©Коллектив авторов

ФАРМАКОКИНЕТИЧЕСКИЕ СВОЙСТВА ВЕЩЕСТВА НА ОСНОВЕ ПРОИЗВОДНОГО 3,7-ДИАЗАБИЦИКЛО[3.3.1]НОНАНА

Г.Э. Бркич, Н.В. Пятигорская, В.В. Береговых, А.А. Недорубов, О.В. Филиппова, О.А. Зырянов*

Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет), 119991, Москва, ул. Трубецкая, 8, стр. 2; *эл. почта: zurianov2009@gmail.com

Исследована фармакокинетика и биодоступность вещества, являющегося по химической структуре производным 3,7-диазабицикло[3.3.1]нонана, показавшего в эксперименте ноотропное действие, при однократном введении у крыс. Фармакокинетика изучалась при пероральном введении атравматическим зондом и внутривенном введении 270 крысам-самцам линии Sprague Dawley в дозах 2,5 мг/кг, 13 мг/кг и 25 мг/кг. Также проводилось изучение распределения этого вещества в органах и тканях (мозг, тимус, сердце, легкие, печень, почки, селезёнка). Установлено, что после однократного внутривенного введения вещество определяется в крови животных на протяжении 24 ч, период полувыведения составил 4,69 ч. Относительная биодоступность производного 3,7-диазабицикло[3.3.1]нонана при пероральном введении составила 42,3%, что говорит о перспективе создания лекарственных средств для приема внутрь. При однократном пероральном введении зависимость AUC_{0-t} от дозы имеет экспоненциальный характер. Распределение в организме неоднородно, исследуемое вещество преимущественно накапливается в хорошо васкуляризированных тканях.

Ключевые слова: производное 3,7-диазабицикло[3.3.1]нонана; фармакокинетика; ноотропное действие; АМРА-рецепторы; тканевая доступность, крысы

DOI: 10.18097/PBMC20206601071

ВВЕДЕНИЕ

Инсульт остаётся важнейшей медико-социальной проблемой, что обусловлено его высокой долей в структуре заболеваемости и смертности населения, значительными показателями как временной, так и постоянной нетрудоспособности [1-2]. Высокий уровень летальности и инвалидизации вследствие инсульта обуславливает актуальность поиска новых лекарственных средств (ЛС).

Одной из перспективных групп ЛС для лечения состояний, связанных с ишемией головного мозга, являются химические соединения с глутаматергическим механизмом действия, в частности агонисты или модуляторы АМРА-рецепторов [3].

Исследованное вещество, являющееся по химической структуре производным 3,7-диазабицикло[3.3.1]нонана, как было показано ранее, обеспечивает продолжительную активацию АМРА-рецепторов, выработку нейротрофических факторов и может использоваться для создания на его основе ноотропного ЛС [4-5]. Предполагается терапевтическое применение этого вещества для лечения когнитивных нарушений и реабилитации пациентов, перенесших острую гипоксию мозга вследствие ишемии или другие повреждения головного мозга, что требует более подробного изучения фармакологических свойств вещества.

Цель исследования заключалась в изучении фармакокинетики и биодоступности вещества на основе производного 3,7-диазабицикло[3.3.1]нонана после однократного перорального введения атравматическим зондом и внутривенного введения крысам.

МЕТОДИКА

Объектом исследования было вещество на основе производного 3,7-диазабицикло[3.3.1]нонана с химическим названием IUPAC 6-[4-метокси-3-(1Н-пиразол-1-илметил)бензил]-1,11-диметил-3,6,9-триазатрицикло[7.3.1.1]тетрадекан-4,8,12-триона, которое было синтезировано на базе химического факультета МГУ им. М.В. Ломоносова [5-6]. Структурная формула представлена на рисунке 1.

Рисунок 1. Исследуемое вещество – 6-[4-метокси-3-(1H-пиразол-1-илметил)бензил]-1,11-диметил-3,6,9-триазатрицикло[7.3.1.1]тетрадекан-4,8,12-трион.

ФАРМАКОКИНЕТИЧЕСКИЕ СВОЙСТВА 3,7-ДИАЗАБИЦИКЛО[3.3.1]НОНАНА

Фармакокинетика вещества изучалась при пероральном введении атравматическим зондом и внутривенном введении крысам-самцам линии Sprague Dawley (180-200 г). В исследовании использовали 270 животных, разделённых на четыре экспериментальные группы (табл. 1). Животных распределяли по группам случайным образом, используя в качестве критерия массу тела, так, чтобы индивидуальная масса животных не отличалась более чем на 10% от средней массы животных одного пола.

За 18-20 ч до исследования животных лишали корма, оставляя открытым доступ к воде. При изучении фармакокинетики при пероральном введении исследуемое вещество растворяли в ДМСО, затем в 2% крахмальном геле, вводили перорально атравматическим зондом в дозах 2,5 мг/кг, 13 мг/кг и 25 мг/кг. При внутривенном введении вещество растворяли в ДМСО, затем в 0,9% физиологическом растворе (доза – 13 мг/кг).

Перед забором крови крыс помещали в СО₂-камеру до полной остановки дыхания. Кровь забирали из яремной вены по 1 мл с ЭДТА в следующие временные точки: 0 ч, 0,25 ч, 0,5 ч, 0,75 ч, 1 ч, 1,5 ч, 2 ч, 3 ч, 4 ч, 6 ч, 8 ч, 12 ч, 24 ч. На одну временную точку приходилось по 5 животных. У животных, получавших вещество в дозе 25 мг/кг перорально атравматическим зондом, производили забор органов (мозг, тимус, сердце, лёгкие, печень, почки, селезёнка) для изучения распределения исследуемого вещества в следующие временные точки: 0 ч, 0,25 ч, 0,5 ч, 0,75 ч, 1 ч, 1,5 ч, 2 ч, 3 ч, 4 ч, 6 ч, 8 ч, 12 ч, 24 ч, 36 ч, 48 ч. Из крови получали плазму обычным методом: центрифугирование – при 3500 об/мин при 4°C и сохранение при -20°C в аликвотах по 1 мл. При центрифугировании использовалась Центрифуга лабораторная (16873 g, ротор FA-45-18-11, 5418, "Eppendorf", Германия).

Для определения вещества в биоматериале была разработана и валидирована методика высокоэффективной жидкостной хроматографии в УФ и видимом диапазоне. Использовалась колонка: Poroshell 120 EC-C18, 2,1×50 мм, 2,7 мкм ("Agilent", США). Элюент А — 0,1% трифторуксусная кислота в ацетонитриле, элюент В — 0,1% трифторуксусная кислота в воде. Скорость потока составляла 1,0 мл/мин, время хроматографирования — 12 мин. Длина волны детектора — 233 нм. Диапазон калибровки для бициклононана составлял 0,1-100 мкг/мл. Данная методика была валидирована в соответствии с Руководством по валидации аналитических методик ЕАЭС и Государственной Фармакопеей XIV издания [7, 8].

Значения фармакокинетических параметров были получены по экспериментальным данным в автоматическом режиме с использованием программы модуля ПК SolverExcel. На основании концентрации вещества в плазме крови определяли константу скорости первого порядка в фазе конечного исключения (Lambda_z), период полувыведения (T_{1/2}), время достижения максимальной концентрации (Т_{тах}), максимальную концентрацию $(C_{max}),$ площадь под фармакокинетической кривой (AUC) "концентрация-время" от 0 точки до крайней точки (AUC_{0-t}), площадь под фармакокинетической кривой "концентрация-время" от крайней точки до бесконечности ($AUC_{t-\infty}$), площадь под кривой времени дозирования, экстраполированного бесконечности (AUC $_{0-\infty}$). Также определяли среднее время удерживания действующего вещества в крови (среднее резидентное время, MRT) от 0 точки до крайней точки (MRT_{0-t}), среднее время удерживания действующего вещества в крови от 0 точки до бесконечности (MRT $_{0-\infty}$), общий клиренс (Cl), стационарный объём распределения (Vss), медианный объём распределения в терминальной фазе (Vz/F) [9].

Таблица 1. Основные фармакокинетические параметры исследуемого вещества при однократном введении внутривенно и при пероральном введении атравматическим зондом

Параметр	Единица измерения	Путь введения Доза Количество животных, шт						
		Lambda_z	1/ч	0,15	0,15	0,16	0,16	
t _{1/2}	Ч	4,69	4,49	4,31	4,23			
T _{max}	Ч	0	1	1	1			
C _{max}	мкг/мл	78,98	7,89	37,49	74,21			
AUC _{0-t}	мкг/мл×ч	341,22	32,07	147,45	274,89			
$AUC_{t-\infty}$ obs	мкг/мл×ч	7,63	1,65	7,07	13,03			
AUC _{0-∞} obs	мкг/мл×ч	348,85	33,72	154,51	287,92			
MRT _{0-t}	Ч	4,99	5,12	4,79	4,61			
MRT _{0-∞} _obs	Ч	5,56	6,36	5,95	5,76			
C1T	(мг/кг)/(мкг/мл)/ч	0,04	0,07	0,08	0,09			
Vss	л/кг	0,21	0,47	0,50	0,50			
Vz/F_obs	(мг/кг) /(мкг/мл)	0,25	0,48	0,52	0,53			

Для оценки интенсивности проникновения вещества в ткани использовали показатель тканевой доступности (f_T) , определяемый отношением величины AUC в ткани к соответствующей величине AUC в крови [9].

Кажущийся коэффициент распределения $(K_{\rm d})$ фармакологического средства между кровью и тканью определяется отношением соответствующих концентраций в конечных (моноэкспоненциальных) фазах фармакокинетических кривых [9]. В данном исследовании $K_{\rm d}$ рассчитывали для показателей через 6 ч после введения.

Поскольку на каждую временную точку использовали по 5 животных, результирующие фармакокинетические кривые представлены в виде средней арифметической и соответствующего ей стандартного отклонения $(M\pm SD)$. Расчёт фармакокинетических параметров проводили по усредненным значениям, поэтому при расчётах фармакокинетических параметров отсутствует статистическая обработка результатов.

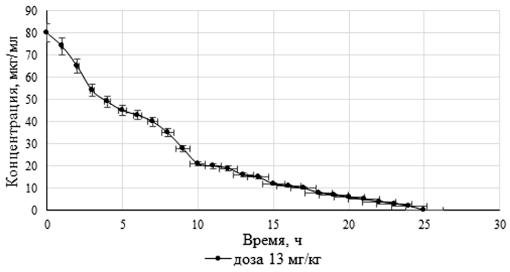
РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Фармакокинетический профиль исследуемого вещества в плазме крови крыс после однократного внутривенного введения в дозе 13 мг/кг представлен на рисунке 2. Из графика видно, что снижение концентрации в плазме крови носит монофазный характер. Усреднённый период полувыведения исследуемого вещества составил 4,69 ч. Через 24 ч концентрация вещества в плазме составляла 1% от максимальной. Фармакокинетические характеристики в плазме крови животных после однократного внутривенного введения представлены в таблице 1.

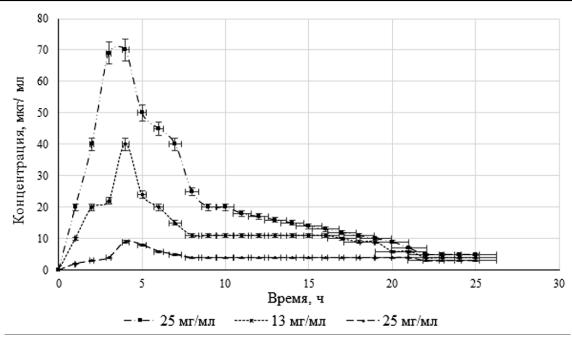
Параметром, характеризующим степень проникновения вещества в ткани, является Vss. Его величина составила 0,21 л. Кажущийся объём распределения обычно не эквивалентен анатомическому объёму, а отражает распределение

препарата и степень его связывания в организме. В нашем случае расчёт величины Vss указывает, что исследуемое вещество распределяется во всех жидких средах организма животных [9].

При изменении пути введения на пероральный, вещество также поступало в кровь. На рисунке 3 представлены данные по определению концентрации исследуемого вещества в образцах плазмы крови крыс в разные сроки после однократного перорального введения в дозах 2,5 мг/кг, 13 мг/кг и 25 мг/кг.


После перорального введения крысам исследуемое вещество быстро всасывается из желудочно-кишечного тракта (определяется в плазме крови через 15 мин) и остается в крови на протяжении 24 ч. $T_{1/2}$ в дозах 2,5 мг/кг, 13 мг/кг и 25 мг/кг при пероральном введении составил 4,49 ч, 4,31 ч и 4,23 ч соответственно.

 C_{max} в плазме крови при пероральном введении исследуемого вещества регистрировалась через 1,0 ч (T_{max}) после введения, а её величина зависела от дозы. Снижение значений концентраций после достижения C_{max} носило монофазный характер.


МКТ исследуемого вещества в дозах 2,5 мг/кг, 13 мг/кг и 25 мг/кг при пероральном введении составило 5,12 ч, 4,79 ч и 4,61 ч соответственно. Видимый общий клиренс (Cl/F) исследуемого вещества в дозах 2,5 мг/кг, 13 мг/кг и 25 мг/кг при пероральном введении составил 0,07 (мг/кг)/(мкг/мл)/ч, 0,08 (мг/кг)/(мкг/мл)/ч, 0,09 (мг/кг)/(мкг/мл)/ч соответственно.

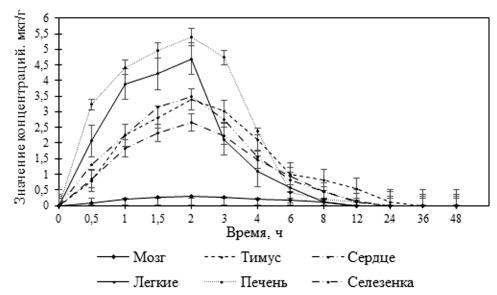
Относительная биодоступность при пероральном введении составила 42,3% относительно внутривенного введения исследуемого вещества, что говорит о потенциальной возможности разработки ЛС для приёма внутрь.

После анализа результатов однократного перорального введения вещества крысам в трёх возрастающих дозировках 2,5 мг/кг, 13 мг/кг и 25 мг/кг на основании полученных данных была выдвинута гипотеза линейности фармакокинетики изучаемого

Рисунок 2. Изменение концентрации исследуемого вещества во времени в плазме крыс после однократного внутривенного введения в дозе 13 мг/кг.

Рисунок 3. Изменение концентрации вещества во времени в плазме крыс после однократного перорального введения атравматическим зондом.

Таблица 2. Основные фармакокинетические параметры исследуемого вещества в органах крыс после однократного перорального введения атравматическим зондом в дозе 25 мг/кг


1 1	-							
Параметр	Единица измерения	Мозг	Тимус	Сердце	Легкие	Печень	Селезёнка	Плазма
T _{max}	ч	2	2	2	2	2	2	1
C _{max}	мкг/г	0,28	3,40	2,65	4,70	5,40	3,50	74,21
T _{1/2}	ч	4,17	5,20	1,86	1,16	1,64	2,24	4,23
AUC _{0-t}	мкг/г×ч	1,52	20,90	12,31	13,67	20,33	14,33	274,89
$\mathrm{AUC}_{0\text{-}\infty}$	мкг/г×ч	2,12	21,65	12,58	13,84	20,61	14,75	287,92
MRT _{0-t}	ч	3,76	6,09	3,81	2,41	2,77	3,52	4,61
MRT _{0-∞}	ч	6,66	6,97	4,04	2,50	2,93	3,86	5,76
K _d		0,016	0,089	0,082	0,049	0,038	0,073	_
f_{T}		0,005	0,076	0,0447	0,0497	0,0739	0,0521	_

вещества. Проверка этой гипотезы является важнейшим элементом фармакокинетического анализа, так как позволяет оценить предсказуемость изменений концентрации в ответ на изменение дозы фармакологического средства. Для проверки этой гипотезы была оценена статистическая достоверность отклонения от нуля свободного члена линейной регрессии AUC_{0-t} . Полученные результаты показали, что гипотезу следует считать верной, коэффициент корреляции — 0,9992.

Следующим этапом исследования было изучение тканевой доступности изучаемого вещества. Анализ концентраций и распределения вещества в органах животных проводили после однократного перорального введения в дозе 25 мг/кг. Распределение вещества изучали в органах и тканях, отличавшихся

друг от друга различной степенью кровоснабжения (селезёнка, тимус, сердце), органе, обеспечивающем элиминацию (печень), органе-мишени — мозге. Основные фармакокинетические параметры изучаемого вещества в органах крыс после однократного перорального введения в дозе 25 мг/кг представлены в таблице 2.

Время достижения максимальной концентрации вещества в тканях составляло 2 ч. Установлено, что изучаемое вещество определялось во всех исследуемых органах и тканях, но в распределении по органам прослеживалась некоторая гетерогенность. Вещество накапливалось преимущественно в хорошо васкуляризированных тканях – печени и лёгких (рис. 4). C_{max} исследуемого вещества снижалась в ряду печень – легкие – селезёнка – тимус – сердце – мозг

Рисунок 4. Концентрации вещества (мкг/г) в органах животных после однократного перорального введения атравматическим зондом в дозе 25 мг/кг.

(5,40 мкг/г; 4,70 мкг/г; 3,50 мкг/г; 3,40 мкг/г; 2,65 мкг/г; 0,28 мкг/г). Обнаружение вещества в головном мозге подтверждает его проникновение через гематоэнцефалический барьер.

Тканевая доступность изучаемого вещества была низкой. C_{max} в плазме составляла 74,21 мкг/мл, что значительно выше тканевых концентраций. f_{T} в системе "мозг – плазма крови" составил 0,0055; "печень – плазма крови" – 0,0760. Для системы "селезёнка — плазма крови" этот показатель составил 0,0521, для сердца — 0,0448. K_{d} вещества между кровью и тканью, определяемый отношением соответствующих концентраций в один и тот же момент времени (2 ч), был меньше 1,0 для всех тканей.

Наибольшее время удерживания (МRT) исследуемого вещества было в следующих органах: тимус (6,09 ч), сердце (3,81 ч) и мозг (3,76 ч). $T_{1/2}$ изучаемого вещества был наибольшим для следующих органов: тимус (5,20 ч), мозг (4,17 ч) и селезёнка (2,24 ч).

ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

На основании проведённого фармакокинетического исследования были сделаны следующие выводы:

- •после однократного внутривенного введения исследуемое вещество определялось в крови животных на протяжении 24 ч, период полувыведения составил 4.69 ч;
- •относительная биодоступность при пероральном введении составила 42,3%, что говорит о перспективе создания ЛС для приёма внутрь;
- •распределение исследуемого вещества в организме неоднородно, наибольшую тропность изучаемое вещество имеет к органам с высокой степенью васкуляризации;
- \bullet при однократном пероральном введении зависимость AUC_{0-t} от дозы имеет экспоненциальный характер.

БЛАГОДАРНОСТИ

Авторы выражают благодарность ведущему научному сотруднику кафедры медицинской химии и тонкого органического синтеза НИЛ медицинской химии МГУ, кандидату химических наук Палюлину Владимиру Александровичу, старшему научному сотруднику кафедры медицинской химии и тонкого органического синтеза НИЛ медицинской химии МГУ, кандидату химических наук Лаврову Мстиславу Игоревичу и Запольскому Максиму Эдуардовичу за оказанную помощь при проведении данного исследования.

ФИНАНСИРОВАНИЕ

Исследования были выполнены в рамках Государственного контракта № 14.N 08.11.0137 от 28 апреля 2017 г. "Доклинические исследования лекарственного средства на основе производных бициклононана для реабилитации больных после повреждения мозга" и при поддержке проекта "Повышения конкурентоспособности ведущих российских университетов среди ведущих мировых научно-образовательных центров 5–100".

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ СТАНДАРТОВ

Все манипуляции с экспериментальными животными выполнены в соответствии с требованиями, касающимися гуманного обращения с животными, и стандартными операционными процедурами Центра доклинических исследований Сеченовского Университета. Проведение экспериментов с животными одобрено Комиссией по биомедицинской этике Сеченовского Университета (Протокол №1018 от 16.05.2018 г.).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

ФАРМАКОКИНЕТИЧЕСКИЕ СВОЙСТВА 3,7-ДИАЗАБИЦИКЛО[3.3.1]НОНАНА

ЛИТЕРАТУРА

- Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association (2018) American Stroke Association. Stroke. 49.3 DOI: 10.1161/STR.000000000000158.
- Hui C., Tadi P., Patti L. (2019) Ischemic Stroke Last Update www.ncbi.nlm.nih.gov/books/NBK499997/
- 3. Сергеев Д.В., Домашенко М.А., Пирадов М.А. (2017) Журнал неврологии и психиатрии, **4**, 86-91. [Sergeev D.V., Domashenko M.A., Piradov M.A. (2017) Journal Neurology Psychiatry, **4**, 86-91.]
- Pyatigorskaya N.V., Brkich G.E., Lavrov M.I., Palyulin V.A., Aladysheva Z.I. (2018) Journal Pharmaceutical Sciences Research, 10, 1103-1106.
- Зефиров Н.С., Палюлин В.А., Лавров М.И., Запольский М.Е. (2013) Патент РФ № 2480470. Заявка 2011113043 от 06.04.2011; опубл. 27.04.2013 в БИ № 12. [Zefirov N.S., Palyulin V.A., Lavrov M.I., Zapolsky M.E. (2013) patent RF No. 2480470. Appl. 2011113043 from 06.04.2011; publ. 27.04.2013 in BI No. 12.]
- 6. Лавров М.И. (2011) Новые модуляторы АМРА рецепторов: дизайн и исследование. Дисс. канд. наук, Московский государственный университет М.В. Ломоносова, Москва. [Lavrov M.I. (2011) Novel AMPA receptor modulators: design and assessment. Diss. kand. nauk, Lomonosov Moscow State University, Moscow].

- 7. Государственная Фармакопея РФ XIV издания ОФС.1.1.0012.15 "Валидация аналитических методик" [State Pharmacopoeia of the Russian Federation XIV edition of OFS.1.1.0012.15 "Validation of analytical methods".].
- 8. Решение Коллегии Евразийской экономической комиссии от 17 июля 2018 г. N 113 "Об утверждении Руководства по валидации аналитических методик проведения испытаний лекарственных средств" [Decision of the Board of the Eurasian Economic Commission of July 17, 2018 N 113 "On approval of the Guidelines for the validation of analytical methodsfor testing drugs".]. Режим доступа: https://www.alta.ru/tamdoc/18kr0113/Дата обращения: 28.11.2019.
- 9. Руководство по проведению доклинических исследований лекарственных средств. (2012) Часть первая (под ред. Миронова А.Н.). М.: Гриф и К, 944. [Guidelines for preclinical studies of drugs. (2012) Part One (Mironov A.N., ed.). M. Grif and K, 2012. 944.].

Поступила в редакцию: 06. 12. 2019. После доработки: 21. 01. 2020. Принята к печати: 23. 01. 2020.

PHARMACOKINETIC PROPERTIES OF AN INNOVATIVE NOOTROPIC AGENT BASED ON A DERIVATIVE OF 3,7-DIAZABICYCLO[3,3.1]NONANE

G.E. Brkich, N.V. Pyatigorskaya, V.V. Beregovykh, A.A. Nedorubov, O.V. Filippova, O.A. Zyryanov*

Sechenov First Moscow State Medical University, 8 bld. 2 Trubetskaya str., Moscow, 119991 Russia; *e-mail: zurianov2009@gmail.com

The pharmacokinetics and bioavailability of a derivative of 3,7-diazabicyclo[3.3.1]nonane exhibiting a nootropic effect, were studied after a single dose to rats. The pharmacokinetics of the compound was studied after oral and intravenous administration to 270 male rats Sprague Dawley at doses of 2.5 mg/kg, 13 mg/kg and 25 mg/kg. Its distribution in organs and tissues (brain, thymus, heart, lungs, liver, kidneys, and spleen) was also investigated. It was found that after a single intravenous administration, the investigated substance was determined in the blood of animals for 24 h; the half-life was 4.69 h. The relative bioavailability of the 3,7-diazabicyclo[3.3.1]nonane derivative after oral administration was 42.3%, thus suggesting the prospect of creating dosage forms for oral administration. After a single oral administration, the dose dependence of AUC_{0-t} was exponential. The substance is characterized by heterogeneous distribution in the body with preferential accumulation mainly in well-vascularized tissues.

Key words: derivative of 3,7-diazabicyclo[3.3.1]nonane; pharmacokinetics; nootropic effect; AMPA receptors; tissue accessibility; rats

Funding. The studies were carried out with the support of State contract No. 14.N 08.11.0137 dated April 28, 2017 "Preclinical studies of a drug based on bicyclononane derivatives for the rehabilitation of patients after brain damage" and of the project "Russian Academic Excellence Project 5-100".

Received: 06.12.2019, revised: 21.01.2020, accepted: 23.01.2020.