The review discusses the functional role of sphingolipids in the pathogenesis of Alzheimer's disease. Certain evidence exist that the imbalance of sphingolipids such as sphingomyelin, ceramide, sphingosine, sphingosine-1-phosphate and galactosylceramide in the brain of animals and humans, in the cerebrospinal fluid and blood plasma of patients with Alzheimer's disease play a crucial role in neuronal function by regulating growth, differentiation and cell death in CNS. Activation of sphingomyelinase, which leads to the accumulation of the proapoptotic agent, ceramide, can be considered as a new mechanism for AD and may be a prerequisite for the treatment of this disease by using drugs that inhibit sphingomyelinase activity. The role of sphingolipids as biomarkers for the diagnosis of the early stage of Alzheimer's disease and monitoring the effectiveness of treatment with new drugs is discussed.
Download PDF:
Keywords: Alzheimer`s disease, sphingolipids (sphingomyelin, ceramide, sphingosine, sphingosine-1-phosphate, sulphatides), mass spectrometry of sphingolipids, brain, cerebrospinal fluid, blood plasma, biomarkers
Citation:
Alessenko A.V. (2013) The potential role for sphingolipids in neuropathogenesis of Alzheimer’s disease. Biomeditsinskaya Khimiya, 59(1), 25-50.
et al. The potential role for sphingolipids in neuropathogenesis of Alzheimer’s disease // Biomeditsinskaya Khimiya. - 2013. - V. 59. -N 1. - P. 25-50.
et al., "The potential role for sphingolipids in neuropathogenesis of Alzheimer’s disease." Biomeditsinskaya Khimiya 59.1 (2013): 25-50.
Alessenko, A. V. (2013). The potential role for sphingolipids in neuropathogenesis of Alzheimer’s disease. Biomeditsinskaya Khimiya, 59(1), 25-50.
Kornburger J., Tripal P., Reichel M., Muhle C., Rhein, C., Muehbacher M., Groemer T.W., Gulbins E. (2010) Cell. Physiol. Biochem., 26, 9-20. CrossRef Scholar google search
Taguchi M., Sugimoto K., Akama T., Yamamoto K., Suzuki T., Tomishima Y., Nishiguchi M., Arai K., Takanashi K., Kobori T. (2003) Bioorg. Med. Chem. Lett., 13, 1963-1966. CrossRef Scholar google search
Huang Y., Tanimukai H., Liu F., Igbal K., Grundke-Igbal I., Gong C.X. (2004) Eur. J. Neurosci., 20, 3489-3497. CrossRef Scholar google search
Han X., Fagan A.M., Cheng H., Morris J.C., Xiong C., Holtzman D.M. (2003) Ann. Neurol., 54, 115-119. CrossRef Scholar google search
Satoi H., Tomimoto H., Ohtani R., Kitano T., Kondo T., Watanabe M. et al. (2005) Neurosience, 130, 657-666. CrossRef Scholar google search
Mielke M.M., Haughey N.J., Bandaru V.V., Weinberg D.D., Darby E., Zaidi N., Pavlik V. (2011) J. Alzheimer’s Dis., 27, 259-269. Scholar google search
Kosicek M., Zetterberg H., Andreasen N., Peter-Katalinic J., Hecimovic S. (2012) Neurosci. Lett., 516(2), 302-305. CrossRef Scholar google search
Mielke M.M., Hauhey N.J., Bandaru V.V., Schech S., Carrick R., Carlson M.C., Mori S., Miller M.I., Ceritoglu C., Brown T., Albert M., Lyketsos C.G. (2010) Alzheimers Dement., 6, 378-385. CrossRef Scholar google search
Han X., Rozen S., Boyle S.H., Hellegers C., Cheng H., Burke J.R., Welsh-Bohmer K.A., Doraiswamy P.M., Kaddurah-Dauk R. (2011) PLoS One., 6(7), e21643. CrossRef Scholar google search
Taffese F.G., Huitema K., Hermansson M., van der Poel S., van den Dikkenberg J., Uphoff A., Somerharju P., Holthuis J.C. (2007) J. Biol. Chem., 282, 17537-17547. CrossRef Scholar google search
Palestini P., Masserini M., Fiorilli A., Calappi E., Tettamanti G. (1993) J. Neurochemistry, 61, 955-960. CrossRef Scholar google search
Sullards M.C., Wang E., Peng Q., Merrill A.H.Jr. (2005) in: Functional Lipidomics, (Feng L., Prestwich G.D., eds.). Echelon Biosciences, Salt Lake City, pp. 159-189. Scholar google search
Sullards M.C., Wang E., Peng Q., Merrill A.H.Jr. (2003) Cell Mol. Biol., 49, 789-797. Scholar google search
Houjou T., Yamatani K., Nakanishi H., Imagawa M., Shinuzu T., Taguch R. (2004) Rapid Commun. Mass Spectrom., 18, 3123-3130. CrossRef Scholar google search
Lee J-T., Xu J., Ku G., Han X., Yang D-I., Chen S., Buccoliero R., Futterman A.H. (2003), Pharmacological Res., 47, 409-419. CrossRef Scholar google search
Malaplate-Armand C., Florent-Bechard S., Youssef I., Koziel V., Sponne I., Kriem B., Leininger-Muller B., Olivier J.L., Oster T., Pillot T. (2006) Neurobiol. Dis., 23(1), 178-189. CrossRef Scholar google search
Xuan N.T., Shumilina E., Kempe D.S., Gulbins E., Lang F. (2010) J. Neuroimmunol., 219, 81-89. CrossRef Scholar google search
Zeng C., Lee J.T., Chen S., Hsu C.Y., Xu J. (2005) J. Neurochem., 94, 703-712. Scholar google search
Chen S., Lee J.M., Zeng C., Chen H., Hsu C.Y., Xu J. (2006) J. Neurochem., 97, 631-640. Scholar google search
Malaplate-Armand C., Florent-Bechard S., Youssef I., Koziel V., Sponne I., Kriem B., Leininger-Muller D., Olivier J-L., Jster T., Pillot T. (2006) Neurobiol. Dis, 23, 178-189. Scholar google search
He X., Huang Y., Li B., Schuchman E.H. (2010) Neurobiol. Aging, 31, 398-408. Scholar google search
Fillipov V., Song M.A., Zhang K., Vinters H.V., Tung S., Kirsh W.M., Yang J., Duerksen-Hughes P.J. (2012) J. Alzheimers Dis., 29, 537-547. Scholar google search
Pettegrew J.W., Panchalingham K., Hamilton R.L., McClure R.J. (2001) Neurochemical Research, 26, 771, 782. Scholar google search
Chan R.B., Oliveira T.G., Cortes E.P., Honig L.S., Duff K.E., Small S.A., Wenk M.R., Shui G., Di Paolo G. (2012) J. Biol. Chem., 287, 2678-2688. Scholar google search
Bandaru V.V., Troncoso J., Wheeler D., Pletnikova O., Wang J., Connant K. (2009) Neurobiology of Aging, 30, 591-599. Scholar google search
Han X., Holtzman D., McKeel D.W. Jr., Kelly J., Morris J.C. (2002) J. Neurochemistry, 82, 809-818. CrossRef Scholar google search