1. Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences; Pushchino State University 2. Hospital at Pushchino Research Center 3. Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Age of patients and brain oxidative stress may contribute to pathogenesis of Alzheimer's disease (AD). Erythrocytes (red blood cells, RBC) are considered as passive “reporter cells” for the oxidative status of the whole organism and are not well studied in AD. The aim of this work was to assess whether the antioxidant status of RBC changes in aging and AD. Blood was taken from AD and non-Alzheimer's dementia patients, aged-matched and younger controls. In vivo antioxidant status was assessed in each of the study subjects by measuring RBC levels of Н О , organic hydroperoxides, glutathione (GSH) and glutathione disulfide (GSSG), activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase, and glucose-6-phosphate dehydrogenase. In both aging and dementia, oxidative stress in RBC was shown to increase and to be expressed in elevated concentrations of H O and organic hydroperoxides, decreased the GSH/GSSG ratio and glutathione S-transferase activity. Decreased glutathione peroxidase activity in RBC may be considered as a new peripheral marker for Alzheimer’s disease while alterations of other parameters of oxidative stress reflect age-related events.
Kosenko E.A., Tikhonova L.A., Poghosyan A.C., Kaminsky Y.G. (2013) Antioxidants in erythrocytes in aging and dementia. Biomeditsinskaya Khimiya, 59(4), 443-451.
Kosenko E.A. et al. Antioxidants in erythrocytes in aging and dementia // Biomeditsinskaya Khimiya. - 2013. - V. 59. -N 4. - P. 443-451.
Kosenko E.A. et al., "Antioxidants in erythrocytes in aging and dementia." Biomeditsinskaya Khimiya 59.4 (2013): 443-451.
Kosenko, E. A., Tikhonova, L. A., Poghosyan, A. C., Kaminsky, Y. G. (2013). Antioxidants in erythrocytes in aging and dementia. Biomeditsinskaya Khimiya, 59(4), 443-451.
Mirra S.S., Heyman A., McKeel D., McKeel D., Sumi S.M., Crain B.J., Brownlee L.M., Vogel F.S., Hughes J.P., van Belle G., Berg L. (1991) Neurology, 41, 479-486. CrossRef Scholar google search
Beutler E. (1986) Red Cell Metabolism. Churchill Livingstone, Edinburgh. Scholar google search
Kozer E., Evans S., Barr J., Greenberg R., Soriano I., Bulkowstein M., Petrov I., Chen-Levi Z., Barzilay B., Berkovitch M. (2003) Br. J. Clin. Pharmacol., 55, 234-240. CrossRef Scholar google search
Kawamoto E.M., Munhoz C.D., Glezer I., Bahia V.S., Caramelli P., Nitrini R., Gorjao R., Curi R., Scavone C., Marcourakis T. (2005) Neurobiol. Aging, 26, 857-864. CrossRef Scholar google search
Rybka J., Kupczyk D., Kedziora-Kornatowska K., Pawluk H., Czuczejko J., Szewczyk-Golec K., Kozakiewicz M., Antonioli M., Carvalho L.A., Kedziora J. (2011) Redox Rep., 16, 71-77. CrossRef Scholar google search
Kharrazi H., Vaisi-Raygani A., Rahimi Z., Tavilani H., Aminian M., Pourmotabbed T. (2008) Clin. Biochem., 41, 932-936. CrossRef Scholar google search
Bourdel-Marchasson I., Delmas-Beauvieux M.C., Peuchant E., Richard-Harston S., Decamps A., Reignier B., Emeriau J.P., Rainfray M. (2001) Age Ageing., 30, 235-241. CrossRef Scholar google search
Vural H., Demirin H., Kara Y., Eren I., Delibas N. (2010) J. Trace Elem. Med. Biol., 24, 169-173. CrossRef Scholar google search