
INTRODUCTION

According to WHO data for 2023, almost 1 billion
people worldwide suffer from mental disorders [1], 
of these the majority are anxiety disorders. According
to Rosstat data for 2023 [2], there are approximately 
3.5 million people in Russia suffering from anxiety
disorders. Anxiety disorders are characterized 
by excessive worry, fear, and avoidance behavior 
that complicate the daily lives of patients and limit 
their social activity and professional opportunities. 
All this leads to an intensification of the search for new
anxiolytic drugs.

Machine learning methods have long been
successfully used in the in silico search for compounds
with pharmacological activity [3], and the technology
of artificial neural networks (collectively called artificial
intelligence methods) has proved especially effective 
in this regard [4]. However, in PubMed we were unable
to find a single publication devoted to the in silico
search for substances with anxiolytic activity using
artificial intelligence methods. This is probably 
due to the fact that anxiolytic effects are of a complex
systemic multi-target nature and are caused 
by the effect of compounds on a set of a sufficiently
large number of relevant biotargets. 

Thus, the development of new approaches 
to the search for anxiolytic substances using artificial
intelligence methods is one of the current areas 
of modern bioinformatics and pharmacology.

Our previous work [5] has shown that the spectrum
of docking energies of chemical compounds into many
spaces of relevant protein is a much more reliable
metric of the affinity of ligands to biotargets, 
in comparison with the unit energy of their docking 
into the specific site. Taking this into account, we built
a based on multiple docking neural network model 
of the dependence of the anxiolytic activity of chemical
compounds on the energy spectrum of their multiple
docking in the GABAA receptor, based on multiple
docking and the integral affinity of the predicted
compounds for only one biotarget [6].

The aim of this work is to develop a more
universal multi-target neural network model 
of depending anxiolytic activity chemical compounds
on the parameters of the correlation convolution 
of the multiple docking energy spectra.

To achieve this aim, it was necessary to solve 
the following objectives.

1. To create the training set on the structure and
level of anxiolytic activity of known compounds.
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2. To identify the optimized 3D models 
of these compounds.

3. To reveal biotargets putatively relevant 
to anxiolytic activity.

4. To find the valid 3D models of target proteins
relevant to anxiolytic activity.

5. To create the spaces for multiple docking
across the entire volume of each validated 3D model 
of relevant target proteins. 

6. To conduct the multiple ensemble molecular
docking of known anxiolytic compounds into all spaces
of all validated 3D models of relevant target proteins.

7. To perform the correlation convolution 
of the calculated multiple docking energy spectra.

8. To train the neural networks on the obtained
convolutional variables and to create the multi-target
neural network model of the dependence of the anxiolytic
activity of chemical compounds on the parameters 
of the correlation convolution of the multiple docking
energy spectra.

METHODS

The Training Set on the Structure and Level 
of Anxiolytic Activity of Known Compounds

The training set was formed on the basis 
of the original verified database [7] on the structure and
anxiolytic activity of 537 known experimentally
studied substances with verified structural formulas 
and a unified level of anxiolytic activity. It included 
273 compounds with pronounced anxiolytic activity
and 264 low or inactive compounds.

Optimized 3D Models of Compounds

Optimized 3D models of 537 compounds were
constructed sequentially by the molecular mechanics
method in the MarvinSketch 15.6.15 program [8] 
and then by the semi-empirical quantum chemical 
PM7 method in the MOPAC2012 program [9]. 
First, 10 conformers with the lowest energy were built
separately for each compound in MarvinSketch. 
Then, all the built conformers were optimized 
in MOPAC2012 and for each compound among 
its optimized conformers, one conformer with the lowest
total energy was selected. In total, 10749 conformers
were processed according to this scheme, as a result,
537 optimized 3D models of the compounds 
of the training set were built.

Biotargets Relevant to Anxiolytic Activity

The Open Targets system [10] yielded a list 
of 2057 biotargets associated with anxiety disorders
based on text mining of existing publications. From 
the original QSAR database of the Microcosm BioS
system 20.6.6 [11] a list of 2697 human biotargets with
experimental data on various types of targeted activity

was taken. By crossing these two lists, a list of 92 human
biotargets that would be putatively relevant to anxiolytic
activity confirmed by corresponding experimental data
on the activity of compounds was obtained. Using 
273 compounds with pronounced anxiolytic activity
from the original database [7] using the original 
IT Microcosm 7.3 [12] and Microcosm BioS 20.6.6 [11]
systems, 10 known structurally similar compounds
experimentally studied for this type of target activity
were found for each selected biotarget by the structural
similarity method using the QL-modified 
Tanimoto coefficient. Based on the data obtained, 
92 average indicators of the level of target activity Ind
were calculated, the range of changes from 
Ind = +5 (very high) to Ind = -5 (inactive); 
Ind = 0 corresponds to average activity. 22 biotargets
with Ind values ≥ 1 were selected as the most likely
relevant to the pronounced level of anxiolytic activity.

Valid 3D Models of Relevant Biotargets

For 22 possible relevant biotargets, 277 quality 
3D models were selected from the PDBe
(https://www.ebi.ac.uk/pdbe/) and RCSB PDB
(https://www.rcsb.org/) X-ray structural 3D models.
The quality criteria were: 1) the maximum length 
of the simulated amino acid sequence; 2) high resolution;
3) the minimum number of fragments. Among these
277 3D models, according to the methodology
described in [13], 22 valid 3D models were identified,
one for each biotarget.

Spaces for Multiple Molecular Docking

For each valid 3D model of each relevant
biotarget, 27 spaces for multiple molecular docking
were constructed using the original MSite 21.04.22
program and the algorithm described in [5], covering
the entire volume of a given target protein.

Multiple Ensemble Molecular Docking of Known
Anxiolytic Compounds

Ensemble docking was performed according 
to the method described in [13] and using the AutoDock
Vina 1.1.1 program [14]; there were five replicates 
for each ligand, each time in ten biologically active
conformations. The 50 obtained values were used 
for calculation determination of the five minimum
binding energies ΔE. As a result, for each compound,
22×27×5 = 22×135 = 2970 values of ΔE, reflecting 
the multi-target multiple affinity of this compound 
for 22 relevant target proteins were obtained. 
In total, the full multi-target multiple affinity matrix 
of 537 compounds of the training set included 
1,594,890 docking energy values.

Correlation Convolution of Multiple Docking 
Energy Spectra

For each biotarget, the 135 values of the minimum
binding energies ΔE obtained as a result of multiple



docking can be represented as a fully connected neural
network with a symmetric matrix of connections. These
135 parameters act as neurons and are interconnected
because they are calculated for the same target 
protein and the interaction of a ligand with 
one of the 27 non-overlapping docking regions will
lead to conformational changes in the protein and will
influence the interaction of this ligand with another
docking region. The dependencies between them 
in a fully connected neural network are assumed 
to be linear and can be represented by the values 
of the pair correlation coefficients. In a correlation 
fully connected neural network, these coefficients 
are the weights of synapses (interneuronal connections).

Taking into account these conditions, for each
biotarget, the convolution parameter of the energy
spectrum of multiple docking is the energy W 
of the fully connected neural correlation network

M
1 

Wl = ∑Rij×ΔEil×ΔEjl , l=1...N (1), 
2

i,j=1
i≠j

where Rij – Pearson correlation coefficient between
energies  ΔEi and ΔEj, i≠j;
ΔEil – value of energy i for compound l, l=1...N;
ΔEjl – value of energy j for compound l, l=1...N;
M – number of energy values for convolution, it is 135;
N – number of compounds (ligands).

The following should be clarified. The values 
of the minimum binding energies are almost always 
ΔE << -1, and the Pearson correlation coefficient R
varies from -1 to +1. Therefore, the value of W
calculated by formula (1) will always be positive.

Thus, as a result of the convolution, the multi-target
multiple affinity of each compound for the relevant
biotargets was represented by 22 convolution variables.

Training of Neural Networks

The classification training set required for neural
network modeling included 31 indicators: 1) compound
codes; 2) graded values of anxiolytic activity 
of compounds; 3) 22 convolutional variables; 
4) seven sampling variables. The level of anxiolytic
activity of the compounds was indicated by the labels
hm (high or moderate) and nhm (low or no activity).
Convolutional variables were calculated using 
formula (1) and reflected the multi-target multiple
affinity of each compound for 22 relevant biotargets.
Seven sampling variables were specified the options 
for forming the training, testing, and validation subsets
in a ratio of 5:1:1 and were used to build different
versions of the neural networks.

The neural networks were trained using 
the Statistica 7 program [15] according to the scheme
described in [13]. According to the Kolmogorov

theorem [16], a dependence of any complexity 
can be approximated using a two-layer artificial 
neural network. In this case, it is desirable to ensure 
the convolution of input neuron signals into a smaller
number of intermediate patterns. Therefore, a two-layer
perceptron MLP k–m–2 with a bottleneck was chosen
as the neural network architecture. Here k — the number
of input neurons, in this case 22; m — the number 
of hidden neurons, set by the program from 3 to 20,
since 2<m<k. When constructing classification 
neural networks, it is advisable to use cross entropy 
as an error function [17]. In this case, the activation
function for the output neurons is the multidimensional
logistic function, and for hidden neurons, the activation
functions can be linear, logistic, hyperbolic tangent, 
or exponential.

Neural networks were trained using the back
propagation error algorithm, by iterating through 
four different activation functions for the hidden layer
of neurons and using seven sampling options.

The training was carried out in two stages. 
At the first stage, 4000 networks were trained 
for each sampling option, with automatic selection 
of the 200 best networks. From these networks, 
the top 5 were manually selected according 
to the set of characteristics of the accuracy of training,
testing and validation. Of these, the best one 
was manually selected based on the prediction accuracy
indicators on the combined set and the results 
of ROC analysis. At the second stage, this neural
network was subjected to further manual training 
with a fixed architecture, with the building 
of 200 neural networks, from which the program
selected the 20 best ones. Of these, the best one 
was manually selected based on the prediction accuracy
indicators on the combined set and the results 
of ROC analysis.

In total, about 30,000 neural networks were trained
on 7 sampling variants and 14 neural networks with 
the best accuracy were found. Of these, the best one
was selected based on the prediction accuracy indicators
on the combined set and the results of ROC analysis.

As integral indicators of accuracy for all the best
neural networks on the combined set, the general
prediction accuracy Acc, sensitivity Sens (prediction
accuracy of active compounds), specificity Spec
(prediction accuracy of inactive compounds) were
calculated, and the area under the curve AUC 
was calculated based on the ROC analysis data.

All calculations were performed on a supercomputers
of hybrid architecture with a total peak performance 
of ~40 Tflops.

RESULTS AND DISCUSSION

As part of the preliminary data preparation, 
537 optimized 3D models of compounds from 
the original verified database [7], containing
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information on the structure and anxiolytic activity 
of known experimentally studied substances, 
were constructed.

According to the method described above, 
22 biotargets relevant to the anxiolytic activity 
of chemical compounds were found, and 22 valid 
3D models of these proteins were identified (Table 1).

It is noteworthy that the number of relevant
biotargets identified computationally included such
“classic” proteins for the manifestation of anxiolytic
activity as the GABAA receptor, serotonin 5-HT1A and
5-HT2A receptors, α2A and α2B adrenergic receptors,
and the glutamate NMDA receptor. This indicates 
the relevance and validity of the methodology used 
to identify relevant biotargets.

The summarized results of the correlation
convolution of the energy spectra of multiple ensemble
molecular docking of 537 known anxiolytic compounds
into valid 3D models of 22 relevant biotargets 
are shown in Table 2.

As can be seen from Table 2, for all biotargets, 
the mean values of convolutional variables in the class
of compounds with pronounced activity with very high
statistical significance exceed the mean values 
of convolutional variables in the class of compounds
with low activity. This proves that the correlation
convolution of the energy spectra of multiple 

ensemble molecular docking in the form of the energy
of a fully connected neural network calculated using
formula (1) is a highly reliable metric of the affinity 
of ligands to biotargets. 

Table 3 shows the architecture and accuracy
indicators of the best neural network obtained 
for pronounced anxiolytic activity during iterative
learning in two steps on seven sampling variants.

According to the set of accuracy indicators, 
the found neural network is statistically very highly
significant: for five indicators out of seven, 
its significance is p < 1×10-15, and for two p = 0.000170
and p = 0.0165 according to the binomial test [18].

Thus, using the example of anxiolytic activity, 
the adequacy and high validity of the following 
newly developed methods have been demonstrated: 
1) identification of biotargets potentially relevant 
to the activity studied; 2) multiple molecular docking,
which does not require the presence of specific binding
sites in biotargets; 3) correlation convolution of multiple
docking energy spectra based on the calculation 
of energies of a fully connected symmetric neural
network; 4) generalization using artificial neural
networks for a set of relevant biotargets of a set 
of obtained convolution variables, with the creation 
of a high-precision model capable of effectively
predicting systemic types of pharmacological activity.
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Table 1. Relevant anxiolytic biotargets of chemical compounds and their validated 3D models

Note: 1 – standard abbreviations of proteins according to UniProt (https://www.uniprot.org/uniprot/); 2 – nomenclature
name of protein, recommended by UniProt (https://www.uniprot.org/uniprot/).

Code1 Name2 3D model PDB code

ADRA1A Alpha-1A adrenergic receptor 3p0g
ADRA1B Alpha-1B adrenergic receptor 4amj
ADRA2A Alpha-2A adrenergic receptor 6kuy
ADRA2B Alpha-2B adrenergic receptor 3pbl
AGTR1 Type-1 angiotensin II receptor 6os1
CA2 Carbonic anhydrase 2 2weg
CA4 Carbonic anhydrase 4 5jn9
CNR1 Cannabinoid receptor 1 7v3z
GABAR Gamma-aminobutyric acid A receptor (2α1/2β2/γ2) 6x3x
HTR1A 5-hydroxytryptamine receptor 1A 7e2x
HTR1B 5-hydroxytryptamine receptor 1B 4iar
HTR1D 5-hydroxytryptamine receptor 1D 5d5a
HTR2A 5-hydroxytryptamine receptor 2A 4amj
HTR2B 5-hydroxytryptamine receptor 2B 6j20
HTR2C 5-hydroxytryptamine receptor 2C 4amj
HTR4 5-hydroxytryptamine receptor 4 2rh1
HTR7 5-hydroxytryptamine receptor 5 7e2z
MTNR1A Melatonin receptor type 1A 7vgz
MTNR1B Melatonin receptor type 1B 7vh0
NMDAR N-methyl-D-aspartate receptor (2GRIN1/GRIN2A/GRIN2B) 6irh
SCN11A Sodium channel protein type 11 subunit alpha 6a90
SLC18A2 Synaptic vesicular amine transporter 3o7q



CONCLUSIONS

Using the method of artificial neural networks, 
the high-precision multi-target model of the dependence
of the anxiolytic activity of chemical compounds 
on their integral affinity to 22 relevant target 
proteins was built, based on the correlation convolution
of multiple docking energy spectra.

The accuracy of predicting anxiolytic activity
using the constructed classification multi-target
convolutional neural network model is very high 
and in most tests exceeds 90%. The model is highly
statistically significant, in most tests its statistical
significance is p<1×10-15. 

Thus, using the example of anxiolytic activity, 
a new methodology for constructing classification
models for predicting systemic types of multi-target
activity of chemical compounds has been developed,
based on the use of artificial neural network technology
and on the correlation convolution of multiple docking
energy spectra.

The constructed multi-target neural network model
of the dependence of the anxiolytic activity of chemical
compounds on the parameters of the correlation
convolution of the energy spectra of multiple docking 
is used in in silico search for new highly active
compounds of various chemical classes; promising
substances have been found.

The created multi-target convolution neural
network methodology can be used to search 
for highly active compounds with other types 
of pharmacological activity that have a system-wide
nature, such as hypoglycemic, anti-inflammatory, and
other types of psychotropic activity. 

NEURAL NETWORK MODEL OF ANXIOLYTIC ACTIVITY

432

Table 2. Results of correlation convolution of multiple
ensemble molecular docking energy spectra of known
anxiolytic compounds into valid relevant biotargets 
3D models

Note: 1 – biotarget designations correspond to Table 1; 
2 – average calculated using formula (1) energies of fully
connected correlation neural network; 3 – for a class 
of compounds with pronounced activity; 4 – for a class 
of compounds with low activity; 5 – difference between
mean values W for classes of compounds with pronounced
and low activities; 6 – significance of differences in mean
values W according to Mann-Whitney criterion [18].

Table 3. Architecture and accuracy indicators 
of the multi-target neural network model of depending
anxiolytic activity on the parameters of the correlation
convolution of the multiple docking spectra energy

Note: 1 – the training stage number, sampling number and
neural network number are indicated; 2 – multilayer
perceptron, 22 input, 19 hidden and 2 output neurons,
activation functions of the hidden and output layers 
are hyperbolic tangent and multidimensional logistic
function; 3 – obtained in a two-stage iterative 
process of building the neural network; 4 – general
accuracy Acc; 5 – significance of accuracy indicators
according to the binomial criterion [18]; 6 – general
prediction accuracy for all compounds; 7 – prediction
accuracy of compounds with pronounced activity; 
8 – prediction accuracy of compounds with low activity; 
9 – for the full set.

Code1
Convolution mean value, W2

p6

Whm
3 Wnhm

4 Whm – Wnhm
5

ADRA1A 12848 11849 999 3×10-6

ADRA1B 14408 13036 1371 <5×10-7

ADRA2A 12903 11553 1350 <5×10-7

ADRA2B 14366 13098 1268 <5×10-7

AGTR1 13810 12458 1352 <5×10-7

CA2 11453 10552 901 <5×10-7

CA4 10037 9264 773 <5×10-7

CNR1 10225 9363 862 1×10-6

GABAR 15664 14342 1322 <5×10-7

HTR1A 16000 14657 1344 <5×10-7

HTR1B 12182 11125 1057 <5×10-7

HTR1D 13928 12621 1308 <5×10-7

HTR2A 15544 14197 1346 1×10-6

HTR2B 10311 9283 1028 <5×10-7

HTR2C 14822 13558 1265 1×10-6

HTR4 16179 14581 1598 <5×10-7

HTR7 11322 10450 872 1×10-6

MTNR1A 9332 8626 706 1×10-6

MTNR1B 14660 13442 1218 <5×10-7

NMDAR 25090 22544 2546 <5×10-7

SCN11A 17478 15721 1756 <5×10-7

SLC18A2 13293 12300 993 1×10-6

General characteristics of the best neural network

No.1 Architecture2

4/2/66 MLP 22-19-2 (Tanh, Softmax)

Training accuracy3

Data type F0, %4 p5

Training set 98.4 <1×10-15

Testing set 79.2 1.70×10-4

Validation set 67.5 1.65×10-2

Accuracy testing on combined set

Rate F, % p5

General accuracy Acc, %6 91.2 <1×10-15

Sensitivity Sens, %7 91.3 <1×10-15

Specificity Spec, %8 91.2 <1×10-15

Area under ROC-curve AUC, %9 94.4 <1×10-15
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МУЛЬТИТАРГЕТНАЯ НЕЙРОСЕТЕВАЯ МОДЕЛЬ АНКСИОЛИТИЧЕСКОЙ АКТИВНОСТИ
ХИМИЧЕСКИХ СОЕДИНЕНИЙ НА ОСНОВЕ КОРРЕЛЯЦИОННОЙ СВЁРТКИ 

СПЕКТРОВ ЭНЕРГИЙ МНОЖЕСТВЕННОГО ДОКИНГА
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Тревожные расстройства являются одной из самых распространённых в мире патологий психического
здоровья, которые требуют поиска и создания новых эффективных фармакологически активных веществ. 
В связи с этим разработка с использованием методов искусственного интеллекта новых подходов к поиску
анксиолитических веществ является актуальным направлением современной биоинформатики и фармакологии. 
В настоящей работе методом искусственных нейронных сетей построена мультитаргетная модель зависимости
анксиолитической активности химических соединений от их интегральной аффинности к релевантным 
белкам-мишеням, основанная на корреляционной свёртке спектров энергии множественного докинга. 
Для этого на основе ранее созданной базы данных была сформирована обучающая выборка по структуре и
активности 537 известных анксиолитических веществ и построены оптимизированные 3D-модели этих
соединений. Выявлены 22 биомишени, предположительно релевантные анксиолитической активности, 
и найдены их валидные 3D-модели. Для каждой такой биомишени по всему её объёму сформированы 
27 пространств для множественного докинга. Выполнен множественный ансамблевый молекулярный докинг
537 известных анксиолитических соединений во все пространства релевантных белков-мишеней. Проведена
корреляционная свёртка рассчитанных спектров энергий множественного докинга. С использованием 
семи вариантов обучения на основе искусственных многослойных перцептронных нейронных сетей построена
мультитаргетная модель зависимости анксиолитической активности химических соединений от 22 параметров
корреляционной свёртки спектров энергий их множественного докинга. Выполнена оценка прогностической
способности созданной модели, общая точность которой составила Acc = 91,2% и AUCROC = 94,4%, 
при статистической достоверности p<1×10-15. Найденная модель используется в поиске новых веществ 
с высокой анксиолитической активностью.

Полный текст статьи на русском языке доступен на сайте журнала (http://pbmc.ibmc.msk.ru).
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