A novel vector for construction of cDNA library
Fedchenko V.I.1 , Kaloshin A.A.1 , Medvedev A.E.1 1. Institute of Biomedical Chemistry, Russian Academy of Medical Sciences Section: Experimental/Clinical Study DOI: 10.18097/pbmc20105603329 PubMed Id: 20695212
Year: 2010 Volume: 56 Issue : 3 Pages: 329-341 A new original vector pEM-(dT)40(f+) has been prepared. It can be used for cDNA library construction from polyadenylated mRNA, isolated from various sources. The pGEM-(dT)40f(+) is initially transformed into single stranded and then into a linear form and its (dT)40 tail at 3'-end is used as the vector-primer for synthesis of the first strand cDNA. The use of a synthetic oligonucleotide complementary to the vector and recombinant DNA results in vector cyclization and synthesis of the second strand cDNA. This approach significantly simplifies cDNA library construction, it does not require PCR reaction (which can induce artifact mutations in cDNA sequences) and restrictase treatment.Download PDF: Keywords: cDNA library, vector-primer, full size cDNA, cDNA synthesis
Citation:
APA
MLA
BMC standart
GOST
Fedchenko V.I., Kaloshin A.A., Medvedev A.E. (2010) Biomeditsinskaya khimiya, 56 (3), 329-341.
Fedchenko V.I. et al. A novel vector for construction of cDNA library // Biomeditsinskaya khimiya. - 2010. - V. 56. -N 3. - P. 329-341.
Fedchenko V.I. et al., "A novel vector for construction of cDNA library." Biomeditsinskaya khimiya 56.3 (2010): 329-341.
Fedchenko, V. I., Kaloshin, A. A., Medvedev, A. E. (2010). A novel vector for construction of cDNA library. Biomeditsinskaya khimiya , 56(3), 329-341.
This paper is also available as the English translation: 10.1134/S1990750810040050
References Show
Lander E.S., Linton L.M. et al. (2001) Nature, 409, 860-921. CrossRef Scholar google search Venter J.C., Adans M.D. et al. (2001) Science, 291, 1304-1351. CrossRef Scholar google search Watersoton R.H., Lindblad-Toh K., Birney E. (2002) Nature, 420(6915), 520-562. CrossRef Scholar google search Suzuki Y., Yoshitomo-Nakagawa K., Suyama A., Sugano S. (1997) Gene, 200, 149-156. CrossRef Scholar google search Morin R.D., Chang E., Petrescu A., et al. (2006) Genome Res., 16, 796-803. CrossRef Scholar google search Gubler U., Hoffman B.J. (1983) Gene, 25, 263-269. CrossRef Scholar google search Okayama H., Berg P. (1982) Mol. Cell. Biol., 2, 161-170. CrossRef Scholar google search Pruitt S.C. (1988) Gene, 66, 121-134. CrossRef Scholar google search Carninci P., Kvam C., Kitamura A. et. al. (1996) Genomics, 37, 327-336. Scholar google search Apte A.N., Siebert P.D. (1993) Biotechniques, 15, 890-893. Scholar google search Maruyama K., Sugano S. (1994) Gene, 138, 171-174. CrossRef Scholar google search Kato S., Ohtoko K., Ohtake H., Kimura T. (2005) DNA Res., 12, 53-62. CrossRef Scholar google search Ota T., Suzuki Y., Nishikawa T. et. al. (2004) Nature Genet., 36, 40-45. Scholar google search Suzuki Y., Tsunoda T., Sese J. et. al. (2001) Genome Res., 11, 677-684. Scholar google search Kushner S.R. (1978) In: Genetic engineering (Boyer H.B. and Nicosia S., eds.) p. 17, Elsevier/North-Holland, Amsterdam. Scholar google search Cohen S.N., Chang A.C.Y., Hsu L. (1972) Proc. Natl. Acad. Sci. USA, 69, 2110-2114. CrossRef Scholar google search Petty I.T., Hunter B.G. Jackson A.O. (1988) Gene, 74, 423-432. CrossRef Scholar google search