Compensatory mechanisms to heal neuroplasticity impairment under Alzheiemer's disease neurodegeneration. I: The role of amyloid beta and its' precursor protein
1. Orekhovich Institute of Biomedical Chemistry of RAMS 2. Interhospital Medical Center "Intermedcenter" 3. Department of Pathological Anatomy, North Osetia State Medical Academy 4. Institute of Biomedical Chemistry, Russian Academy of Medical Sciences 5. Orekhovich Institute of Biomedical Chemistry of RAMS Russian People`s Friendship University, Medical School, Department of Biochemistry
In-depth scholar literature analysis of Alzheimer's disease neurodegenerative features of amyloid beta protein neurochemistry modification and excessive phosphorylation of tau protein (and associated neuronal cytoskeleton rearrangements) are secondary phenomena. At early disease stage these neurobiochemical mechanisms are reversible and serve to heal an impairment of biophysical properties of neuronal membranes, neurotransmission, basic neuronal function and neuroplasticity, while preserving anatomical and functional brain fields. Aβ and tau could well serve to biochemically restore physico-chemical properties of neual membranes due to a role these proteins play in lipid metabolism. Under such scenario therapeutic block of aggregation and plaque formation of Aβ and inhibition of tau phosphorylation, as well as pharmaceutical modification of other secondary neurodegenerative features (such as a cascade of oxidative stress reactions) are unable to provide an effective cure of Alzheimer's disease and related pathologies of the Central and peripheral nervous systems, because they are not arraying primary pathagenetic cause. We review the role of Aβ in compensatory mechanisms of neuroplasticity restoration under normal physiological condition and Alzheimer's disease.
Koudinova N.V., Koudinov A.R., Kezlya E.V., Kozirev K.M., Medvedev A.E., Berezov T.T. (2012) Compensatory mechanisms to heal neuroplasticity impairment under Alzheiemer's disease neurodegeneration. I: The role of amyloid beta and its' precursor protein. Biomeditsinskaya Khimiya, 58(4), 385-399.
Koudinova N.V. et al. Compensatory mechanisms to heal neuroplasticity impairment under Alzheiemer's disease neurodegeneration. I: The role of amyloid beta and its' precursor protein // Biomeditsinskaya Khimiya. - 2012. - V. 58. -N 4. - P. 385-399.
Koudinova N.V. et al., "Compensatory mechanisms to heal neuroplasticity impairment under Alzheiemer's disease neurodegeneration. I: The role of amyloid beta and its' precursor protein." Biomeditsinskaya Khimiya 58.4 (2012): 385-399.
Koudinova, N. V., Koudinov, A. R., Kezlya, E. V., Kozirev, K. M., Medvedev, A. E., Berezov, T. T. (2012). Compensatory mechanisms to heal neuroplasticity impairment under Alzheiemer's disease neurodegeneration. I: The role of amyloid beta and its' precursor protein. Biomeditsinskaya Khimiya, 58(4), 385-399.
Castellani R.J., Lee H.G., Siedlak S.L., Nunomura A., Hayashi T., Nakamura M., Zhu X., Perry G., Smith M.A. (2009) J. Alzheimers Dis., 18, 447-452. Scholar google search
Walsh D.M., Klyubin I., Fadeeva J.V., Cullen W.K., Anwyl R., Wolfe M.S., Rowan M.J., Selkoe D.J. (2002) Nature, 416, 535-539. CrossRef Scholar google search
Rowan M.J., Klyubin I., Wang Q., Hu N.W., Anwyl R. (2007) Biochem. Soc. Trans., 35(Pt 5), 1219-23. CrossRef Scholar google search
Steinbach J.P., Muller U., Leist M., Li Z.W., Nicotera P., Aguzzi A. (1998) Cell Death Differ., 5, 858-866. CrossRef Scholar google search
Lesne S., Ali C., Gabriel C., Croci N., MacKenzie E.T., Glabe C.G., Plotkine M., Marchand-Verrecchia C., Vivien D., Buisson A. (2005) J. Neurosci., 25, 9367-9377. CrossRef Scholar google search
Taylor C.J., Ireland D.R., Ballagh I., Bourne K., Marechal N.M., Turner P.R., Bilkey D.K., Tate W.P., Abraham W.C. (2008) Neurobiol. Dis., 31, 250-260. CrossRef Scholar google search
Wang P., Yang G., Mosier D.R., Chang P., Zaidi T., Gong Y.D., Zhao N.M., Dominguez B., Lee K.F., Gan W.B., Zheng H. (2005) J. Neurosci., 25, 1219-1225. CrossRef Scholar google search
Yang G., Gong Y.D., Gong K., Jiang W.L., Kwon E., Wang P., Zheng H., Zhang X.F., Gan W.B., Zhao N.M. (2005) Neurosci. Lett., 384, 66-71. CrossRef Scholar google search
Jaworska-Wilczynska M., Wilczynski G.M., Engel W.K., Strickland D.K., Weisgraber K.H., Askanas V. (2002) Neurology, 58, 438-445. CrossRef Scholar google search
Koudinov A.R., Koudinova N.V., Beisiegel U. (2002) Neurology online http://www.neurology.org/cgi/eletters/58/3/438#263 . Scholar google search
Koudinova N.V., Koudinov A.R. (2003) Soc. Neurosci. Abstr., Program No. 23.8 Neurobiol Lipids 2, 3. http://neurobiologyoflipids.org/content/2/3/ . Scholar google search
Wahrle S.E., Jiang H., Parsadanian M., Kim J., Li A., Knoten A., Jain S.,Hirsch-Reinshagen V., Wellington C.L., Bales K.R., Paul S.M., Holtzman D.M. (2008) J. Clin. Invest., 118, 671-682. Scholar google search
Koldamova R. (2007) Neurobiol. Lipids, 6, 1, available at: http://neurobiologyoflipids.org/content/6/1/ . Scholar google search
Liu Q., Zerbinatti C.V., Zhang J., Hoe H.S., Wang B., Cole S.L., Herz J., Muglia L., Bu G. (2007) Neuron, 56, 66-78. CrossRef Scholar google search
Koudinov AR., Koudinova N.V., Berezov T.T. (1996) Biochem. Mol. Biol. Inter., 38, 747-752. Scholar google search