M0637	(S)-CO-N((CH ₂) ₂ -CH ₂ OH)- (CH ₂) ₂ -C ₅ H ₆	(S)-NH-CO-CH ₃	(R)-NH ₂	3	25
178	9	M0638	(S)-CO-N(C ₃ H ₇)-(CH ₂) ₂ - C ₆ H ₄ -(p)O-CH ₃	(S)-NH-CO-CH ₃	(R)-NH ₂	0,008	25
179	9	M0639	(S)-CO-N(C ₃ H ₇)-(CH ₂) ₂ - C ₆ H ₄ -(p)OH	(S)-NH-CO-CH ₃	(R)-NH ₂	0,009	25
180	9	M0640	(S)-CO-N(C ₃ H ₇)-(CH ₂) ₂ - C ₆ H ₄ -(m)O-CH ₃	(S)-NH-CO-CH ₃	(R)-NH ₂	0,005	25
181	9	M0641	(S)-CO-N(C ₃ H ₇)-(CH ₂) ₂ - C ₆ H ₄ -(m)OH	(S)-NH-CO-CH ₃	(R)-NH ₂	0,003	25
182	9	M0642	(S)-CO-N(C ₃ H ₇)-(CH ₂) ₂ - (o,p)C ₆ H ₃ Cl ₂	(S)-NH-CO-CH ₃	(R)-NH ₂	0,002	25
183	9	M0643	(S)-CO-N(C ₃ H ₇)-(CH ₂) ₂ - C ₆ H ₄ -(p)CH(CH ₃) ₂	(S)-NH-CO-CH ₃	(R)-NH ₂	0,012	25
184	9	M0644	(S)-CO-N(C ₃ H ₇)-(CH ₂) ₂ - C ₆ H ₄ -(p)CH ₂ -C ₆ H ₅	(S)-NH-CO-CH ₃	(R)-NH ₂	0,27	25
185	9	M0645	(S)-CO-N(C ₃ H ₇)-(CH ₂) ₂ - C ₆ H ₄ -(o)O-CH ₃	(S)-NH-CO-CH ₃	(R)-NH ₂	600,0	25
Прил	мечанис	е. (*) - д	Примечание. (*) - для данных вариантов докинг не нашёл ад	нг не нашёл адекватн	екватного решения.		

отобранных по оценочной функции программы Dock, оптимизировали средствами программы Amber 9.0; далее проводили несколько этапов молекулярной динамики в полноценном водном окружении, последняя (самая длительная) из которых была использована расчётов изменений свободной комплексов методом ММ-PBSA (ММ-GBSA) [14]. Усреднение производили по 10-ти наблюдениям, сохранённым через равные промежутки времени составляющую Сольватационную вычисляли как методом Пуассона-Больцмана (РВ). так и обобщённым методом Борна (GB). Конечный вариант выбирали по минимальному значению энергии комплекса, рассчитанному по методу MM-PBSA. В качестве независимых параметров для построения корреляционных уравнений использовали следующие значения компонент: изменение величины электростатического взаимодействия (ELE); ван-дер-ваальсовых взаимодействий (VDW); гидрофобный (PBSUR) и сольватационный (РВСАL) вклады в изменение свободной энергии, рассчитанной методом РВ, аналогичные вклады для GB (GBSUR и GB); рассчитанные модулем NMODE [12] значения трансляционного (TSTRA), ротационного (TSROT) и колебательного (TSVIB) энтропийных вкладов. Кроме того, использовали такую информацию как молекулярный вес и индикаторные переменные, показывающие к какому штамму относятся данные.

Набор уравнений линейной регрессии оценивали по величине Q^2 в процедуре скользящего контроля методом исключения по одному. Переменные, рассчитанные методами PB и GB, использовали как по отдельности, так и вместе. Последнее позволило нивелировать ошибки расчётов.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для начала рассмотрим варианты, когда строятся 5 независимых уравнений для каждого из штаммов. Стоит отметить, что автоматизированная процедура докирования нашла решение не для всех лигандов (отмечены в табл. 1). При желании, изменяя параметры докинга и варьируя конформацию места связывания, можно добиться того, что для всех лигандов решение будет найдено. Если же рассматривать данный шаг как предварительный для подготовки скрининга по базам данных, было бы неправильно пытаться "ужать" все молекулы, поскольку в контексте самого скрининга отсутствие решение является фильтром, отбрасывающим слишком громоздкие и сложные решения. Их стоит анализировать только если проверяется ряд соединений с уже доказанной активностью, что обычно происходит на значительно более поздних этапах моделирования (проекта). В таблице 2 представлены результаты для вариантов полученных уравнений. Основным ограничением для некоторых из штаммов, является то, что число наблюдений сопоставимо с числом переменных, поэтому для них число переменных в уравнении ограничивали. При независимом использовании методы PB и GB дают разные результаты, при совместном использовании этих методов результаты улучшаются. Если для выборок с малым числом наблюдений это приводит к уменьшению значимости результата, то для случая A/PR/8/34 это качественно улучшает модель.

В среднем качество моделей (за исключением штаммов A/PR/8/34 и A/tern/Australia/G70C/75) недостаточно высоко. Формальный порог успешности модели (Q²>0,6) достигнут и в случае A/Tokyo/3/67, однако, в этом случае используется число наблюдений, сравнимое с числом переменных (18 на 10). Использование нейраминидаз с модельной структурой в отдельных случаях (но далеко не всех) давало хорошие результаты (имеется в виду A/PR/8/34). Тем не менее, формально данные предсказывают величину pIC₅₀ со средней ошибкой от 0,5 до 1,3 логарифмической величины (для моделей с Q²>0,5). При этом данные таблицы 3 показывают, что на основании модели, построенной для фермента одного штамма, корректно предсказать значение рІС50 для комплекса с нейраминидазой другого штаммом не представляется возможным. Поэтому необходимо строить уравнение, объединяющее нейраминидазы всех штаммов (в данном случае 5). Результаты построения такого рода уравнения приведены в таблице 4. В связи с тем, что ІС50 по сути не является инвариантной характеристикой комплекса белок/лиганд, возникает необходимость использования индикаторных переменных, последовательно принимающих значение равное единице для наблюдений по каждому из четырёх штаммов (для пятого штамма индикаторная переменная поглощается постоянным членом уравнения). Данным образом устраняется систематическая ошибка. К сожалению, на настоящем этапе непонятно, каким образом можно избавиться от индикаторных переменных. С другой стороны, возможно, что, если проанализировать большой спектр штаммов, удастся минимизировать число таких переменных, привязав их, например, к классификации по серотипу и антигенному подтипу, либо по характерным аминокислотным остаткам в месте связывания. Примечательно, что если случайным образом поделить выборку пополам, то перекрёстное предсказание даст такие величины R² предсказания, которые будут колебаться 0,43 до 0,51 (при нескольких случайных разбиениях), то есть, можно с уверенностью говорить, что модели вполне устойчивые, несмотря на достаточно среднюю предсказательною силу.

ЗАКЛЮЧЕНИЕ

Подводя итоги работы, можно утверждать, что объединённые выборки данных по разным штаммам можно успешно использовать, как и данные, полученные с использованием смоделированных белковых структур. В первом приближении предсказательная сила подобных моделей невелика, однако, она позволяет классифицировать результаты на группы. При подробном анализе результатов докинга выявлены случаи, когда даже среди трёх лучших вариантов докирования не было выявлено

Таблица 2. Влияние выбора переменных на качество предсказательной модели

Штамм	Q^2	Число наблюдений	Число переменных	Список переменных
A/Tokyo/3/67	0,49	18	6	ELE, VDW, PB
A/Tokyo/3/67	0,56	18	8	TSTRA, TSROT, ELE, VDW, PB
A/Tokyo/3/67	0,57	18	9	TSVIB, TSTRA, TSROT, ELE, VDW, PB
A/Tokyo/3/67	0,66	18	10	MW, TSVIB, TSTRA, TSROT, ELE, VDW, PB
A/Tokyo/3/67	0,18	18	6	ELE, VDW, GB
A/Tokyo/3/67	0,53	18	7	MW, ELE, VDW, PB
B/Lee/40	0,42	38	6	ELE, VDW, PB
B/Lee/40	0,42	38	8	TSTRA, TSROT, ELE, VDW, PB
B/Lee/40	0,42	38	9	TSVIB, TSTRA, TSROT, ELE, VDW, PB
B/Lee/40	0,48	38	10	MW, TSVIB, TSTRA, TSROT, ELE, VDW, PB
B/Lee/40	0,30	38	6	ELE, VDW, GB
B/Lee/40	0,57	38	14	MW, TSVIB, TSTRA, TSROT, ELE, VDW, GB, PB
A/tern/Australia/G70C/75	0,59	18	6	ELE, VDW, PB
A/tern/Australia/G70C/75	0,87	18	8	TSTRA, TSROT, ELE, VDW, PB
A/tern/Australia/G70C/75	0,91	18	9	TSVIB, TSTRA, TSROT, ELE, VDW, PB
A/tern/Australia/G70C/75	0,93	18	10	MW, TSVIB, TSTRA, TSROT, ELE, VDW, PB
A/tern/Australia/G70C/75	0,64	18	6	ELE, VDW, GB
A/tern/Australia/G70C/75	0,88	18	8	TSTRA, TSROT, ELE, VDW, GB
A/PR/8/34	0,50	102	6	ELE, VDW, PB
A/PR/8/34	0,50	102	10	MW, TSVIB, TSTRA, TSROT, ELE, VDW, PB
A/PR/8/34	0,54	102	6	ELE, VDW, GB
A/PR/8/34	0,58	102	9	TSVIB, TSTRA, TSROT, ELE, VDW, GB
A/PR/8/34	0,60	102	10	MW, TSVIB, TSTRA, TSROT, ELE, VDW, GB
A/PR/8/34	0,67	102	14	MW, TSVIB, TSTRA, TSROT, ELE, VDW, GB, PB
A/Aichi/2/68	0,14	45	6	ELE, VDW, PB
A/Aichi/2/68	0,16	45	9	TSVIB, TSTRA, TSROT, ELE, VDW, PB
A/Aichi/2/68	0,23	45	10	MW, TSVIB, TSTRA, TSROT, ELE, VDW, PB
A/Aichi/2/68	0,25	45	6	ELE, VDW, GB
A/Aichi/2/68	0,39	45	10	MW, TSVIB, TSTRA, TSROT, ELE, VDW, GB
A/Aichi/2/68	0,46	45	14	MW, TSVIB, TSTRA, TSROT, ELE, VDW, GB, PB

Примечание. В случае PB имеются в виду 4 отдельных компоненты (PBSUR, PBCAL, PBSOL, PBELE), для GB аналогично (GBSUR, GB, GBSOL, GBELE).

Таблица 3. Перекрёстное предсказание pIC_{50} по одноштаммовым моделям

	A/Tokyo/3/67	A/tern/Australia/G70C/75	A/PR/8/34	A/Aichi/2/68	B/Lee/40
A/Tokyo/3/67		0,003	0,003	0,004	0,003
A/tern/Australia/G70C/75	0,12		0,29	0,07	0,21
A/PR/8/34	0,06	0,02		0,02	0,02
A/Aichi/2/68	0,01	0,01	0,02		0,08
B/Lee/40	0,01	0,02	0,001	0,14	

Примечание. Штаммы, для которых строились уравнения, размещены по горизонтали, использовался вариант лучший по Q^2 .

Таблица 4. Объединённое уравнение для предсказания pIC₅₀ (235 наблюдений)

№	Q^2	Средняя ошибка в LOO	\mathbb{R}^2	F	Значимость F	Число переменных	Список переменных
1	0,41	1,45	0,44	15,36	3,70E-020	10	ID, ELE, VDW, PB
2	0,41	1,45	0,44	13,02	1,93E-019	12	ID, TSTRA, TSROT, ELE, VDW, PB
3	0,42	1,45	0,45	12,11	4,21E-019	13	ID, TSVIB, TSTRA, TSROT, ELE, VDW, PB
4	0,42	1,46	0,45	11,29	1,05E-018	14	ID, MW, TSVIB, TSTRA, TSROT, ELE, VDW, PB
5	0,46	1,39	0,50	19,83	4,66E-025	10	ID, ELE, VDW, GB
6	0,47	1,38	0,52	17,78	1,77E-025	12	ID, TSTRA, TSROT, ELE, VDW, GB
7	0,47	1,38	0,52	16,43	5,69E-025	13	ID, TSVIB, TSTRA, TSROT, ELE, VDW, GB
8	0,49	1,36	0,53	15,69	4,78E-025	14	ID, MW, TSVIB, TSTRA, TSROT, ELE, VDW, GB
9	0,54	1,3	0,56	15,40	1,56E-026	16	ID, MW, TSVIB, SUM(TSTRA,TSROT), SUM(ELE,VDW), GB, PB

Примечание. В случае PB имеются в виду 4 отдельных компоненты (PBSUR, PBCAL, PBSOL, PBELE), для GB аналогично (GBSUR, GB, GBSOL, GBELE). LOO - процедура скользящего контроля методом выбрасывания по одному. SUM - сумма параметров указанных в скобках. ID - 4 индикаторные переменные.

подобных вариантам комплексов для серии близких структурных аналогов. Исключение таких результатов существенно повышало качество предсказания. Например, для модели по нейраминидазе штамма А/РR/8/34 путём экспертного анализа достаточно исключить всего 8 наблюдений из 102, чтобы значение Q^2 возросло до 0,85 вместо 0,67. Однако, мы намеренно старались избегать применения такого рода решений и появления выбросов, которые нельзя предсказать по результатам докирования. Проблему подобной фильтрации необходимо исследовать отдельно. Кроме того, известно, что в случае нейраминидазы результат существенно улучшается, если использовать ряд молекул воды в качестве постоянного элемента места связывания [15], что тоже следует учесть в дальнейших исследованиях. И, наконец, исследуемую выборку необходимо увеличить и распространить, как минимум, на все известные антигенные варианты вируса гриппа.

Работа выполнена в рамках Программы фундаментальных научных исследований государственных академий наук на 2013-2020 годы.

ЛИТЕРАТУРА

- 1. Бреслав Н.В., Шевченко Е.С., Абрамов Д.Д., Прилипов А.Г., Журавлева М.М., Оскерко Т.А., Колобухина Л.В., Меркулова Л.Н., Щелканов М.Ю., Бурцева Е.И., Львов Д.К. (2013) Вопросы вирусологии, **58**(1), 28-32.
- Air G.M., Laver W.G. (1989) Proteins: Structure, Function, and Bioinformatics, 6(4), 341-356.
- 3. *Mishin V.P., Hayden F.G., Gubareva L.V.* (2005) Antimicrob. Agents Chemother., **11**, 4515-4520.
- 4. Moscona A. (2005) N. Engl. J. Med., 353, 1363-1373.
- McKimm-Breschkin J., Trivedi T., Hampson A. et al. (2003) Antimicrob. Agents Chemother., 47, 2264-2272.
- Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. (2000) Nucl. Acids Res., 28, 235-242.

- 7. Babu Y.S., Chand P., Bantia S., Kotian P., Dehghani A., El-Kattan Y., Lin T.H., Hutchison T.L., Elliott A.J., Parker C.D., Ananth S.L., Horn L.L., Laver G.W., Montgomery J.A. (2000) J. Med. Chem., 43(19), 3482-3486.
- Whittington A., Bethell R. (1995) Expert Opin. Ther. Patents, 5(8), 793-803.
- 9. Sebaug J.L. (2011) Pharmaceutical Statistics, 10(2), 128-134.
- 10. SYBYL-X, Tripos, St. Louis, MO, USA.
- Kuntz I.D., Blaney J.M., Oatley S.J., Langridge R., Ferrin T.E. (1982) J. Mol. Biol., 161, 269-288.
- Case D.A., Darden T., Cheatham T.E. III, Simmerling C., Wang J., Duke R.E., Luo R., Merz K.M., Pearlman D.A., Crowley M. (2006) AMBER 9. University of California, San Francisco, 45.
- 13. Щербаков А.М., Левина И.С., Куликова Л.Е., Федюшкина И.В., Скворцов В.С., Веселовский А.В., Кузнецов Ю.В., Заварзин И.В. (2016) Биомед. химия, 62(3), 290-294. DOI: 10.18097/PBMC20166203290
- 14. Kollman P.A., Massova I., Reyes C., Kuhn B., Huo S., Chong L., Lee M., Lee T., Duan Y., Wang W., Donini O., Cieplak P., Srinivasan J., Case D.A., Cheatham T.E. 3rd (2000) Acc. Chem. Res., 33, 889-897.
- Nguyen T.T., Viet M.H., Li M.S. (2014) The Scientific World Journal, Article ID 536084, 14 pages.
- Chand P., Babu Y.S., Bantia S.J. (1997) Med. Chem., 40, 4030-4052.
- 17. Atigadda V.R., Brouillette W.J., Duarte F., Ali S.M., Babu Y.S., Bantia S., Chand P., Chu N., Montgomery J.A., Walsh D.A., Sudbeck E.A., Finley J., Luo M., Air G.M., Laver G.M. (1999) J. Med. Chem., 42, 2332-2343.
- 18. Williams M.A., Lew W., Mendel D.B., Tai C.Y., Escarpe P.A., Laver W.G., Stevens R.C., Kim C.U. (1997) Bioorg. Med. Chem. Lett., 7, 1837-1842.
- Kim C.U., Lew W., Williams M.S., Wu H., Zhang L., Chen X., Escarpe P.A., Mendel D.B., Laver W.G., Stevens R.C. (1998)
 J. Med. Chem., 41, 2451-2460.
- 20. Lew W., Wu H., Mendel D.B., Escarpe P.A., Chen X., Laver G., Graves B.J., Kim C.U. (1998) Bioorg. Med. Chem. Lett., 8, 3321-3324.
- 21. Kim C.U., Lew W., Williams M.A., Liu H.T., Zhang L.J., Swaminathan S., Bischofberger N., Chen M.S., Mendel D.B., Tai C.Y., Laver W.G., Steven R.C. (1997) J. Am. Chem. Soc., 119, 681-690.

- Bantia S., Parker C.D., Ananth S.L., Horn L.L., Andries K., Chand P., Kotian P.L., Dehghani A., El-Kattan Y., Lin T., Hutchison T.L. (2001) Antimicrob. Agents Chemother., 45(4), 1162-1167.
- 23. Wang G.T., Chen Y., Wang S., Gentles R., Sowin T., Kati W., Muchmore S., Giranda V., Stewart K., Sham H., Kempf D., Laver W.G. (2001) J. Med. Chem., 44, 1192-1201.
- 24. *Gao L., Zu M., Wu S., Liu A.L., Du G.H.* (2011) Bioorgan. Med. Chem. Letts., **21**(19), 5964-5970.
- Smith P.W., Sollis S.L., Howes P.D. (1998) J. Med. Chem., 41, 787-797.
- Wyatt P.G., Coomber B.A., Evans D.N., Jack T.I., Fulton H.E., Wonacott A.J., Colman P., Varghese J. (2001) Bioorgan. Med. Chem. Letts., 11(5), 669-673.

Поступила: 25. 08. 2016. Принята к печати: 12. 10. 2016.

PREDICTION OF SELECTIVE INHIBITION OF NEURAMINIDASE FROM VARIOUS INFLUENZA VIRUS STRAINS BY POTENTIAL INHIBITORS

A.V. Mikurova, A.V. Rybina, V.S. Skvortsov

Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia; e-mail: a.mikurova@ibmc.msk.ru

A universal model of inhibition of neuraminidases from various influenza virus strains by a particular has been developed. It is based on known 3D data for neuraminidases from three influenza virus strains (A/Tokyo/3/67, A/tern/Australia/G70C/75, B/Lee/40) and modeling of 3D structure of neuraminidases from other strains (A/PR/8/34 and A/Aichi/2/68). Using docking and molecular dynamics, we have modeled 235 enzyme-ligand complexes for 185 compounds with known IC₅₀ values. Selection of final variants among three results obtained for each enzyme-ligand pair and calculation of independent variables for generation of linear regression equations was performed using MM-PBSA/MM-GBSA. This resulted in the set of equations individual strains and the equations pooling all the data. Thus using this approach it is possible to predict inhibition for neuraminidase from each of the considered strains by a particular inhibitor and to predict the range of its action on neuraminidases from various influenza virus strains.

Key words: influenza virus neuraminidase, inhibitors, computational methods, QSAR