Изящество механизмов сплайсинга пре-мРНК не перестаёт интересовать ученых даже спустя более полувека с момента открытия того факта, что кодирующие участки в генах прерываются некодирующими. Превалирующее большинство генов человека имеют несколько вариантов мРНК, которые, в свою очередь, кодируют структурно и функционально разные варианты белков — в тканезависимой манере и с привязкой к конкретным этапам развития организма. Нарушение паттернов сплайсинга смещает баланс функционально различающихся белков в живой системе, искажает нормальные молекулярные пути и может спровоцировать возникновение и развитие патологий. За последние два десятилетия выполнено множество исследований в различных областях наук о жизни для более глубокого понимания механизмов сплайсинга и степени его влияния на функционирование живых систем. Целью данного обзора было суммирование экспериментальных и вычислительных подходов, используемых для выяснения функций сплайс-опосредованных белковых продуктов одного гена: на основе собственного опыта, накопленного в лаборатории интерактомики протеоформ Института биомедицинской химии, и лучших мировых практик.
Киселева О.И., Арзуманян В.А., Курбатов И.Ю., Поверенная Е.В. (2024) In silico и in cellulo подходы для функциональной аннотации сплайс-форм белков человека. Биомедицинская химия, 70(5), 315-328.
Киселева О.И. и др. In silico и in cellulo подходы для функциональной аннотации сплайс-форм белков человека // Биомедицинская химия. - 2024. - Т. 70. -N 5. - С. 315-328.
Киселева О.И. и др., "In silico и in cellulo подходы для функциональной аннотации сплайс-форм белков человека." Биомедицинская химия 70.5 (2024): 315-328.
Киселева, О. И., Арзуманян, В. А., Курбатов, И. Ю., Поверенная, Е. В. (2024). In silico и in cellulo подходы для функциональной аннотации сплайс-форм белков человека. Биомедицинская химия, 70(5), 315-328.
Список литературы
Graveley B.R. (2001) Alternative splicing: Increasing diversity in the proteomic world. Trends Genet., 17(2), 100–107. CrossRef Scholar google search
Lee Y., Rio D.C. (2015) Mechanisms and regulation of alternative pre-mRNA splicing. Annu. Rev. Biochem., 84, 291–323. CrossRef Scholar google search
Archakov A., Aseev A., Bykov V., Grigoriev A., Govorun V., Ivanov V., Khlunov A., Lisitsa A., Mazurenko S., Makarov A.A., Ponomarenko E., Sagdeev R., Skryabin K. (2011) Gene-centric view on the human proteome project: The example of the Russian roadmap for chromosome 18. Proteomics, 11(10), 1853–1856. CrossRef Scholar google search
Tharp C.A., Haywood M.E., Sbaizero O., Taylor M.R.G., Mestroni L. (2019) The giant protein titin’s role in cardiomyopathy: Genetic, transcriptional, and post-translational modifications of TTN and their contribution to cardiac disease. Front. Physiol., 10, 1436. CrossRef Scholar google search
Tharp C., Mestroni L., Taylor M. (2020) Modifications of titin contribute to the progression of cardiomyopathy and represent a therapeutic target for treatment of heart failure. J. Clin. Med., 9(9), 2770. CrossRef Scholar google search
Vitting-Seerup K., Sandelin A. (2019) IsoformSwitchAnalyzeR: Analysis of changes in genome-wide patterns of alternative splicing and its functional consequences. Bioinformatics, 35(21), 4469–4471. CrossRef Scholar google search
Vitting-Seerup K., Sandelin A. (2017) The landscape of isoform switches in human cancers. Mol. Cancer Res., 15(9), 1206–1220. CrossRef Scholar google search
Nowicka M., Robinson M.D. (2016) DRIMSeq: A Dirichlet-multinomial framework for multivariate count outcomes in genomics. F1000Research, 5, 1356. CrossRef Scholar google search
Anders S., Reyes A., Huber W. (2012) Detecting differential usage of exons from RNA-seq data. Genome Res., 22(10), 2008–2017. CrossRef Scholar google search
Liu Q., Fang L., Wu C. (2022) Alternative splicing and isoforms: From mechanisms to diseases. Genes, 13(3), 401. CrossRef Scholar google search
Sterne-Weiler T., Sanford J.R. (2014) Exon identity crisis: Disease-causing mutations that disrupt the splicing code. Genome Biol., 15, 201. CrossRef Scholar google search
Pradella D., Naro C., Sette C., Ghigna C. (2017) EMT and stemness: Flexible processes tuned by alternative splicing in development and cancer progression. Mol. Cancer, 16, 8. CrossRef Scholar google search
Zou C., Zan X., Jia Z., Zheng L., Gu Y., Liu F., Han Y., Xu C., Wu A., Zhi Q. (2023) Crosstalk between alternative splicing and inflammatory bowel disease: Basic mechanisms, biotechnological progresses and future perspectives. Clin. Transl. Med., 13(11), e1479. CrossRef Scholar google search
Georgilis A., Klotz S., Hanley C.J., Herranz N., Weirich B., Morancho B., Leote A.C., d’Artista L., Gallage S., Seehawer M., Carroll T., Dharmalingam G., Wee K.B., Mellone M., Pombo J., Heide D., Guccione E., Arribas J., Barbosa-Morais N.L., Heikenwalder M., Thomas G.J., Zender L., Gil J. (2018) PTBP1-mediated alternative splicing regulates the inflammatory secretome and the pro-tumorigenic effects of senescent cells. Cancer Cell, 34(1), 85–102.e9. CrossRef Scholar google search
Deschênes M., Chabot B. (2017) The emerging role of alternative splicing in senescence and aging. Aging Cell, 16(5), 918–933. CrossRef Scholar google search
Yuan S., Norgard R.J., Stanger B.Z. (2019) Cellular plasticity in cancer. Cancer Discov., 9(7), 837–851. CrossRef Scholar google search
Babic I., Anderson E.S., Tanaka K., Guo D., Masui K., Li B., Zhu S., Gu Y., Villa G.R., Akhavan D., Nathanson D., Gini B., Mareninov S., Li R., Camacho C.E., Kurdistani S.K., Eskin A., Nelson S.F., Yong W.H., Cavenee W.K., Cloughesy T.F., Christofk H.R., Black D.L., Mischel P.S. (2013) EGFR mutation-induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer. Cell Metab., 17(6), 1000–1008. CrossRef Scholar google search
Duriez M., Mandouri Y., Lekbaby B.,Wang H., Schnuriger A., Redelsperger F., Guerrera C.I., Lefevre M., Fauveau V., Ahodantin J., Quetier I., Chhuon C., Gourari S., Boissonnas A., Gill U., Kennedy P., Debzi N., Sitterlin D., Maini M.K., Kremsdorf D., Soussan P. (2017) Alternative splicing of hepatitis B virus: A novel virus/host interaction altering liver immunity. J. Hepatol., 67(4), 687–699. CrossRef Scholar google search
Sokół E., Kędzierska H., Czubaty A., Rybicka B., Rodzik K., Tański Z., Bogusławska J., Piekiełko-Witkowska A. (2018) MicroRNA-mediated regulation of splicing factors SRSF1, SRSF2 and hnRNP A1 in context of their alternatively spliced 3′UTRs. Exp. Cell Res., 363(2), 208–217. CrossRef Scholar google search
Sheng J., Zhao Q., Zhao J., Zhang W., Sun Y., Qin P., Lv Y., Bai L., Yang Q., Chen L., Qi Y., Zhang G., Zhang L., Gu C., Deng X., Liu H., Meng S., Gu H., Liu Q., Coulson J.M., Li X., Sun B., Wang Y. (2018) SRSF1 modulates PTPMT1 alternative splicing to regulate lung cancer cell radioresistance. EBioMedicine, 38, 113–126. CrossRef Scholar google search
Xie R., Chen X., Chen Z., Huang M., Dong W., Gu P., Zhang J., Zhou Q., Dong W., Han J., Wang X., Li H., Huang J., Lin T. (2019) Polypyrimidine tract binding protein 1 promotes lymphatic metastasis and proliferation of bladder cancer via alternative splicing of MEIS2 and PKM. Cancer Lett., 449, 31–44. CrossRef Scholar google search
Liu F., Dai M., Xu Q., Zhu X., Zhou Y., Jiang S., Wang Y., Ai Z., Ma L., Zhang Y., Hu L., Yang Q., Li J., Zhao S., Zhang Z., Teng Y. (2018) SRSF10-mediated IL1RAP alternative splicing regulates cervical cancer oncogenesis via mIL1RAP-NF-κB-CD47 axis. Oncogene, 37(18), 2394–2409. CrossRef Scholar google search
Iborra S., Hirschfeld M., Jaeger M., Zur Hausen A., Braicu I., Sehouli J., Gitsch G., Stickeler E. (2013) Alterations in expression pattern of splicing factors in epithelial ovarian cancer and its clinical impact. Int. J. Gynecol. Cancer, 23(6), 990–996. CrossRef Scholar google search
Fan L., Zhang F., Xu S., Cui X., Hussain A., Fazli L., Gleave M., Dong X., Qi J. (2018) Histone demethylase JMJD1A promotes alternative splicing of AR variant 7 (AR-V7) in prostate cancer cells. Proc. Natl. Acad. Sci. USA, 115(20), E4584–E4593. CrossRef Scholar google search
Zhang Y., Qian J., Gu C., Yang Y. (2021) Alternative splicing and cancer: A systematic review. Signal Transduct. Target. Ther., 6, 78. CrossRef Scholar google search
Sebestyén E., Zawisza M., Eyras E. (2015) Detection of recurrent alternative splicing switches in tumor samples reveals novel signatures of cancer. Nucleic Acids Res., 43(3), 1345–1356. CrossRef Scholar google search
Dolgalev G., Poverennaya E. (2023) Quantitative analysis of isoform switching in cancer. Int. J. Mol. Sci., 24(12), 10065. CrossRef Scholar google search
Khan F., Anelo O.M., Sadiq Q., Effah W., Price G., Johnson D.L., Ponnusamy S., Grimes B., Morrison M.L., Fowke J.H., Hayes D.N., Narayanan R. (2023) Racial differences in androgen receptor (AR) and AR splice variants (AR-SVs) expression in treatment-naïve androgen-dependent prostate cancer. Biomedicines, 11(3), 648. CrossRef Scholar google search
Bonnal S.C., López-Oreja I., Valcárcel J. (2020) Roles and mechanisms of alternative splicing in cancer — implications for care. Nat. Rev. Clin. Oncol., 17(8), 457–474. CrossRef Scholar google search
West S., Kumar S., Batra S.K., Ali H., Ghersi D. (2019) Uncovering and characterizing splice variants associated with survival in lung cancer patients. PLoS Comput. Biol., 15(10), e1007469. CrossRef Scholar google search
Tress M.L., Abascal F., Valencia A. (2017) Alternative splicing may not be the key to proteome complexity. Trends Biochem. Sci., 42(2), 98–110. CrossRef Scholar google search
Kelemen O., Convertini P., Zhang Z., Wen Y., Shen M., Falaleeva M., Stamm S. (2013) Function of alternative splicing. Gene, 514, 1–30. CrossRef Scholar google search
Yang X., Coulombe-Huntington J., Kang S., Sheynkman G.M., Hao T., Richardson A., Sun S., Yang F., Shen Y.A., Murray R.R., Spirohn K., Begg B.E., Duran-Frigola M., MacWilliams A., Pevzner S.J., Zhong Q., Wanamaker S.A., Tam S., Ghamsari L., Sahni N., Yi S., Rodriguez M.D., Balcha D., Tan G., Costanzo M., Andrews B., Boone C., Zhou X.J., Salehi-Ashtiani K., Charloteaux B., Chen A.A., Calderwood M.A., Aloy P., Roth F.P., Hill D.E., Iakoucheva L.M., Xia Y., Vidal M. (2016) Widespread expansion of protein interaction capabilities by alternative splicing. Cell, 164(4), 805–817. CrossRef Scholar google search
Lainez B., Fernandez-Real J.M., Romero X., Esplugues E., Cacete J.D., Ricart W., Engel P. (2004) Identification and characterization of a novel spliced variant that encodes human soluble tumor necrosis factor receptor 2. Int. Immunol., 16(1), 169–177. CrossRef Scholar google search
Kurada B.R.V.V.S.N., Li L.C., Mulherkar N., Subramanian M., Prasad K.V., Prabhakar B.S. (2009) MADD, a splice variant of IG20, is indispensable for MAPK activation and protection against apoptosis upon tumor necrosis factor-alpha treatment. J. Biol. Chem., 284(20), 13533–13541. CrossRef Scholar google search
Efimova E.V., Al-Zoubi A.M., Martinez O., Kaithamana S., Lu S., Arima T., Prabhakar B.S. (2004) IG20, in contrast to DENN-SV, (MADD splice variants) suppresses tumor cell survival, and enhances their susceptibility to apoptosis and cancer drugs. Oncogene, 23(5), 1076–1087. CrossRef Scholar google search
Ezkurdia I., Rodriguez J.M., Carrillo-de Santa Pau E., Vázquez J., Valencia A., Tress M.L. (2015) Most highly expressed protein-coding genes have a single dominant isoform. J. Proteome Res., 14(4), 1880–1887. CrossRef Scholar google search
Tress M.L., Abascal F., Valencia A. (2017) Most alternative isoforms are not functionally important. Trends Biochem. Sci., 42(6), 408–410. CrossRef Scholar google search
Rodriguez J.M., Pozo F., di Domenico T., Vazquez J., Tress M.L. (2020) An analysis of tissue-specific alternative splicing at the protein level. PLoS Comput. Biol., 16(10), e1008287. CrossRef Scholar google search
Pozo F., Martinez-Gomez L., Walsh T.A., Rodriguez J.M., di Domenico T., Abascal F., Vazquez J., Tress M.L. (2021) Assessing the functional relevance of splice isoforms. NAR Genom. Bioinform., 3(2), lqab044. CrossRef Scholar google search
Ponomarenko E.A., Krasnov G.S., Kiseleva O.I., Kryukova P.A., Arzumanian V.A., Dolgalev G.V., Ilgisonis E.V., Lisitsa A.V., Poverennaya E.V. (2023) Workability of mRNA sequencing for predicting protein abundance. Genes, 14(11), 2065. CrossRef Scholar google search
Eraslan B., Wang D., Gusic M., Prokisch H., Hallström B.M., Uhlén M., Asplund A., Pontén F., Wieland T., Hopf T., Hahne H., Kuster B., Gagneur J. (2019) Quantification and discovery of sequence determinants of protein-per-mRNA amount in 29 human tissues. Mol. Syst. Biol., 15(2), e8513. CrossRef Scholar google search
Liu Y., Gonzàlez-Porta M., Santos S., Brazma A., Marioni J.C., Aebersold R., Venkitaraman A.R., Wickramasinghe V.O. (2017) Impact of alternative splicing on the human proteome. Cell Rep., 20(5), 1229–1241. CrossRef Scholar google search
Tay A.P., Pang C.N.I., Twine N.A., Hart-Smith G., Harkness L., Kassem M., Wilkins M.R. (2015) Proteomic validation of transcript isoforms, including those assembled from RNA-seq data. J. Proteome Res., 14(9), 3541–3554. CrossRef Scholar google search
Vogel C., Marcotte E.M. (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet.., 13(4), 227–232. CrossRef Scholar google search
Kosti I., Jain N., Aran D., Butte A.J., Sirota M. (2016) Cross-tissue analysis of gene and protein expression in normal and cancer tissues. Sci. Rep., 6, 24799. CrossRef Scholar google search
Tran T.T., Bollineni R.C., Strozynski M., Koehler C.J., Thiede B. (2017) Identification of alternative splice variants using unique tryptic peptide sequences for database searches. J. Proteome Res., 16(7), 2571–2578. CrossRef Scholar google search
Wang X., Codreanu S.G., Wen B., Li K., Chambers M.C., Liebler D.C., Zhang B. (2018) Detection of proteome diversity resulted from alternative splicing is limited by trypsin cleavage specificity. Mol. Cell. Proteomics, 17(3), 422–430. CrossRef Scholar google search
Karunratanakul K., Tang H.-Y., Speicher D.W., Chuangsuwanich E., Sriswasdi S. (2019) Uncovering thousands of new peptides with sequence-mask-search hybrid de novo peptide sequencing framework. Mol. Cell. Proteomics, 18(12), 2478–2491. CrossRef Scholar google search
Bogdanow B., Zauber H., Selbach M. (2016) Systematic errors in peptide and protein identification and quantification by modified peptides. Mol. Cell. Proteomics, 15(8), 2791–2801. CrossRef Scholar google search
Kiseleva O., Ponomarenko E., Poverennaya E. (2020) Empowering shotgun mass spectrometry with 2DE: A HepG2 study. Int. J. Mol. Sci., 21(11), 3813. CrossRef Scholar google search
Поверенная Е.В., Киселева О.И., Пономаренко Е.А., Нарыжный С.Н., Згода В.Г., Лисица А.В. (2017) Мультиомная стратегия исследования протеома клеточной линии гепатоцеллюлярной карциномы HepG2. Биомедицинская химия, 63(5), 373–378. CrossRef Scholar google search
Киселева О.И., Лисица А.В., Поверенная Е.В. (2018) Протеоформы: методы исследования и клинические перспективы. Молекулярная биология, 52(3), 394–410. CrossRef Scholar google search
Smith L.M., Agar J.N., Chamot-Rooke J., Danis P.O., Ge Y., Loo J.A., Paša-Tolić L., Tsybin Y.O., Kelleher N.L., Consortium for Top-Down Proteomics (2021) The human proteoform project: Defining the human proteome. Sci Adv., 7(46), eabk0734. CrossRef Scholar google search
Smith L.M., Kelleher N.L. (2018) Proteoforms as the next proteomics currency. Science, 359(6380), 1106–1107. CrossRef Scholar google search
Carbonara K., Andonovski M., Coorssen J.R. (2021) Proteomes are of proteoforms: Embracing the complexity. Proteomes, 9(3), 38. CrossRef Scholar google search
Forgrave L.M., Wang M., Yang D., de Marco M.L. (2022) Proteoforms and their expanding role in laboratory medicine. Pract. Lab. Med., 28, e00260. CrossRef Scholar google search
Fornelli L., Toby T.K., Schachner L.F., Doubleday P.F., Srzentić K., deHart C.J., Kelleher N.L. (2018) Top-down proteomics: Where we are, where we are going? J. Proteomics, 175, 3–4. CrossRef Scholar google search
Chang A., Leutert M., Rodriguez-Mias R.A., Villén J. (2023) Automated enrichment of phosphotyrosine peptides for high-throughput proteomics. J. Proteome Res., 22(6), 1868–1880. CrossRef Scholar google search
Romashin D., Rusanov A., Arzumanian V., Varshaver A., Poverennaya E., Vakhrushev I., Netrusov A., Luzgina N. (2024) Exploring the functions of mutant p53 through TP53 knockout in HaCaT keratinocytes. Curr. Issues Mol. Biol., 46(2), 1451–1466. CrossRef Scholar google search
Poverennaya E.V., Pyatnitskiy M.A., Dolgalev G.V., Arzumanian V.A., Kiseleva O.I., Kurbatov I.Y., Kurbatov L.K., Vakhrushev I.V., Romashin D.D., Kim Y.S., Ponomarenko E.A. (2023) Exploiting multi-omics profiling and systems biology to investigate functions of TOMM34. Biology, 12(2), 198. CrossRef Scholar google search
Rosati D., Palmieri M., Brunelli G., Morrione A., Iannelli F., Frullanti E., Giordano A. (2024) Differential gene expression analysis pipelines and bioinformatic tools for the identification of specific biomarkers: A review. Comput. Struct. Biotechnol. J., 23, 1154–1168. CrossRef Scholar google search
Li W., Liu C.-C., Kang S., Li J.-R., Tseng Y.-T., Zhou X.J. (2016) Pushing the annotation of cellular activities to a higher resolution: Predicting functions at the isoform level. Methods, 93, 110–118. CrossRef Scholar google search
Tseng Y.-T., Li W., Chen C.-H., Zhang S., Chen J.J., Zhou X.J., Liu C.-C. (2015) IIIDB: A database for isoform-isoform interactions and isoform network modules. BMC Genomics, 16(Suppl 2), S10. CrossRef Scholar google search
Li W., Kang S., Liu C.-C., Zhang S., Shi Y., Liu Y., Zhou X.J. (2014) High-resolution functional annotation of human transcriptome: Predicting isoform functions by a novel multiple instance-based label propagation method. Nucleic Acids Res., 42(6), e39. CrossRef Scholar google search
Cruz L.M., Trefflich S., Weiss V.A., Castro M.A.A. (2017) Protein function prediction. Methods Mol. Biol., 1654, 55–75. CrossRef Scholar google search
Ponomarenko E.A., Poverennaya E.V., Ilgisonis E.V., Pyatnitskiy M.A., Kopylov A.T., Zgoda V.G., Lisitsa A.V., Archakov A.I. (2016) The size of the human proteome: The width and depth. Int. J. Anal. Chem., 2016, 7436849. CrossRef Scholar google search
Ilgisonis E.V., Pogodin P.V., Kiseleva O.I., Tarbeeva S.N., Ponomarenko E.A. (2022) Evolution of protein functional annotation: Text mining study. J. Pers. Med., 12(3), 479. CrossRef Scholar google search
Zahn-Zabal M., Lane L. (2020) What will neXtProt help us achieve in 2020 and beyond? Expert Rev. Proteomics, 17(2), 95–98. CrossRef Scholar google search
Dolgalev G., Poverennaya E. (2021) Applications of CRISPR-Cas technologies to proteomics. Genes, 12(11), 1790. CrossRef Scholar google search
Liang Q., Wu N., Zaneveld S., Liu H., Fu S., Wang K., Bertrand R., Wang J., Li Y., Chen R. (2021) Transcript isoforms of Reep6 have distinct functions in the retina. Hum. Mol. Genet., 30(21), 1907–1918. CrossRef Scholar google search
Jacobs Catane L., Moshel O., Smith Y., Davidson B., Reich R. (2021) Splice-variant knock-out of TGFβ receptors perturbates the proteome of ovarian carcinoma cells. Int. J. Mol. Sci., 22(23), 12647. CrossRef Scholar google search
Davies R., Liu L., Taotao S., Tuano N., Chaturvedi R., Huang K.K., Itman C., Mandoli A., Qamra A., Hu C., Powell D., Daly R.J., Tan P., Rosenbluh J. (2021) CRISPRi enables isoform-specific loss-of-function screens and identification of gastric cancer-specific isoform dependencies. Genome Biol., 22, 47. CrossRef Scholar google search
Amoasii L., Hildyard J.C.W., Li H., Sanchez-Ortiz E., Mireault A., Caballero D., Harron R., Stathopoulou T.-R., Massey C., Shelton J.M., Bassel-Duby R., Piercy R.J., Olson E.N. (2018) Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science, 362(6410), 86–91. CrossRef Scholar google search
Long C., Amoasii L., Mireault A.A., McAnally J.R., Li H., Sanchez-Ortiz E., Bhattacharyya S., Shelton J.M., Bassel-Duby R., Olson E.N. (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science, 351(6271), 400–403. CrossRef Scholar google search
Dours-Zimmermann M.T., Zimmermann D.R. (2012) A novel strategy for a splice-variant selective gene ablation: The example of the versican V0/V2 knockout. Methods Mol. Biol., 836, 63–85. CrossRef Scholar google search
Dimitrakopoulos G.N., Klapa M.I., Moschonas N.K. (2022) How far are we from the completion of the human protein interactome reconstruction? Biomolecules, 12(1), 140. CrossRef Scholar google search
Huttlin E.L., Bruckner R.J., Navarrete-Perea J., Cannon J.R., Baltier K., Gebreab F., Gygi M.P., Thornock A., Zarraga G., Tam S., Szpyt J., Gassaway B.M., Panov A., Parzen H., Fu S., Golbazi A., Maenpaa E., Stricker K., Guha Thakurta S., Zhang T., Rad R., Pan J., Nusinow D.P., Paulo J.A., Schweppe D.K., Vaites L.P., Harper J.W., Gygi S.P. (2021) Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell, 184(11), 3022–3040.e28. CrossRef Scholar google search
Nesvizhskii A.I. (2012) Computational and informatics strategies for identification of specific protein interaction partners in affinity purification mass spectrometry experiments. Proteomics, 12(10), 1639–1655. CrossRef Scholar google search
Hermjakob H., Montecchi-Palazzi L., Lewington C., Mudali S., Kerrien S., Orchard S., Vingron M., Roechert B., Roepstorff P., Valencia A., Margalit H., Armstrong J., Bairoch A., Cesareni G., Sherman D., Apweiler R. (2004) IntAct: An open source molecular interaction database. Nucleic Acids Res., 32(Database issue), D452–D455. CrossRef Scholar google search
Frommelt F., Fossati A., Uliana F., Wendt F., Xue P., Heusel M., Wollscheid B., Aebersold R., Ciuffa R., Gstaiger M. (2024) DIP-MS: Ultra-deep interaction proteomics for the deconvolution of protein complexes. Nat. Methods, 21(4), 635–647. CrossRef Scholar google search
Huttlin E.L., Ting L., Bruckner R.J., Gebreab F., Gygi M.P., Szpyt J., Tam S., Zarraga G., Colby G., Baltier K., Dong R., Guarani V., Vaites L.P., Ordureau A., Rad R., Erickson B.K., Wühr M., Chick J., Zhai B., Kolippakkam D., Mintseris J., Obar R.A., Harris T., Artavanis-Tsakonas S., Sowa M.E., de Camilli P., Paulo J.A., Harper J.W., Gygi S.P. (2015) The BioPlex network: A systematic exploration of the human interactome. Cell, 162(2), 425–440. CrossRef Scholar google search
Poverennaya E., Kiseleva O., Romanova A., Pyatnitskiy M. (2020) Predicting functions of uncharacterized human proteins: From canonical to proteoforms. Genes, 11(6), 677. CrossRef Scholar google search
Kurbatov I., Dolgalev G., Arzumanian V., Kiseleva O., Poverennaya E. (2023) The knowns and unknowns in protein-metabolite interactions. Int. J. Mol. Sci., 24(4), 4155. CrossRef Scholar google search
Hernández Sánchez L.F., Burger B., Castro Campos R.A., Johansson S., Njølstad P.R., Barsnes H., Vaudel M. (2023) Extending protein interaction networks using proteoforms and small molecules. Bioinformatics, 39(10), btad598. CrossRef Scholar google search
Поверенная Е.В., Киселева О.И., Иванов А.С., Пономаренко Е.А. (2020) Mетоды вычислительной интерактомики в вопросах взаимодействия протеоформ человека. Биохимия, 85(1), 80–92. CrossRef Scholar google search
Louadi Z., Yuan K., Gress A., Tsoy O., Kalinina O.V., Baumbach J., Kacprowski T., List M. (2021) DIGGER: Exploring the functional role of alternative splicing in protein interactions. Nucleic Acids Res., 49(D1), D309–D318. CrossRef Scholar google search
Gjerga E., Naarmann-de Vries I.S., Dieterich C. (2023) Characterizing alternative splicing effects on protein interaction networks with LINDA. Bioinformatics, 39(Suppl 1), i458–i464. CrossRef Scholar google search
Louadi Z., Elkjaer M.L., Klug M., Lio C.T., Fenn A., Illes Z., Bongiovanni D., Baumbach J., Kacprowski T., List M., Tsoy O. (2021) Functional enrichment of alternative splicing events with NEASE reveals insights into tissue identity and diseases. Genome Biol., 22, 327. CrossRef Scholar google search
Yellaboina S., Tasneem A., Zaykin D.V., Raghavachari B., Jothi R. (2011) DOMINE: A comprehensive collection of known and predicted domain-domain interactions. Nucleic Acids Res., 39(Database issue), D730–D735. CrossRef Scholar google search
Mosca R., Céol A., Stein A., Olivella R., Aloy P. (2014) 3did: A catalog of domain-based interactions of known three-dimensional structure. Nucleic Acids Res., 42(Database issue), D374–D379. CrossRef Scholar google search
Kumar M., Gouw M., Michael S., Sámano-Sánchez H., Pancsa R., Glavina J., Diakogianni A., Valverde J.A., Bukirova D., Čalyševa J., Palopoli N., Davey N.E., Chemes L.B., Gibson T.J. (2020) ELM — the eukaryotic linear motif resource in 2020. Nucleic Acids Res., 48(D1), D296–D306. CrossRef Scholar google search
Berman H.M. (2008) The protein data bank: A historical perspective. Acta Crystallogr. A, 64(Pt 1), 88–95. CrossRef Scholar google search
Zhang Y., Yao X., Zhou H., Wu X., Tian J., Zeng J., Yan L., Duan C., Liu H., Li H., Chen K., Hu Z., Ye Z., Xu H. (2022) OncoSplicing: An updated database for clinically relevant alternative splicing in 33 human cancers. Nucleic Acids Res., 50(D1), D1340–D1347. CrossRef Scholar google search
Li Q., Lai H., Li Y., Chen B., Chen S., Li Y., Huang Z., Meng Z., Wang P., Hu Z., Huang S. (2021) RJunBase: A database of RNA splice junctions in human normal and cancerous tissues. Nucleic Acids Res., 49(D1), D201–D211. CrossRef Scholar google search
Ling J.P., Wilks C., Charles R., Leavey P.J., Ghosh D., Jiang L., Santiago C.P., Pang B., Venkataraman A., Clark B.S., Nellore A., Langmead B., Blackshaw S. (2020) ASCOT identifies key regulators of neuronal subtype-specific splicing. Nat. Commun., 11, 137. CrossRef Scholar google search
Tian J., Wang Z., Mei S., Yang N., Yang Y., Ke J., Zhu Y., Gong Y., Zou D., Peng X., Wang X., Wan H., Zhong R., Chang J., Gong J., Han L., Miao X. (2019) CancerSplicingQTL: A database for genome-wide identification of splicing QTLs in human cancer. Nucleic Acids Res., 47(D1), D909–D916. CrossRef Scholar google search
UniProt Consortium (2022) UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Res., 51(D1), D523–D531. CrossRef Scholar google search
Lane L., Argoud-Puy G., Britan A., Cusin I., Duek P.D., Evalet O., Gateau A., Gaudet P., Gleizes A., Masselot A., Zwahlen C., Bairoch A. (2012) NeXtProt: A knowledge platform for human proteins. Nucleic Acids Res., 40(Database issue), D76–D83. CrossRef Scholar google search
O’Leary N.A., Wright M.W., Brister J.R., Ciufo S., Haddad D., McVeigh R., Rajput B., Robbertse B., Smith-White B., Ako-Adjei D., Astashyn A., Badretdin A., Bao Y., Blinkova O., Brover V., Chetvernin V., Choi J., Cox E., Ermolaeva O., Farrell C.M., Goldfarb T., Gupta T., Haft D., Hatcher E., Hlavina W., Joardar V.S., Kodali V.K., Li W., Maglott D., Masterson P., McGarvey K.M., Murphy M.R., O'Neill K., Pujar S., Rangwala S.H., Rausch D., Riddick L.D., Schoch C., Shkeda A., Storz S.S., Sun H., Thibaud-Nissen F., Tolstoy I., Tully R.E., Vatsan A.R., Wallin C., Webb D., Wu W., Landrum M.J., Kimchi A., Tatusova T., di Cuccio M., Kitts P., Murphy T.D., Pruitt K.D. (2016) Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res., 44(D1), D733–D745. CrossRef Scholar google search
Frankish A., Diekhans M., Jungreis I., Lagarde J., Loveland J.E., Mudge J.M., Sisu C., Wright J.C., Armstrong J., Barnes I., Berry A., Bignell A., Boix C., Carbonell Sala S., Cunningham F., di Domenico T., Donaldson S., Fiddes I.T., García Girón C., Gonzalez J.M., Grego T., Hardy M., Hourlier T., Howe K.L., Hunt T., Izuogu O.G., Johnson R., Martin F.J., Martínez L., Mohanan S., Muir P., Navarro F.C.P., Parker A., Pei B., Pozo F., Riera F.C., Ruffier M., Schmitt B.M., Stapleton E,. Suner M.M., Sycheva I., Uszczynska-Ratajczak B., Wolf M.Y., Xu J., Yang Y.T., Yates A., Zerbino D., Zhang Y., Choudhary J.S., Gerstein M., Guigó R., Hubbard T.J.P., Kellis M., Paten B., Tress M.L., Flicek P. (2021) GENCODE 2021. Nucleic Acids Res., 49(D1), D916–D923. CrossRef Scholar google search
Morales J., Pujar S., Loveland J.E., Astashyn A., Bennett R., Berry A., Cox E., Davidson C., Ermolaeva O., Farrell C.M., Fatima R., Gil L., Goldfarb T., Gonzalez J.M., Haddad D., Hardy M., Hunt T., Jackson J., Joardar V.S., Kay M., Kodali V.K., McGarvey K.M., McMahon A., Mudge J.M., Murphy D.N., Murphy M.R., Rajput B., Rangwala S.H., Riddick L.D., Thibaud-Nissen F., Threadgold G., Vatsan A.R., Wallin C., Webb D., Flicek P., Birney E., Pruitt K.D., Frankish A., Cunningham F., Murphy T.D. (2022) A joint NCBI and EMBL-EBI transcript set for clinical genomics and research. Nature, 604(7905), 310–315. CrossRef Scholar google search
Pertea M., Shumate A., Pertea G., Varabyou A., Breitwieser F.P., Chang Y.-C., Madugundu A.K., Pandey A., Salzberg S.L. (2018) CHESS: A new human gene catalog curated from thousands of large-scale RNA sequencing experiments reveals extensive transcriptional noise. Genome Biol., 19, 208. CrossRef Scholar google search
Howe K.L., Achuthan P., Allen J., Allen J., Alvarez-Jarreta J., Amode M.R., Armean I.M., Azov A.G., Bennett R., Bhai J., Billis K., Boddu S., Charkhchi M., Cummins C., da Rin Fioretto L., Davidson C., Dodiya K., El Houdaigui B., Fatima R., Gall A., Garcia Giron C., Grego T., Guijarro-Clarke C., Haggerty L., Hemrom A., Hourlier T., Izuogu O.G., Juettemann T., Kaikala V., Kay M., Lavidas I., Le T., Lemos D., Gonzalez Martinez J., Marugán J.C., Maurel T., McMahon A.C., Mohanan S., Moore B., Muffato M., Oheh D.N., Paraschas D., Parker A., Parton A., Prosovetskaia I., Sakthivel M.P., Salam A.I.A., Schmitt B.M., Schuilenburg H., Sheppard D., Steed E., Szpak M., Szuba M., Taylor K., Thormann A., Threadgold G., Walts B., Winterbottom A., Chakiachvili M., Chaubal A., de Silva N., Flint B., Frankish A., Hunt S.E., Ilsley G.R., Langridge N., Loveland J.E., Martin F.J., Mudge J.M., Morales J., Perry E., Ruffier M., Tate J., Thybert D., Trevanion S.J., Cunningham F., Yates A.D., Zerbino D.R., Flicek P. (2021) Ensembl 2021. Nucleic Acids Res., 49(D1), D884–D891. CrossRef Scholar google search
Lindblad-Toh K., Garber M., Zuk O., Lin M.F., Parker B.J., Washietl S., Kheradpour P., Ernst J., Jordan G., Mauceli E., Ward L.D., Lowe C.B., Holloway A.K., Clamp M., Gnerre S., Alföldi J., Beal K., Chang J., Clawson H., Cuff J., di Palma F., Fitzgerald S., Flicek P., Guttman M., Hubisz M.J., Jaffe D.B., Jungreis I., Kent W.J., Kostka D., Lara M., Martins A.L., Massingham T., Moltke I., Raney B.J., Rasmussen M.D., Robinson J., Stark A., Vilella A.J., Wen J., Xie X., Zody M.C., Broad Institute Sequencing Platform and Whole Genome Assembly Team, Baldwin J., Bloom T., Chin C.W., Heiman D., Nicol R., Nusbaum C., Young S., Wilkinson J., Worley K.C., Kovar C.L., Muzny D.M., Gibbs R.A., Baylor College of Medicine Human Genome Sequencing Center Sequencing Team, Cree A., Dihn H.H., Fowler G., Jhangiani S., Joshi V., Lee S., Lewis L.R., Nazareth L.V., Okwuonu G., Santibanez J., Warren W.C., Mardis E.R., Weinstock G.M., Wilson R.K., Genome Institute at Washington University, Delehaunty K., Dooling D., Fronik C., Fulton L., Fulton B., Graves T., Minx P., Sodergren E., Birney E., Margulies E.H., Herrero J., Green E.D., Haussler D., Siepel A., Goldman N., Pollard K.S., Pedersen J.S., Lander E.S., Kellis M. (2011) A high-resolution map of human evolutionary constraint using 29 mammals. Nature, 478(7370), 476–482. CrossRef Scholar google search
Sommer M.J., Cha S., Varabyou A., Rincon N., Park S., Minkin I., Pertea M., Steinegger M., Salzberg S.L. (2022) Structure-guided isoform identification for the human transcriptome. eLife, 11, e82556. CrossRef Scholar google search
Palazzo A.F., Lee E.S. (2015) Non-coding RNA: What is functional and what is junk? Front. Genetics, 6, 2. CrossRef Scholar google search
Ponting C.P., Haerty W. (2022) Genome-wide analysis of human long noncoding RNAs: A provocative review. Annu. Rev. Genomics Hum. Genet., 23, 153–172. CrossRef Scholar google search
Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T., Harris M.A., Hill D.P., Issel-Tarver L., Kasarskis A., Lewis S., Matese J.C., Richardson J.E., Ringwald M., Rubin G.M., Sherlock G. (2000) Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nat. Genet., 25(1), 25–29. CrossRef Scholar google search
Qiu S., Yu G., Lu X., Domeniconi C., Guo M. (2022) Isoform function prediction by Gene Ontology embedding. Bioinformatics, 38(19), 4581–4588. CrossRef Scholar google search
Eksi R., Li H.-D., Menon R., Wen Y., Omenn G.S., Kretzler M., Guan Y. (2013) Systematically differentiating functions for alternatively spliced isoforms through integrating RNA-seq data. PLoS Comput. Biol., 9(11), e1003314. CrossRef Scholar google search
Luo T., Zhang W., Qiu S., Yang Y., Yi D., Wang G., Ye J., Wang J. (2017) Functional annotation of human protein coding isoforms via non-convex multi-instance learning. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, New York, NY, USA. pp. 345–354. CrossRef Scholar google search
Li H.-D., Yang C., Zhang Z., Yang M., Wu F.-X., Omenn G.S., Wang J. (2021) IsoResolve: Predicting splice isoform functions by integrating gene and isoform-level features with domain adaptation. Bioinformatics, 37(4), 522–530. CrossRef Scholar google search
Shaw D., Chen H., Jiang T. (2019) DeepIsoFun: A deep domain adaptation approach to predict isoform functions. Bioinformatics, 35(15), 2535–2544. CrossRef Scholar google search
Chen H., Shaw D., Zeng J., Bu D., Jiang T. (2019) DIFFUSE: Predicting isoform functions from sequences and expression profiles via deep learning. Bioinformatics, 35(14), i284–i294. CrossRef Scholar google search
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S.A.A., Ballard A.J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior A.W., Kavukcuoglu K., Kohli P., Hassabis D. (2021) Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. CrossRef Scholar google search
Tunyasuvunakool K., Adler J., Wu Z., Green T., Zielinski M., Žídek A., Bridgland A., Cowie A., Meyer C., Laydon A., Velankar S., Kleywegt G.J., Bateman A., Evans R., Pritzel A., Figurnov M., Ronneberger O., Bates R., Kohl S.A.A., Potapenko A., Ballard A.J., Romera-Paredes B., Nikolov S., Jain R., Clancy E., Reiman D., Petersen S., Senior A.W., Kavukcuoglu K., Birney E., Kohli P., Jumper J., Hassabis D. (2021) Highly accurate protein structure prediction for the human proteome. Nature, 596(7873), 590–596. CrossRef Scholar google search
Deiana A., Forcelloni S., Porrello A., Giansanti A. (2019) Intrinsically disordered proteins and structured proteins with intrinsically disordered regions have different functional roles in the cell. PloS ONE, 14(8), e0217889. CrossRef Scholar google search
Mirdita M., Schütze K., Moriwaki Y., Heo L., Ovchinnikov S., Steinegger M. (2022) ColabFold: Making protein folding accessible to all. Nat. Methods, 19(6), 679–682. CrossRef Scholar google search
Chang E., Fu C., Coon S.L., Alon S., Bozinoski M., Breymaier M., Bustos D.M., Clokie S.J., Gothilf Y., Esnault C., Michael Iuvone P., Mason C.E., Ochocinska M.J., Tovin A., Wang C., Xu P., Zhu J., Dale R., Klein D.C. (2020) Resource: A multi-species multi-timepoint transcriptome database and webpage for the pineal gland and retina. J. Pineal Res., 69(3), e12673. CrossRef Scholar google search