1. Institute of Biomedical Chemistry, Moscow, Russia; Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad District, Russia 2. Institute of Biomedical Chemistry, Moscow, Russia 3. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad District, Russia
Huge range of concentrations of different protein and insufficient sensitivity of methods for detection of proteins at a single molecule level does not yet allow obtaining the whole image of human proteome. In our investigations, we tried to evaluate the size of different proteomes (cells and plasma). The approach used is based on detection of protein spots in 2-DE after staining by protein dyes with different sensitivities. The function representing the dependence of the number of protein spots on sensitivity of protein dyes was generated. Next, by extrapolation of this function curve to theoretical point of the maximum sensitivity (detection of a single smallest polypeptide) it was calculated that a single human cell (HepG2) may contain minimum 70000 proteoforms, and plasma – 1.5 mln. Utilization of this approach to other, smaller proteomes showed the competency of this extrapolation. For instance, the size of mycoplasma (Acholeplasma laidlawii) was estimated in 1100 proteoforms, yeast (Saccharomyces cerevisiae) - 40000, E. coli – 6200, P. furiosus – 3400. In hepatocytes, the amount of proteoforms was the same as in HepG2 – 70000. Significance of obtained data is in possibilities to estimating the proteome organization and planning next steps in its study.
Download PDF:
Keywords: proteome, proteoforms, 2DE
Citation:
Naryzhny S.N., Zgoda V.G., Maynskova M.A., Ronzhina N.L., Belyakova N.V., Legina O.K., Archakov A.I. (2015) Experimental estimation of proteome size for cells and human plasma. Biomeditsinskaya Khimiya, 61(2), 279-285.
Naryzhny S.N. et al. Experimental estimation of proteome size for cells and human plasma // Biomeditsinskaya Khimiya. - 2015. - V. 61. -N 2. - P. 279-285.
Naryzhny S.N. et al., "Experimental estimation of proteome size for cells and human plasma." Biomeditsinskaya Khimiya 61.2 (2015): 279-285.
Naryzhny, S. N., Zgoda, V. G., Maynskova, M. A., Ronzhina, N. L., Belyakova, N. V., Legina, O. K., Archakov, A. I. (2015). Experimental estimation of proteome size for cells and human plasma. Biomeditsinskaya Khimiya, 61(2), 279-285.
Archakov A., Zgoda V., Kopylov A., Naryzhny S., Chernobrovkin A., Ponomarenko E., Lisitsa A. (2012) Expert Rev. Proteomics, 6, 667-676. CrossRef Scholar google search
Naryzhny S., Lisitsa A., Zgoda V., Ponomarenko E., Archakov A. (2014) Electrophoresis, 35, 895-900. CrossRef Scholar google search
Omenn G.S., States D.J., Adamski M., Blackwell T.W., Menon R., Hermjakob H., Apweiler R., Haab B.B., Simpson R.J., Eddes J.S. et al. (2005) Proteomics, 5, 3226-3245. CrossRef Scholar google search
Nagaraj N., Wisniewski J.R., Geiger T., Cox J., Kircher M., Kelso J., Pääbo S., Mann M. (2011) Mol. Systems Biology, 7, 548. CrossRef Scholar google search
Richardson M.R., Liu S., Ringham H.N., Chan V., Witzmann F.A. (2008) Electrophoresis, 12, 2637–2644. CrossRef Scholar google search
Tonella L., Walsh B.J., Sanchez J.C., Ou K., Wilkins M.R., Tyler M., Frutiger S., Gooley A.A., Pescaru I., Appel R.D. et al. (1998) Electrophoresis, 11, 1960-1971. CrossRef Scholar google search
Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J. (1994) Mol. Biol. Cell (3rd edn.), NYC: Garland Publishing. Scholar google search
Lodish H., Berk A., Zipursky S.L., Matsudaira P., Baltimore D., Darnell J. (2000) Molecular Cell Biology (4th edn.), NYC: W.H. Freeman and Company. Scholar google search
Lim H., Yates III, J.R. (2001) Encyclopedia of Life Sciences. www.els.net. Scholar google search