1. N.N. Semenov Institute for Chemical Physics, Russian Academy of Sciences 2. I.M. Sechenov Moscow Medical Academy 3. School of Chemistry, M.V. Lomonosov Moscow State University
The ATP - generating activity of both rat myocardial mitochondria and intramitochondrial creatine phosphokinase (CPK) was examined as a function of the incubation medium magnesium pool isotopy. The in vitro systems tested were prepared from the hearts of animals treated with single injection of 1-methyl-nicotine amide (MNA) suppressing the NAD(P)-dependent reactions in vivo.The presense of the 25Mg paramagnetic cations leads to essential compensation of intramitochondrial ATP deficiency caused by the MNA induced blockade of oxidative phosphorylation. This effect is merely unreachable in those systems where the magnesium pool consists of isotopes with a zero nuclear spin (24Mg, 26Mg).The reactivation of mitochondrial ATP synthesis described here involves CPK activity which does not depends on MNA. In this case, a high efficiency of this reactivation seems to be a spin selective phenomenon which requires, predominantly, 25Mg2+ cations.
Kouznetsov D.A., Alyautdin R.N., Markaryan A.A., Berdieva A.G., Khasigov P.Z., Gatagonova T.M., Ktsoeva S.A., Orlova M.A. (2006) The effect of magnesium pool isotopy on reactivation of mitoсhondrial ATP synthesis suppressed by 1-methyl-nicotine amide. Biomeditsinskaya Khimiya, 52(2), 146-152.
Kouznetsov D.A. et al. The effect of magnesium pool isotopy on reactivation of mitoсhondrial ATP synthesis suppressed by 1-methyl-nicotine amide // Biomeditsinskaya Khimiya. - 2006. - V. 52. -N 2. - P. 146-152.
Kouznetsov D.A. et al., "The effect of magnesium pool isotopy on reactivation of mitoсhondrial ATP synthesis suppressed by 1-methyl-nicotine amide." Biomeditsinskaya Khimiya 52.2 (2006): 146-152.
Kouznetsov, D. A., Alyautdin, R. N., Markaryan, A. A., Berdieva, A. G., Khasigov, P. Z., Gatagonova, T. M., Ktsoeva, S. A., Orlova, M. A. (2006). The effect of magnesium pool isotopy on reactivation of mitoсhondrial ATP synthesis suppressed by 1-methyl-nicotine amide. Biomeditsinskaya Khimiya, 52(2), 146-152.
References
Okada O., Telashima S., Satoh M., Namura S., Matsushita I. (2000) J. Japan Pharm. Soc., 58, 211-219. Scholar google search
Velaidi A. (2003) Antimetabolites in mitochondrial function studies. In: Toxic Аgents in Biomedical Research (Sanai, R. & Amirkanian, T, Eds.) pp. 44-60, Guilan Press: Rasht-Tehran. Scholar google search
Hranic G., Milutinovic Z. (2002) Acta Biol. Med. Slovenica, 8, 601-608. Scholar google search
Mahajan V.B., Pai K.S., Lau A., Cunningham, D.D. (2000) Proc. Natl. Acad. Sci. USA, 97, 12062-12067. Scholar google search
Jacobus W.E., Saks A. (1982) Arch. Biochem. Biophys., 219, 167-178. Scholar google search
Belousova L.A., Lipskaya T.Y., Temple V.D., Rostovtsev A.P. (1983) In: Advances in Myocardiology (Chazov E.I., Smirnov V.N., Dhalla T.S., eds.) Vol. 3, pp. 585-595, University Park Press: Baltimore. Scholar google search
Gornall A.G., Bardawill C.L., David M.M. (1949) J. Biol.Chem., 177, 751-766. Scholar google search
Moudy J.S., Barthelrough T.D. (1986) J. Pharm. Chem., 19, 610-618. Scholar google search
Sobol S., Conrad A., Hebish S. (1994) Mol. Cell. Biochem., 133/134, 105-113. Scholar google search
Kouznetsov D.A., Govorkov A.V., Zavijalov N.V., Sabileva T.M., Richter V., Drawczek J.A. (1986) J. Biochem. Biophys. Methods, 13, 53-56. Scholar google search
Sieliwanowicz B., Skrob L., Mlody A. (1990) In: Mitochondria (Novotny R. аnd Bolek K., eds.) pp. 109-132, Jagellonski University Press: Krakow. Scholar google search
Sobol S., Konrad A., Keller M., Hebisch S. (1992) Biochim. Biophys Acta, 1100, 27-32. Scholar google search
Ivanov A.A. (2002) Biofractionation of Carbone Isotopes and Photosynthesis. Turin Polytechnical University Press: Turin-Varese-Milan. Scholar google search