1. Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria 2. Benjamin Carson (Snr.) School of Basic Medical Sciences, Babcock University, Ilishan-Remo, Ogun State, Nigeria 3. Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria; Faculty of Basic Medical Science, Redeemer's University, Ede, Osun State, Nigeria 4. Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria; College of Health Sciences, Osun State University, Osogbo, Osun State, Nigeria
Церебральная малярия (ЦМ) — смертельно опасное осложнение инфекции, вызванной Plasmodium falciparum. Биологическая и физиологическая связь между ЦМ, воспалением и формированием инфламмасом свидетельствует о сложности патологического процесса. Возникновение резистентности к доступным недорогим лекарственным препаратам и усугубляющийся экономический кризис обуславливают необходимость поиска новой эффективной фармакотерапии на основе интеграции подходов официальной и традиционной медицины. Ранее мы изучили лечебные свойства горького мёда и определили его ботанические и биологически активные характеристики, включая ингибирование активности панкреатической альфа-амилазы, антидислипидемические, кардиопротекторные эффекты, а также регенерирующее действие при гепаторенальном синдроме у крыс с диабетом, индуцированным стрептозотоцином. В настоящем исследовании с помощью газовой хроматографии в сочетании с масс-спектрометрией (ГХ-МС) были определены фитохимические соединения горького мёда (ГМ), с использованием диаграмм Венна были обнаружены 9 мишеней среди генов, связанных с ЦМ, воспалением, инфламмасомами и фитокомпонентами ГМ. Сетевой анализ выявил значимые функциональные и физические взаимодействия между белками-мишенями, кодируемыми этими генами, и белками, содержащими NOD- и LRR-домены, а также содержащим пириновый домен белком 3 (NLRP3). Молекулярный докинг фитокомпонентов горького мёда к этим мишеням позволил определить три наиболее перспективных соединения для дальнейшей экспериментальной проверки. На основе полученных данных можно предполагать, что горький мёд может способствовать подавлению инфламмасом-зависимой гибели клеток при ЦМ благодаря взаимодействию с установленными в результате исследования мишенями.
Даниян М.О., Адеое О.Б., Осирим Э., Асиянбола И.Д. (2024) Влияние горького мёда на инфламмасом-зависимую гибель клеток при церебральной малярии: оценка на основе сетевой фармакологии. Биомедицинская химия, 70(6), 442-455.
Даниян М.О. и др. Влияние горького мёда на инфламмасом-зависимую гибель клеток при церебральной малярии: оценка на основе сетевой фармакологии // Биомедицинская химия. - 2024. - Т. 70. -N 6. - С. 442-455.
Даниян М.О. и др., "Влияние горького мёда на инфламмасом-зависимую гибель клеток при церебральной малярии: оценка на основе сетевой фармакологии." Биомедицинская химия 70.6 (2024): 442-455.
Даниян, М. О., Адеое, О. Б., Осирим, Э., Асиянбола, И. Д. (2024). Влияние горького мёда на инфламмасом-зависимую гибель клеток при церебральной малярии: оценка на основе сетевой фармакологии. Биомедицинская химия, 70(6), 442-455.
Список литературы
World Health Organization (2023) World malaria report 2023. from: https://www.who.int/publications-detail-redirect/ 9789240086173. Scholar google search
Dondorp A.M., Nosten F., Yi P., Das D., Phyo A.P., Tarning J., Lwin K.M., Ariey F., Hanpithakpong W., Lee S.J., Ringwald P., Silamut K., Imwong M., Chotivanich K., Lim P., Herdman T., An S.S., Yeung S., Singhasivanon P., Day N.P., Lindegardh N., Socheat D., White N.J. (2009) Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med., 361(5), 455–467. CrossRef Scholar google search
Desruisseaux M.S., Machado F.S., Weiss L.M., Tanowitz H.B., Golightly L.M. (2010) Cerebral malaria: A vasculopathy. Am. J. Pathol., 176, 1075–1078. CrossRef Scholar google search
Shikani H.J., Freeman B.D., Lisanti M.P., Weiss L.M., Tanowitz H.B., Desruisseaux M.S. (2012) Cerebral malaria: We have come a long way. Am. J. Pathol., 181, 1484–1492. CrossRef Scholar google search
Daniyan M.O., Fisusi F.A., Adeoye O.B. (2022) Neurotransmitters and molecular chaperones interactions in cerebral malaria: Is there a missing link? Front. Mol. Biosci., 9, 965569. CrossRef Scholar google search
Palma-Morales M., Huertas J.R., Rodríguez-Pérez C. (2023) A comprehensive review of the effect of honey on human health. Nutrients, 15(13), 3056. CrossRef Scholar google search
Floris I., Pusceddu M., Satta A. (2021) The Sardinian bitter honey: From ancient healing use to recent findings. Antioxidants, 10(4), 506. CrossRef Scholar google search
Adeoye B.O., Iyanda A.A., Daniyan M.O., Adeoye A.D., Oyerinde A.M., Olatinwo G.O. (2022) Botanical and bio-active markers of Nigerian bitter honey. Trop. J. Nat. Prod. Res., 6(11), 1848–1853. CrossRef Scholar google search
Adeoye O.B., Iyanda A.A., Daniyan M.O., Adeoye D.A., Olajide O.L., Akinnawo O.O., Olajide O.L., Akinnawo O.O., Adetunji A.O., Osundina B.O., Olatinwo O.M. (2023) Anti-dyslipidaemia and cardio-protective effects of Nigerian bitter honey in streptozotocin induced diabetic rats. Univers. J. Pharm. Res., 8(2), 10–18. CrossRef Scholar google search
Adeoye O.B., Ayobola I.A., Daniyan M.O., Ekundina V.O., Adeoye D.A., Abijo Z.A., Akin-Akanbi F.B. (2022) Ameliorative effects of Nigerian bitter honey on streptozotocin-induced hepatorenal damage in Wistar rats. Journal of Krishna Institute of Medical Sciences University, 11(1), 65–76. Scholar google search
Adeoye B.O., Iyanda A.A., Oyerinde A.M., Oyeleke I.O., Fadeyi B.O. (2022) Inhibitory effects of Nigerian sweet and bitter honey on pancreatic alpha amylase activity. Nigerian J. Nutr. Sci., 43(2), 19–24. Scholar google search
Li X., Wei S., Niu S., Ma X., Li H., Jing M., Zhao Y. (2022) Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput. Biol. Med., 144, 105389. CrossRef Scholar google search
Dai W., Chen H.-Y., Chen C.Y.-C. (2018) A network pharmacology-based approach to investigate the novel TCM formula against Huntington's disease and validated by support vector machine model. Evid. Based Complement Alternat. Med., 2018, 6020197. CrossRef Scholar google search
Joshna K., Gopal V., Kavitha B. (2022) Analysis of bitter honey using gas chromatography and tandem mass spectrometry. Bioinformation, 18(3), 196–199. CrossRef Scholar google search
Castell A., Arroyo-Manzanares N., Guerrero-Núñez Y., Campillo N., Viñas P. (2023) Headspace with gas chromatography-mass spectrometry for the use of volatile organic compound profile in botanical origin authentication of honey. Molecules, 28(11), 4297. CrossRef Scholar google search
Kim S., Chen J., Cheng T., Gindulyte A., He J., He S., Li Q., Shoemaker B.A., Thiessen P.A., Yu B., Zaslavsky L., Zhang J., Bolton E.E. (2018) PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res., 47(D1), D1102–D1109. CrossRef Scholar google search
Dassault Systèmes BIOVIA (2015) Discovery studio modelling environment, Release 4.5, San Diego: Dassault Systèmes. Scholar google search
Stelzer G., Rosen N., Plaschkes I., Zimmerman S., Twik M., Fishilevich S., Stein T.I., Nudel R., Lieder I., Mazor Y., Kaplan S., Dahary D., Warshawsky D., Guan-Golan Y., Kohn A., Rappaport N., Safran M., Lancet D. (2016) The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics, 54, 1.30.1-1.30.33. CrossRef Scholar google search
Koscielny G., An P., Carvalho-Silva D., Cham J.A., Fumis L., Gasparyan R., Hasan S., Karamanis N., Maguire M., Papa E., Pierleoni A., Pignatelli M., Platt T., Rowland F., Wankar P., Bento A.P., Burdett T., Fabregat A., Forbes S., Gaulton A., Gonzalez C.Y., Hermjakob H., Hersey A., Jupe S., Kafkas Ş., Keays M., Leroy C., Lopez F.J., Magarinos M.P., Malone J., McEntyre J., Munoz-Pomer Fuentes A., O'Donovan C., Papatheodorou I., Parkinson H., Palka B., Paschall J., Petryszak R., Pratanwanich N., Sarntivijal S., Saunders G., Sidiropoulos K., Smith T., Sondka Z., Stegle O., Tang Y.A., Turner E., Vaughan B., Vrousgou O., Watkins X., Martin M.J., Sanseau P., Vamathevan J., Birney E., Barrett J., Dunham I. (2017) Open Targets: A platform for therapeutic target identification and validation. Nucleic Acids Res., 45(D1), D985-D994. CrossRef Scholar google search
Daina A., Michielin O., Zoete V. (2019) SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 47(W1), W357–W364. CrossRef Scholar google search
Draw Venn Diagram. https://bioinformatics.psb.ugent.be/webtools/Venn/. Scholar google search
Gupta M.K., Gouda G., Selvaraj S., Donde R., Dash G.K., Ramakrishna V., Behera L. (2021) Gene Ontology and Pathway Enrichment Analysis. In: Bioinformatics in Rice Research: Theories and Techniques (Gupta, M.K., Behera, L., eds.), pp. 257–279. Springer, Singapore. CrossRef Scholar google search
Ge S.X., Jung D., Yao R. (2020) ShinyGO:Agraphical gene-set enrichment tool for animals and plants. Bioinformatics, 36(8), 2628–2629. CrossRef Scholar google search
Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., Jensen L.J., Mering C.V. (2019) STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 47(D1), D607–D613. CrossRef Scholar google search
Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. (2003) Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 13(11), 2498–2504. CrossRef Scholar google search
Burley S.K., Bhikadiya C., Bi C., Bittrich S., Chao H., Chen L., Craig P.A., Crichlow G.V., Dalenberg K., Duarte J.M., Dutta S., Fayazi M., Feng Z., Flatt J.W., Ganesan S., Ghosh S., Goodsell D.S., Green R.K., Guranovic V., Henry J., Hudson B.P., Khokhriakov I., Lawson C.L., Liang Y., Lowe R., Peisach E., Persikova I., Piehl D.W., Rose Y., Sali A., Segura J., Sekharan M., Shao C., Vallat B., Voigt M., Webb B., Westbrook J.D., Whetstone S., Young J.Y., Zalevsky A., Zardecki C. (2023) RCSB protein data bank (RCSB.org): Delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res., 51(D1), D488–D508. CrossRef Scholar google search
Daniyan M.O., Ojo O.T. (2019) In silico identification and evaluation of potential interaction of Azadirachta indica phytochemicals with Plasmodium falciparum heat shock protein 90. J. Mol. Graph. Model., 87, 144–164. CrossRef Scholar google search
Johansson M.U., Zoete V., Michielin O.. Guex N. (2012) Defining and searching for structural motifs using DeepView/Swiss-PdbViewer. BMC Bioinformatics, 13, 173. CrossRef Scholar google search
Pedretti A., Villa L., Vistoli G. (2002) VEGA: A versatile program to convert, handle and visualize molecular structure onWindows-based PCs. J. Mol. Graph. Model., 21(1), 47–49. CrossRef Scholar google search
Trott O., Olson A.J. (2010) AutoDock Vina: Improving the speed and accuracy of docking with new scoring function, efficient optimization and multithreading. J. Comput. Chem., 31(2), 455–461. CrossRef Scholar google search
Korb O., Stützle T., Exner T.E. (2006) PLANTS: Application of Ant Colony Optimization to Structure-Based Drug Design. In: Ant Colony Optimization and Swarm Intelligence (Dorigo M., Gambardella L.M., Birattari M., Martinoli A., Poli R., Stützle, T., eds.), pp. 247–258. Springer, Berlin, Heidelberg. CrossRef Scholar google search
Durrant J.D., McCammon J.A. (2011) NNScore 2.0: A neural-network receptor-ligand scoring function. J. Chem. Inf. Model., 51, 2897–2903. CrossRef Scholar google search
Pires D.E.V., Blundell T.L., Ascher D.B. (2015) pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 58(9), 4066–4072. CrossRef Scholar google search
Xiong G., Wu Z., Yi J., Fu L., Yang Z., Hsieh C., Yin M., Zeng X., Wu C., Lu A., Chen X., Hou T., Cao D. (2021) ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res., 49(W1), W5–W14. CrossRef Scholar google search
The GIMP Development Team (2019) GIMP. The GNU Image Manipulation Program. Scholar google search
Ataide M.A., Andrade W.A., Zamboni D.S., Wang D., Souza M.dC., Franklin B.S., Elian S., Martins F.S., Pereira D., Reed G., Fitzgerald K.A., Golenbock D.T., Gazzinelli R.T. (2014) Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection. PLOS Pathog., 10(1), e1003885. CrossRef Scholar google search
Blevins H.M., Xu Y., Biby S., Zhang S. (2022) The NLRP3 inflammasome pathway: A review of mechanisms and inhibitors for the treatment of inflammatory diseases. Front. Aging Neurosci., 14, 879021. CrossRef Scholar google search
Chiarini A., Gui L., Viviani C., Armato U., Dal Prà I. (2023) NLRP3 inflammasome's activation in acute and chronic brain diseases — An update on pathogenetic mechanisms and therapeutic perspectives with respect to other inflammasomes. Biomedicines, 11(4), 999. CrossRef Scholar google search
de Zoete M.R., Palm N.W., Zhu S., Flavell R.A. (2014) Inflammasomes. Cold Spring Harb. Perspect. Biol., 6(12), a016287. CrossRef Scholar google search
Guo H., Callaway J.B., Ting J.P.-Y. (2015) Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat. Med., 21(7), 677–687. CrossRef Scholar google search
Lara-Reyna S., Caseley E.A., Topping J., Rodrigues F., Jimenez Macias J., Lawler S.E., McDermott M.F. (2022) Inflammasome activation: From molecular mechanisms to autoinflammation. Clin. Transl. Immunology, 11, e1404. CrossRef Scholar google search
Tsuchiya K. (2020) Inflammasome-associated cell death: Pyroptosis, apoptosis, and physiological implications. Microbiol. Immunol., 64(4), 252–269. CrossRef Scholar google search
Sena-dos-Santos C., Braga-da-Silva C., Marques D., Azevedo dos Santos Pinheiro J., Ribeiro-dos-Santos Â., Cavalcante G.C. (2021) Unraveling cell death pathways during malaria infection: what do we know so far? Cells, 10(2), 479. CrossRef Scholar google search