SUPPLEMENT

Fomina A.D., Palyulin V.A., Osolodkin D.I. (2024) Homology modeling of the orthoflavivirus NS1 protein for virtual screening of potential ligands. Biomeditsinskaya Khimiya, **70**(6), 456-468. DOI: 10.18097/PBMC20247006456

Supplementary materials

Table of Contents

SUPPLEMENTARY DISCUSSION	2
SUPPLEMENTARY TABLES	9
SUPPLEMENTARY FIGURES	15

SUPPLEMENTARY DISCUSSION

Search for potential binding sites for small molecules

Pocket Search with FTSite

FTSite outputs only the three highest-scoring pockets. For each pocket, the total surface area and solventaccessible surface area were calculated using UCSF Chimera (Supplementary Discussion Figure SDF1). The calculations were performed separately for dimers and monomers (Supplementary Discussion Figure SDF1, SDF2), but the results were similar. For all structures, both dimeric and monomeric, pockets were found in the dimerization site region between the β -barrel, connector domain, α -helical wing, and β -ladder (Supplementary Discussion Figure SDF1, indicated by black arrows), as well as pockets on the outer surface of the α -helical wing (Supplementary Discussion Figure SDF1 D, indicated by gray arrow).

Supplementary Discussion Table SDT1 – FTSite pockets. 1 - Surface area, $Å^2$, 2 - Surface area accessible to solvent $Å^2$

Dimers								
D. L.	406C		406D		5K6K		5GS6	
Pocket	1	2	1	2	1	2	1	2
FT1	254.523	496.587	378.484	684.588	317.113	559.968	241.590	472.430
FT2	278.533	521.433	66.372	202.736	286.198	543.746	215.907	435.082
FT3	207.685	428.336	309.400	565.472	124.496	293.716	124.955	296.750
Monom	ners							
	406C		406D		5K6K		5GS6	
Pocket	1	2	1	2	1	2	1	2
FT1	229.094	453.904	317.113	559.968	304.575	550.396	324.625	563.421
FT2	232.496	454.591	286.198	543.746	191.382	392.054	324.261	588.642
FT3	272.384	511.209	124.496	293.716	189.763	391.433	147.632	333.571

Supplementary Discussion Figure SDF1 – FTSite pockets for dimeric structures. The pockets are colored in descending order of score: purple, dark green, blue. (A) – 4O6C (WNV), (B) – 4O6D (WNV), (C) – 5GS6 (ZIKV), (D) – 5K6K (ZIKV). Domain coloring: blue – β -barrel, orange – connector domain, yellow – α -helical wing, red – β -ladder), pink – "spaghetti loop". Arrows are interpreted in the main text.

Supplementary Discussion Figure SDF2 – FTSite pockets for monomeric structures. (A) — 4O6C (WNV), (B) — 4O6D (WNV), (C) — 5GS6 (ZIKV), (D) — 5K6K (ZIKV). Domains and pockets are coloured similarly to Figure 3, the monomer structures of 4O6C and 5K6K contain a polyhistidine tag, highlighted in bright turquoise.

Results of DoGSiteScorer calculations

The DoGSiteScorer program returns 20 pockets ranked by volume. From these, 3 to 5 highest-ranked pockets were selected (they received index a), as well as symmetrical ones (indicated with index b; if two pockets with a lower rating were in the region symmetrical to pocket a, they were assigned indices b1 and b2).

The volume of the pockets identified by DoGSiteScorer was larger compared to the FTSite pockets (Supplementary Discussion Table SDT2, SDT3). However, the pockets were located in a similar way between the β -barrel, connector domain, α -helical wing and β -ladder, as well as on the outer surface of the α -helical wing (Supplementary Discussion Figure SDF3, SDT4).

N⁰		Volume, Å ³	Surface area, Å ²	Depth, Å	Hydrophobisity	simpleScore	drugScore
	1	999.17	1044.15	26.18	0.21	0.57	0.812306
4060	2	345.98	673.26	10	0.4	0.19	0.493328
400C	3	294.08	620.58	12.46	0.47	0.17	0.513667
	4	265.02	534.23	15.23	0.52	0.15	0.624596
	1	441.41	303.44	19.88	0.14	0.17	0.801797
406D	2	300.61	522.24	12.14	0.48	0.17	0.5
406D	3	275.26	570.65	14.32	0.43	0.13	0.539993
	4	270.02	298.72	12.76	0.3	0.07	0.544148
	1	1222.46	1542.01	27.04	0.34	0.62	0.812363
5V6V	2	268.29	378.66	10.8	0.42	0.12	0.473985
JNON	3	244.93	640.01	10.2	0.44	0.1	0.41238
	4	143.36	353.74	7.82	0.26	0	0.186699
	1	569.73	519.83	20.29	0.23	0.31	0.828564
	2	500.86	890.33	12.27	0.36	0.3	0.621492
5GS6	3	270.08	427.18	13.08	0.38	0.11	0.540729
	4	228.99	555.95	10.75	0.41	0.07	0.360466
	5	221.7	288.07	12.2	0.34	0.04	0.491086

Supplementary Discussion Table SDT2 - Characteristics of DoGSiteScorer pockets for monomers.

N	2	Volume, Å ³	Surface area, $Å^2$	Depth, Å	Hydrophobisity	simpleScore	drugScore
	1.a	1034.5	965.84	23.79	0.1	0.53	0.81
	1.b1	811.61	891.58	31.44	0.15	0.44	0.86
	2.a	306.42	568.33	10.97	0.44	0.16	0.5
406C	2.b	288.97	574.57	9.76	0.39	0.13	0.43
	1.b2	259.92	255.98	17.32	0.09	0	0.68
	3.a	247.27	512.7	15.13	0.53	0.14	0.61
	3.b	212.36	500	14.69	0.55	0.11	0.57
	1.b	683.14	652.83	24.76	0.11	0.34	0.86
	1.a	420.66	316.57	18.96	0.12	0.15	0.78
406D	2.a	286.69	222.41	16.38	0.05	0	0.66
4000	2.b	261.47	203.41	16.63	0.04	0	0.66
	3	213.44	286.62	12.36	0.19	0	0.42
	4	206.21	453.81	13.73	0.17	0	0.52
	1.b	902.45	1008.15	25.22	0.26	0.53	0.83
	2.b	889.25	1135.66	33.77	0.31	0.55	0.84
5V6V	1.a	778.21	852.62	23.79	0.21	0.44	0.85
JNOK	2.a	752.7	843.88	31.09	0.27	0.45	0.88
	3.a	260.16	386.31	11.14	0.44	0.12	0.47
	3.b	258.64	414.12	9.4	0.46	0.13	0.41
	1.b	1160.06	1336.87	26.63	0.28	0.6	0.81
	1.a	577.05	505.01	20.96	0.23	0.31	0.84
5056	2.b	550.05	644.1	19.31	0.32	0.33	0.81
5050	2.a	511.39	501.47	20.42	0.2	0.25	0.82
	3.a	260.26	393.83	10.89	0.47	0.13	0.46
	3.b	188.89	292.77	8.94	0.43	0.03	0.32

 $Supplementary\ Discussion\ Table\ SDT3-Characteristics\ of\ DoGS iteScorer\ pockets\ for\ dimers.$

Supplementary Discussion Figure SDF3 – DoGSiteScorer pockets for dimers. (A) – 4O6C (WNV), (B) – 4O6D (WNV), (C) – 5GS6 (ZIKV), (D) – 5K6K (ZIKV). The coloring of the domains and pockets and the interpretation of the arrows are similar to Figure 3.

Supplementary Discussion Figure SDF4 – DoGSiteScorer pockets for monomeric structures. FTSite pockets for monomeric structures. (A) — 4O6C (WNV), (B) — 4O6D (WNV), (C) — 5GS6 (ZIKV), (D) — 5K6K (ZIKV). Domains and pockets are coloured similarly to Figure 4

For the monomeric structures 4O6C and 4O6D, the pockets in the β -barrel region clearly have calculation defects, since in both cases the pocket surface intersects with the protein structure. In the other cases, no such errors were observed. However, this suggests that the program may overestimate the volumes of potential binding sites.

SUPPLEMENTARY TABLES

Supplementary table ST1 – Basic information about the described NS1 structures available in the PDB.

PDB ID	Virus	Year	Method	Completeness of the structure (resolved areas are indicated)	Oligomeric state	Resolution, Å	Source (DOI)
406B	DENV2	2014	X-ray diffraction	A: 0-7, 11-107, 129-158, 166-349 B: 1-106, 131-161, 164-349	Dimer	3.0005	science.1247749
40IG	DENV1	2014	X-ray diffraction	C-domain: 178-352	Dimer	2.6900	10.1073/pnas.1322036111
5IY3	ZIKV	2016	X-ray diffraction	C-domain: 176-352	Dimer	2.2000	10.1038/nsmb.3213
5K6K	ZIKV	2016	X-ray diffraction	A:-5 - 112, 121-352 B: -1 - 352	Dimer	1.8900	10.1038/nsmb.3268
5GS6	ZIKV	2016	X-ray diffraction	A: 1-352 B: -4 - 25, 34-352	Dimer	2.8520	10.15252/embj.201695290
5X8Y	ZIKV	2017	X-ray diffraction	C-domain: A,B: 176-351	Dimer	2.8170	10.1038/srep42580
5YXA	YFV	2018	X-ray diffraction	C-domain: 176-352	Monomer	2.10	10.1007/s11427-017-9238-8
406D	WNV	2014	X-ray diffraction	A:-6 - 107, 129-352 B: -4 - 107, 130-352	Dimer	2.5936	10.1126/science.1247749
406C	WNV	2014	X-ray diffraction	A,B: 0-109, 125-352	Dimer	2.7508	10.1126/science.124774]
40II	WNV	2014	X-ray diffraction	C-domain A,B: 176-352	Complex with antibodies	3.0	10.1073/pnas.1322036111
40IE	WNV	2014	X-ray diffraction	C-domain 176-352	Monomer	1.85	10.1073/pnas.1322036111

PDB ID	Virus	Year	Method	Completeness of the structure (resolved areas are indicated)	Oligomeric state	Resolution, Å	Source (DOI)
4TPL	WNV	2014	X-ray diffraction	A: -10-107, 129-352	Dimer	2.90	10.1107/\$1399004714017556
				B: -20 - 108,130-352			
5019	JEV	2018	X-ray diffraction	C-domain 177-352	Monomer	2.10	10.1128/JVI.01868-17
5036	JEV	2018	X-ray diffraction	C-domain 177-354	Monomer	2.60	10.1128/JVI.01868-17
7WUS	DENV2	2022	Cryo Electron	Full structure	Dimer	3.40	10.1038/s41467-022-34415-1
			microscopy				
7WUT	DENV2	2022	Cryo Electron	Full structure	Tetramer	3.5	10.1038/s41467-022-34415-1
			microscopy				
7WUU	DENV2	2022	Cryo Electron	Full structure	Tetramer	8.0	10.1038/s41467-022-34415-1
			microscopy				
7WUV	DENV2	2022	Cryo Electron	Full structure	Tetramer	8.3	10.1038/s41467-022-34415-1
			microscopy				
7WUR	DENV2	2022	Cryo Electron	Full structure	Complex with	3.5	10.1038/s41467-022-34415-1
			microscopy		antibodies		

Structure	406B	406D	4TPL	406C	5K6K	5GS6
favoured plot areas	475	510	525	536	524	492
	(85.7%)	(86.6%)	(86.9%)	(91.5%)	(89.0%)	(81.6%)
allowed areas of the plot	76	76	76	46	64	104
	(13.7%)	(12.9%)	(12.6%)	(7.8%)	(10.5%)	(17.2%)
"generously allowed" areas of the plot	1 (0.2%)	1 (0.2%)	3 (0.5%)	2 (0.3%)	3 (0.5%)	6 (1.0%)
unfavourable areas of the plot	2 (0.4%)	2 (0.3%)	0 (0.0%)	2 (0.3%)	0 (0.0%)	1 (0.2%)

Supplementary table ST2 – Results of stereochemical validation of NS1 structures. The numbers and percentages of residues belonging to the corresponding region of the Ramachandran plots are indicated.

Species	Virus name	Abbreviation (Eng)	GenBank ID				
Tick-borne viruses							
Orthoflavivirus kyasanurense	KFDV	<u>AY323490</u>					
Orthoflavivirus langatense	Langat virus	LGTV	<u>AF253419</u>				
Orthoflavivirus loupingi	Louping ill virus	LIV	<u>Y07863</u>				
Orthoflavivirus omskense	Omsk hemorrhagic fever virus	OHFV	<u>AY193805</u>				
Orthoflavivirus powassanense	POWV	<u>L06436</u>					
	Tick-borne Encephalitis Virus - European subtype	TBEV-Eur	<u>U27495</u>				
Orthoflavivirus encephalitidis	Tick-borne Encephalitis Virus - Far-eastern subtype	TBEV-FE	<u>X07755</u>				
r i r	Tick-borne Encephalitis Virus - Siberian subtype	TBEV-Sib	<u>L40361</u>				
	Mosquito-borne viruses	•					
	Dengue virus 1	DENV-1	<u>U88536</u>				
Orthoflavivirus	Dengue virus 2	DENV-2	<u>U87411</u>				
denguei	Dengue virus 3	DENV-3	<u>M93130</u>				
	Dengue virus 4	DENV-4	<u>AF326573</u>				
Orthoflavivirus japonicum	Japanese encephalitis virus	JEV	<u>M18370</u>				
Orthoflavivirus murrayense	Murray Valley encephalitis virus	MVEV	<u>AF161266</u>				
Orthoflavivirus louisense	St. Louis encephalitis virus	SLEV	<u>DQ525916</u>				
Orthoflavivirus nilense	West Nile virus	WNV	<u>M12294</u>				
Orthoflavivirus zikaense	Zika virus	ZIKV	<u>AY632535</u>				
Orthoflavivirus flavi	yellow fever virus	YFV	<u>X03700</u>				

Supplementary table ST4 — Epidemiologically significant orthoflaviviruses

Reference	Mosquito-borne VS All		Tick-borne VS All		Mosquito-borne VS Tick-borne	
structure	Statistic	p-value	Statistic	p-value	Statistic	p-value
406B	0.4239	0	0.6406	0	0.2784	4.29*10 ⁻¹⁷⁰
406C	0.4215	0	0.6671	0	0.3051	8.35*10 ⁻²⁰⁵
406D	0.4207	0	0.6418	0	0.2766	7.25*10 ⁻¹⁶⁸
5GS6	0.5747	0	0.6744	0	0.1363	1.12*10 ⁻⁴⁰
5K6K	0.4623	0	0.5688	0	0.1316	5.54*10 ⁻³⁸
7WUS	0.4587	0	0.6113	0	0.2036	1.26*10 ⁻⁹⁰

Supplementary table ST4. Kolmogorov-Smirnov test statistics for ensembles of NS1 protein models combined by reference structure

Supplementary table ST5. Number of molecules for which the normalised sum of ranks is less than or equal to 500 for ensembles of mode

PDB ID	All viruses	Mosquito-borne	Tick-borne
406B	81	95	170
406C	67	117	100
406D	79	91	129
5K6K	40	54	63
5GS6	121	193	145
7WUS	124	173	167

SUPPLEMENTARY FIGURES

Supplementary figure SF1. Docking site location. (A) Position of the reference ligand ZINC000734046780 in the surface pocket of NS1 protein (PDB ID: 4O6D). (B) Structure of ZINC000734046780. (C) Pockets predicted by FTSite, which were used to label the docking site.

Supplementary figure SF2. Spatial alignment of NS1 protein models of epidemiologically significant orthoflaviviruses.

Supplementary figure SF3. Spatial alignment of complete dimeric crystal structures of the NS1 protein of orthoflaviviruses. The regions of the protein that contribute the most to the increase in pairwise RMSD are highlighted: red - β -barrel, residues 6-14; blue - α -wing, residues 62-82.

Supplementary figure SF4. Amino acid sequence alignment of NS1 proteins of orthoflaviviruses, stained with BLOSUM62 [10.1038/nbt0308-274].

Supplementary Figure SF5. Heat map of pairwise RMSDs between C α -atoms of residues forming the pocket in the dimerization site region. Models are ordered by average pairwise RMSD. Models built using the 4TPL template are highlighted in orange, and models built using the combined template are highlighted in blue.

Supplementary figure SF6. Heat map of pairwise RMSDs between $C\alpha$ atoms forming the target pocket for NS1 protein models of mosquito-borne viruses

Supplementary figure SF7. Heat map of pairwise RMSDs between $C\alpha$ atoms forming the target pocket for NS1 protein models of tick-borne viruses

Supplementary figure SF8. Models of POWV NS1 (beige), KFDV (blue) and TBEV-Eu (pink) proteins, showing amino acid residues with non-conservative substitutions occur in POWV and KFDV NS1, their positions are given according to the POWV NS1 protein sequence.

Supplementary figure SF9. Principal component analysis of the coordinates of Ca atoms of residues forming the orthoflaviviruses NS1 protein target pocket of models and reference crystal structures. Models are coloured by viruses. Models are shown as circles, reference structures - as crosses.

Supplementary figure SF10. Dependence of the pairwise correlation coefficient of the docking results ranks in the structure of the NS1 protein models of flaviviruses on the percentage of similarity between the corresponding sequences, coloring by pairwise RMSD between the corresponding structures.

Supplementary figure SF11. Pairwise RMSD between Ca atoms of residues forming a potential binding pocket in NS1 protein models of different orthoflaviviruses versus the percentage of similarity of their amino acid sequences. Coloring of dots by the degree of correlation of ranks of docking results in the corresponding models.

Supplementary figure SF12. Docking scores distribution for a library of 5000 diverse compounds from the ZINC15 database

Supplementary figure SF13. Rank-order correlation coefficients between docking results of diverse druglike compounds into model structures and crystal structures of the orthoflaviviruses NS1 protein.

Supplementary figure SF14. Minimum (red) and maximum (purple) docking scores of a diverse compound library in the orthoflavivirus NS1 protein model and modes (yellow) of the docking scores distributions.