1. Orekhovich Institute of Biomedical Chemistry (IBMC) 2. Orekhovich Institute of Biomedical Chemistry (IBMC); Institute for Energy Problems of Chemical Physics RAS, Moscow, Russia
Phosphorylation is one of the most common posttranslational modification (PTM) of proteins. Main challenge of phosphoprotein detection is their low abundance comparing to abundance of unmodified proteins. The method of selected reactions monitoring (SRM) allows to perform very sensitive and selective analysis of desired PTMs. Using myelin basic protein (MBP) as a model we have developed a method for phosphoprotein detection by SRM. The method is based on obtaining of phosphoproteins in a reconstituted kinase system and following usage these phosphorylated protein as a template for the development of the SRM method. The developed method was successfully applied for detection of phosphopeptides of myelin basic protein in the samples of human brain glioma.
Zavialova M.G., Zgoda V.G., Kharybin O.N., Nikolayev E.N. (2014) In vitro protein phosphorylation as a template for SRM method development. Biomeditsinskaya Khimiya, 60(6), 668-676.
Zavialova M.G. et al. In vitro protein phosphorylation as a template for SRM method development // Biomeditsinskaya Khimiya. - 2014. - V. 60. -N 6. - P. 668-676.
Zavialova M.G. et al., "In vitro protein phosphorylation as a template for SRM method development." Biomeditsinskaya Khimiya 60.6 (2014): 668-676.
Zavialova, M. G., Zgoda, V. G., Kharybin, O. N., Nikolayev, E. N. (2014). In vitro protein phosphorylation as a template for SRM method development. Biomeditsinskaya Khimiya, 60(6), 668-676.
Olsen J.V, Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P., Mann M. (2006) Cell, 127, 635–648. doi:10.1016/j.cell.2006.09.026. CrossRef Scholar google search
Mann M., Ong S.-E., Grønborg M., Steen H., Jensen O.N., Pandey A. (2002) Trends Biotech., 20, 261–268. doi:10.1016/S0167-7799(02)01944-3. CrossRef Scholar google search
Katsogiannou M., Andrieu C., Rocchi P. (2014) Frontiers in genetics, 5, 346. doi:10.3389/fgene.2014.00346. CrossRef Scholar google search
Kelleher N.L. (2004) Peer Reviewed: Top-Down Proteomics. Analyt.Chem., 76, 196 A–203 A. doi:10.1021/ac0415657. CrossRef Scholar google search
Dunn J.D., Reid G.E., Bruening M.L. (n.d.) Mass Spectrometry Rev., 29, 29–54. doi:10.1002/mas.20219. CrossRef Scholar google search
Jin L.L., Tong J., Prakash A., Peterman S.M., St-Germain J.R., Taylor P., Moran M.F. (2010) J. Proteome Res., 9, 2752–2761. doi:10.1021/pr100024a. CrossRef Scholar google search
Wolf-Yadlin A., Hautaniemi S., Lauffenburger D.A., White F.M. (2007) Proc. Nat. Acad. Sci. USA, 104, 5860–5865. doi:10.1073/pnas.0608638104. CrossRef Scholar google search
Anderson L., Hunter C.L. (2006) Mol. Cell Proteomics: MCP, 5, 573–588. doi:10.1074/mcp.M500331-MCP200. CrossRef Scholar google search
Sherrod S.D., Myers M.V., Li M., Myers J.S., Carpenter K.L., Maclean B., Ham A.-J.L. (2012) J. Proteome Res., 11, 3467–3479. doi:10.1021/pr201240a. CrossRef Scholar google search
Vassall K.A., Bessonov K., De Avila M., Polverini E., Harauz G. (2013) PloS one, 8, e68175. doi:10.1371/journal.pone.0068175. CrossRef Scholar google search
Liu Y., Hüttenhain R., Collins B., Aebersold R. (2013) Expert Rev. Mol. Diagn., 13, 811–825. doi:10.1586/14737159.2013.845089. CrossRef Scholar google search
Kim J.K., Mastronardi F.G., Wood D.D., Lubman D.M., Zand R., Moscarello M.A. (2003) Mol. Cell Proteomics: MCP, 2, 453–462. doi:10.1074/mcp.M200050-MCP200. CrossRef Scholar google search