Molecular interactions between proteins redox partners (cytochromes Р450 3А4, 3А5 and cytochrome b5) within the monooxygenase system, which is known to be involved in drug biotransformation, were investigated. Human cytochromes Р450 3A4 and 3А5 (CYP3A4 and CYP3A5) form complexes with various cytochromes b5: the microsomal (b5mc) and mitochondrial (b5om) forms of this protein, as well as with 2 “chimeric” proteins, b5(om-mc), b5(mc-om). Kinetic constants and equilibrium dissociation constants were determined by the SPR biosensor. Essential distinction between CYP3A4 and CYP3A5 was only observed upon their interactions with cytochrome b5om. Electroanalytical characteristics of electrodes with immobilized hemoproteins were obtained. The electrochemical analysis of CYP3A4, CYP3A5, b5mc, b5om, b5(om-mc), and b5(mc-om) immobilized on screen printed graphite electrodes modified with membranous matrix revealed that these proteins have very close reduction potentials -0.435 -0.350 V (vs. Ag/AgCl). Cytochrome b5mc was shown to be capable of stimulating the electrocatalytic activity of CYP3A4 in the presence of its substrate testosterone.
Download PDF:
Keywords: SPR biosensor, protein-protein interactions, cytochromes P450, cytochrome b5, electrochemistry, electrocatalysis, electron transfer
Gnedenko O.V. et al. Protein-protein interactions of cytochromes P450 3A4 and 3A5 with their intermediate redox partners cytochromes b5 // Biomeditsinskaya Khimiya. - 2015. - V. 61. -N 4. - P. 468-474.
Gnedenko O.V. et al., "Protein-protein interactions of cytochromes P450 3A4 and 3A5 with their intermediate redox partners cytochromes b5." Biomeditsinskaya Khimiya 61.4 (2015): 468-474.
Gnedenko, O. V., Ivanov, A. S., Yablokov, E. O., Usanov, S. A., Mukha, D. V., Sergeev, G. V., Kuzikov, A. V., Moskaleva, N. E., Bulko, T. V., Shumyantseva, V. V., Archakov, A. I. (2015). Protein-protein interactions of cytochromes P450 3A4 and 3A5 with their intermediate redox partners cytochromes b5. Biomeditsinskaya Khimiya, 61(4), 468-474.
References
Lewis D.F.V. (2001) Guide to Cytochrome P450. Structure and function. Taylor and Francis Eds., London and New York. CrossRef Scholar google search
Archakov A.I., Bachmanova G.I. (1990) Cytochrome P450 and Active Oxygen. Taylor and Francis, London. UK. Scholar google search
Akiyama I., Tomiyama K., Sakaguchi M., Takaishi M., Mori M., Hosok M., Nagamori S., Shimizu N., Huh N., Miyazaki M. (2004) Int. J. Mol. Med., 14, 663-668. Scholar google search
Colas H., Ewen K., Hannemann F., Bistolas N., Wollenberger U., Bernhardt R., de Oliveira P. (2012) Bioelectrochemistry, 87, 71-77. CrossRef Scholar google search
Carrara C., Cavallini A., Erokhin V., Albani G., De Micheli G. (2011) Biosens. Bioelectron., 26, 3914-3919. CrossRef Scholar google search
Neehaul Y., Chen Y., Werner C., Fee J.A., Ludwig B., Hellwig P. (2012) Biochim. Biophys. Acta, 1817, 1950-1954. Scholar google search
Scheller F., Wollenberger U., Lei C., Jin W., Ge B., Lehmann C., Lisdat F., Fridman V. (2002) Reviews in Molecular Biotechnology, 82, 411-424. CrossRef Scholar google search
Schröper F., Baumann A., Offenhäusser A., Mayer D. (2012) Biosens. Bioelectron., 34, 171-177. Scholar google search
Yamazaki H., Nakajima M., Nakamura M., Asahi S., Shimada N., Gillami E., Guengerich P., Shimada T., Yokoi T. (1999) Drug Metab. Disposition, 27, 999-1004. Scholar google search
Lee S.J., Goldstein J.A. Drug Metabolism and Pharmacokinetics (DMPK) Advance Publication by J-STAGE, doi: 10.2133/dmpk.DMPK-12-SH-030. CrossRef Scholar google search