Molecular docking and 3D-QSAR on 16a,17a-cycloalkanoprogesterone analogues as progesterone receptor ligands

   
Fedyushkina I.V.1 , Skvortsov V.S.1, Romero Reyes I.V.1, Levina I.S.2

1. Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences
2. N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences
Section: Experimental/Clinical Study
DOI: 10.18097/PBMC20135906622      PubMed Id: 24511674
Year: 2013  Volume: 59  Issue: 6  Pages: 622-635
A series of 42 steroid ligands was used to predict a binding affinity to progesterone receptor. The molecules were the derivatives of 16a,17a-cycloalkanoprogesterones. Different methods of prediction were used and analyzed such as CoMFA and artificial neural networks. The best result (Q2=0.91) was obtained for a combination of molecular docking, molecular dynamics simulation and artificial neural networks. A predictive power of the model was validated by a group of 8 pentarans synthesized separately and tested in vitro (R2test=0.77). This model can be used to determine the affinity level of the ligand to progesterone receptor and accurate ranking of binding compounds.
Download PDF:  
Keywords: pentaranes, progesterone receptor, ligand-binding domain, affinity, QSAR, computational methods, COMFA, COMSIA
Citation:

Fedyushkina, I. V., Skvortsov, V. S., Romero, Reyes, I. V., Levina, I. S. (2013). Molecular docking and 3D-QSAR on 16a,17a-cycloalkanoprogesterone analogues as progesterone receptor ligands. Biomeditsinskaya Khimiya, 59(6), 622-635.
This paper is also available as the English translation: 10.1134/S1990750814020048
References  
 2024 (vol 70)
 2023 (vol 69)
 2022 (vol 68)
 2021 (vol 67)
 2020 (vol 66)
 2019 (vol 65)
 2018 (vol 64)
 2017 (vol 63)
 2016 (vol 62)
 2015 (vol 61)
 2014 (vol 60)
 2013 (vol 59)
 2012 (vol 58)
 2011 (vol 57)
 2010 (vol 56)
 2009 (vol 55)
 2008 (vol 54)
 2007 (vol 53)
 2006 (vol 52)
 2005 (vol 51)
 2004 (vol 50)
 2003 (vol 49)