Optical surface plasmon resonance biosensors in molecular fishing
Ivanov A.S.1 , Medvedev A.E.2
1. Institute of Biomedical Chemistry, Moscow, Russia; Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia 2. Institute of Biomedical Chemistry, Moscow, Russia
An optical biosensor employing surface plasmon resonance is a highly efficient instrument applicable for direct real time registration of molecular interactions without additional use of any labels or coupled processes. As an independent approach it is especially effective in analysis of various ligand receptor interactions. SPR-biosensors are used for validation of studies on intermolecular interactions in complex biological systems (affinity profiling of various groups of proteins, etc.). Recently, potential application of the SPR-biosensor for molecular fishing (direct affinity binding of target molecules from complex biological mixtures on the optical biosensor surface followed by their elution for identification by LC-MS/MS) has been demonstrated. Using SPR-biosensors in such studies it is possible to solve the following tasks: (a) SPR-based selection of immobilization conditions required for the most effective affinity separation of a particular biological sample; (b) SPR-based molecular fishing for subsequent protein identification by mass spectrometry; (c) SPR-based validation of the interaction of identified proteins with immobilized ligand. This review considers practical application of the SPR technology in the context of recent studies performed in the Institute of Biomedical Chemistry on molecular fishing of real biological objects.
Ershov P., Mezentsev Yu., Gnedenko O., Mukha D., Yantsevich A., Britikov V., Kaluzhskiy L., Yablokov E., Molnar A., Ivanov A., Lisitsa A., Gilep A., Usanov S., Archakov A. (2012) Proteomics, 12, 3295–3298. CrossRef Scholar google search
Ivanov A.S., Medvedev A., Ershov P., Molnar A., Mezentsev Y., Yablokov E., Kaluzhsky L., Gnedenko O., Buneeva O., Haidukevich I., Sergeev G., Lushchyk A., Yantsevich A., Medvedeva M., Kozin S., Popov I., Novikova S., Zgoda V., Gilep A., Usanov S., Lisitsa A., Archakov A. (2014) Proteomics, 14, 2261–2274. CrossRef Scholar google search
Upadhaya A., Kosterin I., Kumar S., von Arnim C.A., Yamaguchi H., Fändrich M., Walter J., Thal D.R. (2014) Brain, 137(pt 3), 887-903. CrossRef Scholar google search
Tamaoka A., Endoh R., Shoji S., Takahashi H., Hirokawa K., Teplow D.B., Selkoe D.J., Mori H. (1996) Neurobiol. Aging, 17, 405–414. CrossRef Scholar google search
Schulze H., Schuler A., Stuber D., Dobeli H., Langen H., Huber G. (1993) J. Neurochem., 60, 1915–1922. CrossRef Scholar google search
Verdier Y., Földi I., Sergeant N., Fülöp L., Penke Z., Janáky T., Szücs M., Penke B. (2008) J. Pept. Sci., 14, 755–762. CrossRef Scholar google search
Ivanov A.S., Medvedev A., Ershov P., Molnar A., Mezentsev Y., Yablokov E., Kaluzhsky L., Gnedenko O., Buneeva O., Haidukevich I., Sergeev G., Lushchyk A., Yantsevich A., Medvedeva M., Kozin S., Popov I., Novikova S., Zgoda V., Gilep A., Usanov S., Lisitsa A., Archakov A. (2014) Proteomics, 14, 2261–2274. CrossRef Scholar google search
Caswell A.H., Corbett A.M. (1985) J. Biol. Chem., 260, 6892–6898. Scholar google search
Harvey J.W. (2008) in: Clinical Biochemistry of Domestic Animals (Kaneko J.J., Harvey J.W., Bruss M.L., eds.), London: Academic Press, pp. 173–240. Scholar google search
Crumeyrolle-Arias M., Medvedev A., Cardona A., Barritault D., Glover V. (2003) J. Neurochem., 84, 618-620. CrossRef Scholar google search
Crumeyrolle-Arias M., Buneeva O., Zgoda V., Kopylov A., Cardona A., Tournaire M-C., Pozdnev V., Glover V., Medvedev A. (2009) J. Neurosci. Res., 87, 2763–2772. CrossRef Scholar google search
Buneeva O., Gnedenko O., Zgoda V., Kopylov A., Glover V., Ivanov A., Medvedev A., Archakov A. (2010) Proteomics, 10, 23-37. CrossRef Scholar google search