Представлены современные данные о механизмах активации и редокс-регуляции инфламмасомы NLRP3 и гасдерминов, а также о роли селена в этих процессах. Активация инфламмасомы и пироптоз представляют собой эволюционно консервативный механизм защиты организма от патогенов, описанный для различных типов клеток и тканей (макрофагов и моноцитов, клеток микроглии и астроцитов, подоцитов и паренхиматозных клеток почек, тканей периодонта, остеокластов и остеобластов, а также клеток органов пищеварительной и урогенитальной систем и др.). В зависимости от особенностей редокс-регуляции участников NLRP3-воспаления и пироптоза можно условно разделить на 2 группы. Представители первой группы блокируют митохондриальную цепь переноса электронов, способствуют образованию активных форм кислорода и развитию окислительного стресса. К этой группе относятся гранзимы, митохондриальный антивирусный сигнальный белок MAVS и другие. Вторую группу образуют белок, взаимодействующий с тиоредоксином (TXNIP), ядерный фактор-2 эритроидного происхождения (NRF2), Kelch-подобный белок 1, ассоциированный с ECH, (Keap1), нинджурин (Ninj1), скрамблаза (TMEM16), регуляторная протеинкиназа инфламмасомы NLRP3 (NEK7), каспаза-1, гасдермины GSDM В, D и другие, имеющие редокс-чувствительные домены и/или остатки цистеина, которые подвергаются редокс-регуляции, глутатионилированию/деглутатионилированию или иным видам регуляции. Подавление окислительного стресса и редокс-регуляция участников NLRP3-воспаления и пироптоза зависит от активности антиоксидантных ферментов глутатионпероксидазы (GPX) и тиоредоксинредуктазы (TRXR), содержащих в активном центре остаток селеноцистеина Sec. Экспрессия GPX и TRXR регулируется NRF2 и зависит от концентрации селена в крови. Вместе с тем, дефицит селена вызывает неэффективную трансляцию кодона Sec UGA, терминацию трансляции, а, следовательно, синтез неактивного селенопротеина, что может вызвать различные типы запрограммированной гибели клеток: апоптоз нервных клеток и сперматазоидов, некроптоз предшественников эритроцитов, пироптоз инфицированных клеток миелоидного ряда, ферроптоз Т- и В-лимфоцитов, клеток почек и поджелудочной железы. Кроме того, субоптимальная концентрация селена в крови (0,86 мкМ или 68 мкг/л и меньше) значительно изменяет экспрессию более двухсот пятидесяти генов по сравнению с оптимальной концентрацией селена (1,43 мкМ или 113 мкг/л). На основании вышеизложенного мы предлагаем рассматривать концентрацию селена в крови как важный показатель редокс-гомеостаза в клетке, а его субоптимальную концентрацию в крови (или селенодефицитные состояния) использовать для оценки риска развития воспалительных процессов.
Русецкая Н.Ю. и др. Редокс-регуляция NLRP3-опосредованного воспаления и пироптоза // Биомедицинская химия. - 2023. - Т. 69. -N 6. - С. 333-352.
Русецкая Н.Ю. и др., "Редокс-регуляция NLRP3-опосредованного воспаления и пироптоза." Биомедицинская химия 69.6 (2023): 333-352.
Русецкая, Н. Ю., Логинова, Н. Ю., Покровская, Е. П., Чесовских, Ю. С., Титова, Л. Е. (2023). Редокс-регуляция NLRP3-опосредованного воспаления и пироптоза. Биомедицинская химия, 69(6), 333-352.
Список литературы
Насонов Е.Л., Елисеев М.С. (2016) Роль интерлейкина 1 в развитии заболеваний человека. Научно-практическая ревматология, 54(1), 60-77. CrossRef Scholar google search
Chen C., Xu P. (2022) Activation and pharmacological regulation of inflammasomes. Biomolecules, 12(7), 1005. CrossRef Scholar google search
Liao Y., Liu K., Zhu L. (2022) Emerging roles of inflammasomes in cardiovascular diseases. Front. Immunol., 13, 834289. CrossRef Scholar google search
Sharma B.R., Kanneganti T.D. (2021) NLRP3 inflammasome in cancer and metabolic diseases. Nat. Immunol., 22(5), 550-559. CrossRef Scholar google search
Zhang Y., Zhao Y., Zhang J., Yang G. (2020) Mechanisms of NLRP3 inflammasome activation: Its role in the treatment of Alzheimer's disease. Neurochem. Res., 45(11), 2560-2572. CrossRef Scholar google search
Chen Y., Ye X., Escames G., Lei W., Zhang X., Li M., Jing T., Yao Y., Qiu Z., Wang Z., Acuna-Castroviejo D., Yang Y. (2023) The NLRP3 inflammasome: Contributions to inflammation-related diseases. Cell. Mol. Biol. Lett., 28(1), 51. CrossRef Scholar google search
Kaur B.P., Secord E. (2021) Innate immunity. Immunol. Allergy Clin. North Am., 41(4), 535-541. CrossRef Scholar google search
Zhang H., Gao J., Tang Y., Jin T., Tao J. (2023) Inflammasomes cross-talk with lymphocytes to connect the innate and adaptive immune response. J. Adv. Res., 2023, S2090-1232(23)00025-5. CrossRef Scholar google search
Takeuchi O., Akira S. (2010) Pattern recognition receptors and inflammation. Cell, 140(6), 805-820. CrossRef Scholar google search
Salomão R., Ferreira B.L., Salomão M.C., Santos S.S., Azevedo L.C.P., Brunialti M.K.C. (2019) Sepsis: Evolving concepts and challenges. Braz. J. Med. Biol. Res., 52(4), e8595. CrossRef Scholar google search
Zindel J., Kubes P. (2020) DAMPS, PAMPS, and LAMPS in immunity and sterile inflammation. Annu. Rev. Pathol., 15, 493-518. CrossRef Scholar google search
Hayward J.A., Mathur A., Ngo C., Man S.M. (2018) Cytosolic recognition of microbes and pathogens: Inflammasomes in action. Microbiol. Mol. Biol. Rev., 82(4), e00015-18. CrossRef Scholar google search
Burckstummer T., Baumann C., Bluml S., Dixit E., Durnberger G., Jahn H., Planyavsky M., Bilban M., Colinge J., Bennett K.L., Superti-Furga G. (2009) An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat. Immunol., 10, 266-272. CrossRef Scholar google search
Kofoed E.M., Vance R.E. (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature, 477, 592-595. CrossRef Scholar google search
Baker P.J., Boucher D., Bierschenk D., Tebartz C., Whitney P.G., d'Silva D.B., Tanzer M.C., Monteleone M., Robertson A.A., Cooper M.A., Alvarez-Diaz S., Herold M.J., Bedoui S., Schroder K., Masters S.L. (2015) NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase-4 and caspase-5. Eur. J. Immunol., 45, 2918-2926. CrossRef Scholar google search
Casson C.N., Yu J., Reyes V.M., Taschuk F.O., Yadav A., Copenhaver A.M., Nguyen H.T., Collman R.G., Shin S. (2015) Human caspase-4 mediates noncanonical inflammasome activation against Gram-negative bacterial pathogens. Proc. Natl. Acad. Sci. USA, 112, 6688-6693. CrossRef Scholar google search
Bauernfried S., Scherr M.J., Pichlmair A., Duderstadt K.E., Hornung V. (2021) Human NLRP1 is a sensor for double-stranded RNA. Science, 371, eabd0811. CrossRef Scholar google search
Wang L., Negro R., Wu H. (2020) TRPM2, linking oxidative stress and Ca2+ permeation to NLRP3 inflammasome activation. Curr. Opin. Immunol., 62, 131-135. CrossRef Scholar google search
Accogli T., Hibos C., Vegran F. (2023) Canonical and non-canonical functions of NLRP3. J. Adv. Res., 2023, S2090-1232(23)00001-00002. CrossRef Scholar google search
Schmacke N.A., O'Duill F., Gaidt M.M., Szymanska I., Kamper J.M., Schmid-Burgk J.L., Madler S.C., Mackens-Kiani T., Kozaki T., Chauhan D., Nagl D., Stafford C.A., Harz H., Frohlich A.L., Pinci F., Ginhoux F., Beckmann R., Mann M., Leonhardt H., Hornung V. (2022) IKKβ primes inflammasome formation by recruiting NLRP3 to the trans-Golgi network. Immunity, 55(12), 2271-2284.e7. CrossRef Scholar google search
Johnson N.H., de Rivero Vaccari J.P., Bramlett H.M., Keane R.W., Dietrich W.D. (2023) Inflammasome activation in traumatic brain injury and Alzheimer's disease. Transl. Res., 254, 1-12. CrossRef Scholar google search
Li S., Fang Y., Zhang Y., Song M., Zhang X., Ding X., Yao H., Chen M., Sun Y., Ding J., Wang Q., Lu M., Wu G., Hu G. (2022) Microglial NLRP3 inflammasome activates neurotoxic astrocytes in depression-like mice. Cell Reports, 41(4), 111532. CrossRef Scholar google search
Shahzad K., Fatima S., Khawaja H., Elwakiel A., Gadi I., Ambreen S., Zimmermann S., Mertens P.R., Biemann R., Isermann B. (2022) Podocyte-specific Nlrp3 inflammasome activation promotes diabetic kidney disease. Kidney Int., 102(4), 766-779. CrossRef Scholar google search
Wang M., Lin X., Yang X., Yang Y. (2022) Research progress on related mechanisms of uric acid activating NLRP3 inflammasome in chronic kidney disease. Renal Failure, 44(1), 615-624. CrossRef Scholar google search
Zhao Y., Quan Y., Lei T., Fan L., Ge X., Hu S. (2022) The role of inflammasome NLPR3 in the development and therapy of periodontitis. Int. J. Med. Sci., 19(10), 1603-1614. CrossRef Scholar google search
Huang W., Zhang Z., Qiu Y., Gao Y., Fan Y., Wang Q., Zhou Q. (2023) NLRP3 inflammasome activation in response to metals. Front. Immunol., 14, 1055788. CrossRef Scholar google search
Qiang R., Li Y., Dai X., Lv W. (2022) NLRP3 inflammasome in digestive diseases: From mechanism to therapy. Front. Immunol., 13, 978190. CrossRef Scholar google search
Moretti J., Blander J.M. (2021) Increasing complexity of NLRP3 inflammasome regulation. J. Leukocyte Biol., 109(3), 561-571. CrossRef Scholar google search
Kelley N., Jeltema D., Duan Y., He Y. (2019) The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int. J. Mol. Sci., 20(13), 3328. CrossRef Scholar google search
Gurung P., Anand P.K., Malireddi R.K., Vande Walle L., van Opdenbosch N., Dillon C.P., Weinlich R., Green D.R., Lamkanfi M., Kanneganti T.D. (2014) FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J. Immunology, 192(4), 1835-1846. CrossRef Scholar google search
Song N., Liu Z.S., Xue W., Bai Z.F., Wang Q.Y., Dai J., Liu X., Huang Y.J., Cai H., Zhan X.Y., Han Q.Y., Wang H., Chen Y., Li H.Y., Li A.L., Zhang X.M., Zhou T., Li T. (2017) NLRP3 phosphorylation is an essential priming event for inflammasome activation. Molecular Cell, 68(1), 185-197.e6. CrossRef Scholar google search
Zhong Z., Liang S., Sanchez-Lopez E., He F., Shalapour S., Lin X.J., Wong J., Ding S., Seki E., Schnabl B., Hevener A.L., Greenberg H.B., Kisseleva T., Karin M. (2018) New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature, 560(7717), 198-203. CrossRef Scholar google search
Meyers A.K., Zhu X. (2020) The NLRP3 Inflammasome: Metabolic regulation and contribution to inflammaging. Cells, 9(8), 1808. CrossRef Scholar google search
Paik S., Kim J.K., Silwal P., Jo E.-K. (2021) An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell. Mol. Immunol., 18, 1141-1160. CrossRef Scholar google search
Fu J., Wu H. (2023) Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu. Rev. Immunol., 41, 301-316. CrossRef Scholar google search
Muñoz-Planillo R., Kuffa P., Martínez-Colón G., Smith B.L., Rajendiran T.M., Núñez G. (2013) K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity, 38(6), 1142-1153. CrossRef Scholar google search
Lee G.S., Subramanian N., Kim A.I., Aksentijevich I., Goldbach-Mansky R., Sacks D.B., Germain R.N., Kastner D.L., Chae J.J. (2012) The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature, 492(7427), 123-127. CrossRef Scholar google search
Misawa T., Takahama M., Kozaki T., Lee H., Zou J., Saitoh T., Akira S. (2013) Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat. Immunol., 14(5), 454-460. CrossRef Scholar google search
Iyer S.S., He Q., Janczy J.R., Elliott E.I., Zhong Z., Olivier A.K., Sadler J.J., Knepper-Adrian V., Han R., Qiao L., Eisenbarth S.C., Nauseef W.M., Cassel S.L., Sutterwala F.S. (2013) Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity, 39(2), 311-323. CrossRef Scholar google search
Shimada K., Crother T.R., Karlin J., Dagvadorj J., Chiba N., Chen S., Ramanujan V.K., Wolf A.J., Vergnes L., Ojcius D.M., Rentsendorj A., Vargas M., Guerrero C., Wang Y., Fitzgerald K.A., Underhill D.M., Town T., Arditi M. (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity, 36(3), 401-414. CrossRef Scholar google search
Hornung V., Bauernfeind F., Halle A., Samstad E.O., Kono H., Rock K.L., Fitzgerald K.A., Latz E. (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol., 9(8), 847-856. CrossRef Scholar google search
Domingo-Fernández R., Coll R.C., Kearney J., Breit S., O'Neill L.A.J. (2017) The intracellular chloride channel proteins CLIC1 and CLIC4 induce IL-1β transcription and activate the NLRP3 inflammasome. J. Biol. Chem., 292(29), 12077-12087. CrossRef Scholar google search
Green J.P., Yu S., Martín-Sánchez F., Pelegrin P., Lopez-Castejon G., Lawrence C.B., Brough D. (2018) Chloride regulates dynamic NLRP3-dependent ASC oligomerization and inflammasome priming. Proc. Natl. Acad. Sci. USA, 115(40), E9371-E9380. CrossRef Scholar google search
Orlowski G.M., Colbert J.D., Sharma S., Bogyo M., Robertson S.A., Rock K.L. (2015) Multiple cathepsins promote pro-IL-1β synthesis and NLRP3-mediated IL-1β activation. J. Immunology, 195(4), 1685-1697. CrossRef Scholar google search
Zhou R., Yazdi A.S., Menu P., Tschopp J. (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature, 469(7329), 221-225. CrossRef Scholar google search
Nakahira K., Haspel J.A., Rathinam V.A., Lee S.J., Dolinay T., Lam H.C., Englert J.A., Rabinovitch M., Cernadas M., Kim H.P., Fitzgerald K.A., Ryter S.W., Choi A.M. (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol., 12(3), 222-230. CrossRef Scholar google search
Subramanian N., Natarajan K., Clatworthy M.R., Wang Z., Germain R.N. (2013) The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell, 153(2), 348-361. CrossRef Scholar google search
Seth R.B., Sun L., Ea C.K., Chen Z.J. (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell, 122(5), 669-682. CrossRef Scholar google search
Al-Salihi M.A., LangP.A. (2020) iRhom2: An emerging adaptor regulating immunity and disease. Int. J. Mol. Sci., 21(18), 6570. CrossRef Scholar google search
Lamkanfi M., Dixit V.M. (2012) Inflammasomes and their roles in health and disease. Annu. Rev. Cell Dev. Biol., 28, 137-161. CrossRef Scholar google search
Elliott E.I., Miller A.N.,Banoth B., Iyer S.S., Stotland A., Weiss J.P., Gottlieb R.A., Sutterwala F.S., Cassel S.L. (2018) Cutting edge: Mitochondrial assembly of the NLRP3 inflammasome complex is initiated at priming. J. Immunology, 200(9), 3047-3052. CrossRef Scholar google search
Kayagaki N., Wong M.T., Stowe I.B., Ramani S.R., Gonzalez L.C., Akashi-Takamura S., Miyake K., Zhang J., Lee W.P., Muszyński A., Forsberg L.S., Carlson R.W., Dixit V.M. (2013) Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science, 341(6151), 1246-1249. CrossRef Scholar google search
Balakrishnan A., Karki R., Berwin B., Yamamoto M., Kanneganti T.D. (2018) Guanylate binding proteins facilitate caspase-11-dependent pyroptosis in response to type 3 secretion system-negative Pseudomonas aeruginosa. Cell Death Discovery, 4, 3. CrossRef Scholar google search
Shi J., Zhao Y., Wang Y., Gao W., Ding J., Li P., Hu L., Shao F. (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature, 514(7521), 187-192. CrossRef Scholar google search
Zito G., Buscetta M., Cimino M., Dino P., Bucchieri F., Cipollina C. (2020) Cellular models and assays to study NLRP3 inflammasome biology. Int. J. Mol. Sci., 21(12), 4294. CrossRef Scholar google search
Netea M.G., Nold-Petry C.A., Nold M.F., Joosten L.A., Opitz B., van der Meer J.H., van de Veerdonk F.L., Ferwerda G., Heinhuis B., Devesa I., Funk C.J., Mason R.J., Kullberg B.J., Rubartelli A., van der Meer J.W., Dinarello C.A. (2009) Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood, 113(10), 2324-2335. CrossRef Scholar google search
Zou J., Zheng Y., Huang Y., Tang D., Kang R., Chen R. (2021) The versatile gasdermin family: Their function and roles in diseases. Front. Immunol., 12, 751533. CrossRef Scholar google search
He W.T., Wan H., Hu L., Chen P., Wang X., Huang Z., Yang Z.H., Zhong C.Q., Han J. (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res., 25(12), 1285-1298. CrossRef Scholar google search
Liu X., Zhang Z., Ruan J., Pan Y., Magupalli V.G., Wu H., Lieberman J. (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature, 535(7610), 153-158. CrossRef Scholar google search
Sborgi L., Rühl S., Mulvihill E., Pipercevic J., Heilig R., Stahlberg H., Farady C.J., Müller D.J., Broz P., Hiller S. (2016) GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J., 35(16), 1766-1778. CrossRef Scholar google search
Shi J., Zhao Y., Wang K., Shi X., Wang Y., Huang H., Zhuang Y., Cai T., Wang F., Shao F. (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 526(7575), 660-665. CrossRef Scholar google search
Okondo M.C., Johnson D.C., Sridharan R., Go E.B., Chui A.J., Wang M.S., Poplawski S.E., Wu W., Liu Y., Lai J.H., Sanford D.G., Arciprete M.O., Golub T.R., Bachovchin W.W., Bachovchin D.A. (2017) DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. Nat. Chem. Biol., 13(1), 46-53. CrossRef Scholar google search
Rathinam V.A., Fitzgerald K.A. (2016) Inflammasome complexes: Emerging mechanisms and effector functions. Cell, 165(4), 792-800. CrossRef Scholar google search
Rühl S., Broz P. (2015) Caspase-11 activates a canonical NLRP3 inflammasome by promoting K(+) efflux. Eur. J. Immunol., 45(10), 2927-2936. CrossRef Scholar google search
Xia S., Zhang Z, Magupalli V.G., Pablo J.L., Dong Y., Vora S.M., Wang L., Fu T.M., Jacobson M.P., Greka A., Lieberman J., Ruan J., Wu H. (2021) Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature, 593(7860), 607-611. CrossRef Scholar google search
Zhou Z., He H., Wang K., Shi X., Wang Y., Su Y., Wang Y., Li D., Liu W., Zhang Y., Shen L., Han W., Shen L., Ding J., Shao F. (2020) Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science, 368(6494), 7548. CrossRef Scholar google search
Oltra S.S., Colomo S., Sin L. (2023) Distinct GSDMB protein isoforms and protease cleavage processes differentially control pyroptotic cell death and mitochondrial damage in cancer cells. Cell Death Differentiation, 30, 1366-1381. CrossRef Scholar google search
Kang R., Zeng L., Zhu S., Xie Y., Liu J., Wen Q., Cao L., Xie M., Ran Q., Kroemer G., Wang H., Billiar T.R., Jiang J., Tang D. (2018) Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe, 24(1), 97-108.e4. CrossRef Scholar google search
Tsujimoto K., Takamatsu H., Kumanogoh A. (2023) The regulator complex: Delving its multifunctional impact on metabolism and beyond. Inflamm. Regen., 43, 28. CrossRef Scholar google search
Evavold C.L., Hafner-Bratkovič I., Devant P., d'Andrea J.M., Ngwa E.M., Boršić E., Doench J.G., LaFleur M.W., Sharpe A.H., Thiagarajah J.R., Kagan J.C. (2021) Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway. Cell, 184(17), 4495-4511.e19. CrossRef Scholar google search
Hay Z.L.Z., Slansky J.E. (2022) Granzymes: The molecular executors of immune-mediated cytotoxicity. Int. J. Mol. Sci., 23(3), 1833. CrossRef Scholar google search
Feng Y., Li M., Yangzhong X., Zhang X., Zu A., Hou Y., Li L., Sun S. (2022) Pyroptosis in inflammation-related respiratory disease. J. Physiol. Biochem., 78(4), 721-737. CrossRef Scholar google search
Fischer F.A., Chen K.W., Bezbradica J.S. (2021) Posttranslational and therapeutic control of gasderminmediated pyroptosis and inflammation. Front. Immunol., 12, 661162. CrossRef Scholar google search
Ju J., Liu Y., Liang H., Yang B. (2023) The role of pyroptosis in endothelial dysfunction induced by diseases. Front. Immunol., 13, 1093985. CrossRef Scholar google search
Shao R., Lou X., Xue J., Ning D., Chen G., Jiang L. (2022) Review: The role of GSDMD in sepsis. Inflamm. Res., 71(10-11), 1191-1202. CrossRef Scholar google search
Zhang J., Wirtz S. (2022) Does pyroptosis play a role in inflammasome-related disorders? Int. J. Mol. Sci., 23(18), 10453. CrossRef Scholar google search
Fang Y., Tian S., Pan Y., Li W., Wang Q., Tang Y., Yu T., Wu X., Shi Y., Ma P., Shu Y. (2020) Pyroptosis: A new frontier in cancer. Biomed Pharmacother., 121, 109595. CrossRef Scholar google search
Wang C., Ruan J. (2022) Mechanistic insights into gasdermin pore formation and regulation in pyroptosis. J. Mol. Biol., 434(4), 167297. CrossRef Scholar google search
Russo H.M., Rathkey J., Boyd-Tressler A., Katsnelson M.A., Abbott D.W., Dubyak G.R. (2016) Active caspase-1 induces plasma membrane pores that precede pyroptotic lysis and are blocked by lanthanides. J. Immunology, 197(4), 1353-1367. CrossRef Scholar google search
Evavold C.L., Ruan J., Tan Y., Xia S., Wu H., Kagan J.C. (2018) The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity, 48(1), 35-44.e6. CrossRef Scholar google search
Rühl S., Shkarina K., Demarco B., Heilig R., Santos J.C., Broz P. (2018) ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science, 362(6417), 956-960. CrossRef Scholar google search
Volchuk A., Ye A., Chi L., Steinberg B.E., Goldenberg N.M. (2020) Indirect regulation of HMGB1 release by gasdermin D. Nat. Commun., 11(1), 4561. CrossRef Scholar google search
Yang X., Cheng X., Tang Y., Qiu X., Wang Y., Kang H., Wu J., Wang Z., Liu Y., Chen F, Xiao X., Mackman N., Billiar T.R., Han J., Lu B. (2019) Bacterial endotoxin activates the coagulation cascade through gasdermin D-dependent phosphatidylserine exposure. Immunity, 51(6), 983-996.e6. CrossRef Scholar google search
Ousingsawat J., Wanitchakool P., Schreiber R., Kunzelmann K. (2018) Contribution of TMEM16F to pyroptotic cell death. Cell Death Disease, 9(3), 300. CrossRef Scholar google search
Pan Y., Cai W., Huang J., Cheng A., Wang M., Yin Z., Jia R. (2022) Pyroptosis in development, inflammation and disease. Front. Immunol., 13, 991044. CrossRef Scholar google search
Rao Z., Zhu Y., Yang P., Chen Z., Xia Y., Qiao C., Liu W., Deng H., Li J., Ning P., Wang Z. (2022) Pyroptosis in inflammatory diseases and cancer. Theranostics, 12(9), 4310-4329. CrossRef Scholar google search
Wei X., Xie F., Zhou X., Wu Y., Yan H., Liu T., Huang J., Wang F., Zhou F., Zhang L. (2022) Role of pyroptosis in inflammation and cancer. Cell. Mol. Immunol., 19(9), 971-992. CrossRef Scholar google search
Wei Y., Yang L., Pandeya A., Cui J., Zhang Y., Li Z. (2022) Pyroptosis-induced inflammation and tissue damage. J. Mol. Biol., 434(4), 167301. CrossRef Scholar google search
Kayagaki N., Kornfeld O.S., Lee B.L., Stowe I.B., O'Rourke K., Li Q., Sandoval W., Yan D., Kang J., Xu M., Zhang J., Lee W.P., McKenzie B.S., Ulas G., Payandeh J., Roose-Girma M., Modrusan Z., Reja R., Sagolla M., Webster J.D., Cho V., Andrews T.D., Morris L.X., Miosge L.A., Goodnow C.C., Bertram E.M., Dixit V.M. (2021) NINJ1 mediates plasma membrane rupture during lytic cell death. Nature, 591(7848), 131-136. CrossRef Scholar google search
Weir A., Vince J.E. (2022) No longer married to inflammasome signaling: The diverse interacting pathways leading to pyroptotic cell death. Biochemical J., 479(10), 1083-1102. CrossRef Scholar google search
Zheng J., Wang D., Chen Q., Liu Q., Lin Z., Hu Q., Wu X., Gao X., Li Q., Ren J. (2020) Hypertonic saccharide solution delays pyroptosis in murine macrophages regardless of the membrane binding of gasdermin D N-terminal. Eur. J. Immunol., 50(3), 464-467. CrossRef Scholar google search
Toma L., Sanda G.M., Raileanu M., Stancu C.S., Niculescu L.S., Sima A.V. (2020) Ninjurin-1 upregulated by TNFα receptor 1 stimulates monocyte adhesion to human TNFα-activated endothelial cells; benefic effects of amlodipine. Life Science J., 249, 117518. CrossRef Scholar google search
Ullevig S.L., Kim H.S., Short J.D., Tavakoli S., Weintraub S.T., Downs K., Asmis R. (2016) Protein S-glutathionylation mediates macrophage responses to metabolic cues from the extracellular environment. Antioxid. Redox Signal., 25, 836-851. CrossRef Scholar google search
Menon D., Innes A., Oakley A.J., Dahlstrom J.E., Jensen L.M., Brustle A., Tummala P., Rooke M., Casarotto M.G., Baell J.B. (2017) GSTO1-1 plays a pro-inflammatory role in models of inflammation, colitis and obesity. Sci. Rep., 7, 17832. CrossRef Scholar google search
Hughes M.M., Hooftman A., Angiari S., Tummala P., Zaslona Z., Runtsch M.C., McGettrick A.F., Sutton C.E., Diskin C., Rooke M. (2019) Glutathione transferase omega-1 regulates NLRP3 inflammasome activation through NEK7 deglutathionylation. Cell Reports, 29, 151-161.e5. CrossRef Scholar google search
Guglielmo A., Sabra A., Elbery M., Cerveira M.M., Ghenov F., Sunasee R., Ckless K. (2017) A mechanistic insight into curcumin modulation of the IL-1beta secretion and NLRP3 S-glutathionylation induced by needle-like cationic cellulose nanocrystals in myeloid cells. Chem. Biol. Interact., 274, 1-12. CrossRef Scholar google search
Gong Z., Zhou J., Li H., Gao Y., Xu C., Zhao S., Chen Y., Cai W., Wu J. (2015) Curcumin suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Mol. Nutr. Food Res., 59, 2132-2142. CrossRef Scholar google search
Xia J., Jiang S., Dong S., Liao Y., Zhou Y. (2023) The role of post-translational modifications in regulation of NLRP3 inflammasome activation. Int. J. Mol. Sci., 24(7), 6126. CrossRef Scholar google search
Esworthy R.S., Doroshow J.H., Chu F.F. (2022) The beginning of GPX2 and 30 years later. Free Radic. Biol. Med., 188, 419-433. CrossRef Scholar google search
Mayor A., Martinon F., de Smedt T., Pétrilli V., Tschopp J. (2007) A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses.. Nat. Immunol., 8(5), 497-503. CrossRef Scholar google search
Li X., Thome S., Ma X., Amrute-Nayak M., Finigan A., Kitt L., Masters L., James J.R., Shi Y., Meng G., Mallat Z. (2017) MARK4 regulates NLRP3 positioning and inflammasome activation through a microtubule-dependent mechanism. Nat. Commun., 8, 15986. CrossRef Scholar google search
Lorenzen I., Mullen L., Bekeschus S., Hanschmann E.-M. (2017) Redox regulation of inflammatory processes is enzymatically controlled. Oxid. Med. Cell. Longev., 2017, 8459402. CrossRef Scholar google search
Hennig P., Garstkiewicz M., Grossi S., di Filippo M., French L.E., Beer H.D. (2018) The crosstalk between NRF2 and inflammasomes. Int. J. Mol. Sci., 19(2), 562. CrossRef Scholar google search
Tonelli C., Chio I.I.C., Tuveson D.A. (2018) Transcriptional regulation by NRF2. Antioxid. Redox Signal., 29(17), 1727-1745. CrossRef Scholar google search
Suzuki T., Yamamoto M. (2017) Stress-sensing mechanisms and the physiological roles of the Keap1-NRF2 system during cellular stress. J. Biol. Chem., 292(41), 16817-16824. CrossRef Scholar google search
Jiang T., Harder B., Rojo de la Vega M., Wong P.K., Chapman E., Zhang D.D. (2015) p62 links autophagy and NRF2 signaling. Free Radic. Biol. Med., 88(Pt B), 199-204. CrossRef Scholar google search
Wang L., Ebrahimi K.B., Chyn M., Cano M., Handa J.T. (2016) Biology of p62/sequestosome-1 in age-related macular degeneration (AMD) Adv. Exp. Med. Biol., 854, 17-22. CrossRef Scholar google search
Ichimura Y., Waguri S., Sou Y.S., Kageyama S., Hasegawa J., Ishimura R., Saito T., Yang Y., Kouno T., Fukutomi T., Hoshii T., Hirao A., Takagi K., Mizushima T., Motohashi H., Lee M.S., Yoshimori T., Tanaka K., Yamamoto M., Komatsu M. (2013) Phosphorylation of p62 activates the Keap1-NRF2 pathway during selective autophagy. Molecular Cell, 51(5), 618-631. CrossRef Scholar google search
Taguchi K., Motohashi H., Yamamoto M. (2011) Molecular mechanisms of the Keap1-NRF2 pathway in stress response and cancer evolution. Genes Cells, 16(2), 123-140. CrossRef Scholar google search
Mitsuishi Y., Motohashi H., Yamamoto M. (2012) The Keap1-NRF2 system in cancers: stress response and anabolic metabolism. Front. Oncol., 2, 200. CrossRef Scholar google search
Chartoumpekis D.V., Wakabayashi N., Kensler T.W. (2015) Keap1/NRF2 pathway in the frontiers of cancer and non-cancer cell metabolism. Biochem. Soc. Trans., 43(4), 639-644. CrossRef Scholar google search
Lo S.C., Hannink M. (2006) PGAM5, a Bcl-XL-interacting protein, is a novel substrate for the redox-regulated Keap1-dependent ubiquitin ligase complex. J. Biol. Chem., 281(49), 37893-37903. CrossRef Scholar google search
Wang Z., Jiang H., Chen S., Du F., Wang X. (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell, 148(1-2), 228-243. CrossRef Scholar google search
Huang H.C., Nguyen T., Pickett C.B. (2000) Regulation of the antioxidant response element by protein kinase Cmediated phosphorylation of NF-E2-related factor 2. Proc. Natl. Acad. Sci. USA, 98(1), 379. PMID: 11035812. CrossRef Scholar google search
Puissant A., Fenouille N., Auberger P. (2012) When autophagy meets cancer through p62/SQSTM1. Am. J. Cancer Res., 2(4), 397-413. PMID: 22860231. Scholar google search
Carroll B., Otten E.G., Manni D., Stefanatos R., Menzies F.M., Smith G.R., Jurk D., Kenneth N., Wilkinson S., Passos J.F., Attems J., Veal E.A., Teyssou E., Seilhean D., Millecamps S., Eskelinen E.L., Bronowska A.K., Rubinsztein D.C., Sanz A., Korolchuk V.I. (2018) Oxidation of SQSTM1/p62 mediates the link between redox state and protein homeostasis. Nat. Commun., 9(1), 256. CrossRef Scholar google search
Zhang J., Liu Y., Guo Y., Zhao Q. (2020) GPX8 promotes migration and invasion by regulating epithelial characteristics in non-small cell lung cancer. Thoracic Cancer, 11(11), 3299-3308. CrossRef Scholar google search
Hu L., Chen M., Chen X., Zhao C., Fang Z., Wang H., Dai H. (2020) Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate. Cell Death Disease, 11(4), 281. CrossRef Scholar google search
Martinvalet D. (2019) Mitochondrial entry of cytotoxic proteases: A new insight into the granzyme B cell death pathway. Oxid. Med. Cell. Longev., 2019, 9165214. CrossRef Scholar google search
Lionello S., Marzaro G., Martinvalet D. (2020) SAM50, a side door to the mitochondria: The case of cytotoxic proteases. Pharmacol. Res., 160, 105196. CrossRef Scholar google search
Belizário J.E., Neyra J.M., Setúbal Destro Rodrigues M.F. (2018) When and how NK cell-induced programmed cell death benefits immunological protection against intracellular pathogen infection. J. Innate Immunity, 24(8), 452-465. CrossRef Scholar google search
Walch M., Dotiwala F., Mulik S., Thiery J., Kirchhausen T., Clayberger C., Krensky A.M., Martinvalet D., Lieberman J. (2014) Cytotoxic cells kill intracellular bacteria through granulysin-mediated delivery of granzymes. Cell, 157(6), 1309-1323. CrossRef Scholar google search
Birben E., Sahiner U.M., Sackesen C., Erzurum S., Kalayci O. (2012) Oxidative stress and antioxidant defense. World Allergy Organ. J., 5(1), 9-19. CrossRef Scholar google search
Zhang J., Liu Y., Guo Y., Zhao Q. (2020) GPX8 promotes migration and invasion by regulating epithelial characteristics in non-small cell lung cancer. Thoracic Cancer, 11(11), 3299-3308. CrossRef Scholar google search
Brigelius-Flohé R., Maiorino M. (2013) Glutathione peroxidases. Biochim. Biophys. Acta, 1830(5), 3289-3303. CrossRef Scholar google search
Guo J., Song Z., Yu J., Li C., Jin C., Duan W., Liu X., Liu Y., Huang S., Tuo Y., Pei F., Jian Z., Zhou P., Zheng S., Zou Z., Zhang F., Gong Q., Liang S. (2022) Hepatocyte-specific TMEM16A deficiency alleviates hepatic ischemia/ reperfusion injury via suppressing GPX4-mediated ferroptosis. Cell Death Disease, 13(12), 1072. CrossRef Scholar google search
Xie Y., Kang R., Klionsky D.J., Tang D. (2023) GPX4 in cell death, autophagy, and disease. Autophagy, 19(10), 2621-2638. CrossRef Scholar google search
Деев Р.В., Билялов А.И., Жампеисов Т.М. (2018) Современные представления о клеточной гибели. Гены & Клетки, XIII(1), 6-19. CrossRef Scholar google search
Tang L., Liu S., Li S., Chen Y., Xie B., Zhou J. (2023) Induction mechanism of ferroptosis, necroptosis, and pyroptosis: A novel therapeutic target in nervous system diseases. Int. J. Mol. Sci., 24(12), 10127. CrossRef Scholar google search
Li Z., Ferguson L., Deol K.K., Roberts M.A., Magtanong L., Hendricks J.M., Mousa G.A., Kilinc S., Schaefer K., Wells J.A., Bassik M.C., Goga A., Dixon S.J., Ingolia N.T., Olzmann J.A. (2022) Ribosome stalling during selenoprotein translation exposes a ferroptosis vulnerability. Nat. Chem. Biol., 18(7), 751-761. CrossRef Scholar google search
Fu Y.-X., Wang Y.-B., Bu Q.-W., Guo M.-Y. (2023) Selenium deficiency caused fibrosis as an oxidative stress-induced inflammatory injury in the lungs of mice. Biol. Trace Elem. Res., 201(3), 1286-1300. CrossRef Scholar google search
Ojeda M.L., Carreras O., Nogales F. (2022) The role of selenoprotein tissue homeostasis in MetS programming: Energy balance and cardiometabolic implications. Antioxidants (Basel), 11(2), 394. CrossRef Scholar google search
Ye R., Huang J., Wang Z., Chen Y., Dong Y. (2022) The role and mechanism of essential selenoproteins for homeostasis. Antioxidants (Basel), 11(5), 973. CrossRef Scholar google search
Nakano Y., Shimoda M., Okudomi S., Kawaraya S., Kawahara M., Tanaka K.-I. (2020) Seleno-L-methionine suppresses copper-enhanced zinc-induced neuronal cell death via induction of glutathione peroxidase. Metallomics, 12(11), 1693-1701. CrossRef Scholar google search
Shi C., Yue F., Shi F., Qin Q., Wang L., Wang G., Mu L., Liu D., Li Y., Yu T., She J. (2021) Selenium-containing amino acids protect dextran sulfate sodium-induced colitis via ameliorating oxidative stress and intestinal inflammation. J. Inflamm. Res., 14, 85-95. CrossRef Scholar google search
Русецкая Н.Ю., Федотов И.В., Кофтина В.А., Бородулин В.Б. (2019) Соединения селена в редокс- регуляции воспаления и апоптоза. Биомедицинская химия, 65(3), 165-179. CrossRef Scholar google search
Чупахин Е.Г., Красавин М.Ю. (2022) Природные соединения — ингибиторы тиоредоксинредуктазы (TrxR1). Известия Академии наук. Серия химическая, 71(3), 443-448. CrossRef Scholar google search
Liu S., Pi J., Zhang Q. (2022) Signal amplification in the KEAP1-NRF2-ARE antioxidant response pathway. Redox Biol., 54, 102389. CrossRef Scholar google search
Ding D., Mou D., Zhao L., Jiang X., Che L., Fang Z., Xu S., Lin Y., Zhuo Y., Li J., Huang C., Zou Y., Li L., Wu D., Feng B. (2021) Maternal organic selenium supplementation alleviates LPS induced inflammation, autophagy and ER stressin the thymus and spleen of offspring piglets by improving the expression of selenoproteins. Food Function J., 12(22), 11214-11228. CrossRef Scholar google search
Barchielli G., Capperucci A., Tanini D. (2022) The role of selenium in pathologies: An updated review. Antioxidants (Basel), 11(2), 251. CrossRef Scholar google search
Alfthan G., Neve J. (1996) Reference values for serum selenium in various areas-evaluated according to the TRACY protocol. J. Trace Elem. Med. Biol., 10(2), 77-87. CrossRef Scholar google search
Pereira M.E., Souza J.V., Galiciolli M.E.A., Sare F., Vieira G.S., Kruk I.L., Oliveira C.S. (2022) Effects of selenium supplementation in patients with mild cognitive impairment or Alzheimer's disease: A systematic review and meta-analysis. Nutrients, 14(15), 3205. CrossRef Scholar google search
Meplan C., Johnson I.T., Polley A.C., Cockell S., Bradburn D.M., Commane D.M., Arasaradnam R.P., Mulholland F., Zupanic A., Mathers J.C., Hesketh J. (2016) Transcriptomics and proteomics show that selenium affects inflammation, cytoskeleton, and cancer pathways in human rectal biopsies. FASEB J., 30(8), 2812-2825. CrossRef Scholar google search
Müller S.M., Dawczynski C., Wiest J., Lorkowski S., Kipp A.P., Schwerdtle T. (2020) Functional biomarkers for the selenium status in a human nutritional intervention study. Nutrients, 12(3), 676. CrossRef Scholar google search
Turrubiates-Hernández F.J., Márquez-Sandoval Y.F., González-Estevez G., Reyes-Castillo Z., Muñoz-Valle J.F. (2020) The relevance of selenium status in rheumatoid arthritis. Nutrients, 12(10), 3007. CrossRef Scholar google search
Shalihat A., Hasanah A.N., Mutakin Lesmana R., Budiman A., Gozali D. (2021) The role of selenium in cell survival and its correlation with protective effects against cardiovascular disease: A literature review. Biomed. Pharmacother., 134, 111125. CrossRef Scholar google search
Mahmoodpoor A., Faramarzi E., Reyhanifard A., Shamekh A., Nikanfar S., Azizi-Zeinalhajlou A., Sanaie S. (2022) The effects of selenium supplementation on inflammatory markers in critically ill patients. SN Appl. Sci., 4(12), 326. CrossRef Scholar google search
Golin A., Tinkov A.A., Aschner M., Farina M., da Rocha J.B.T. (2023) Relationship between selenium status, selenoproteins and COVID-19 and other inflammatory diseases: A critical review. J. Trace Elem. Med. Biol., 75, 127099. CrossRef Scholar google search
Krakowiak A., Pietrasik S. (2023) New insights into oxidative and reductive stress responses and their relation to the anticancer activity of selenium-containing compounds as hydrogen selenide donors. Biology (Basel), 12(6), 875. CrossRef Scholar google search
Lee M.Y., Ojeda-Britez S., Ehrbar D., Samwer A., Begley T.J., Melendez J.A. (2022) Selenoproteins and the senescenceassociated epitranscriptome. Exper. Biol. Med. (Maywood), 247(23), 2090-2102. CrossRef Scholar google search